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Abstract

We provide a new, welfarist, interpretation of the well-known Serial
rule in the random assignment problem, strikingly different from previous
attempts to define or axiomatically characterize this rule.

For each agent i we define ti(k) to be the total share of objects from
her first k indifference classes this agent i gets. Serial assignment is shown
to be the unique one which leximin maximizes the vector of all such shares
(ti(k)).

This result is very general; it applies to non-strict preferences, and/or
non-integer quantities of objects, as well.

In addition, we characteize Serial rule as the unique one sd-effi cient,
sd-envy-free, and strategy-proof on the lexicograpic preferences extention
to lotteries.

Keywords: Random assignment, Serial Rule, Leximin

We consider the random assignment problem without money. A number of
indivisible objects are to be distributed among several agents, and each agent is
entitled to one object only. Agents may have arbitrary preferences over objects.
In the absence of transfers, allowing for randomization restores fairness.
A random assignment can be represented by a matrix P of probabilities

for each agent to get each object, with rows standing for agents and columns
standing for objects. Here pia is the probability for agent i to get object a.1

An alternative interpretation is available, leading to the same formal struc-
ture. One can assume that objects are infinitely divisible, and each agent is
entitled to exactly one unit total of objects. An example would be sharing a
workload between employees, each of whom owes the firm a fixed number of
work hours. We obtain the same set of feasible assignments, represented by
matrices P , with pia now interpreted as the share of object a allocated to agent
i.2

∗University of Glasgow, UK; e-mail: anna.bogomolnaia@glasgow.ac.uk
1For each agent, her ordinal ranking of objects defines an incomplete ordering of random

assignments, based on stochastic dominance. We do not need to specify full preferences. A
benchmark example is when agents evaluate lotteries based on expected utility.

2The expected utility assumption in the first model paralllels here to the assumption that
agent’s utility from an object is linear in the quantity she receives, and additive across the
objects.
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An assignment rule systematically determines a random assignment, based
on reported agents’preferences. Earlier literature assumed agents report their
cardinal utilities and compare lotteries by means of expected utility. Having in
mind practical implementation issues, the extensive recent literature, starting
from [1] (2001), concentrated on the ordinal mechanisms, when agents are only
asked about their ordinal rankings of objects. Particular attention was paid to
the Serial rule, which possesses many attractive properties. It was introduced
in [1] (2001) for the strict preference domain, and extended in [8] (2006) to the
full ordinal domain.
On the strict domain, the Serial rule is rather intuitive. Its allocation is

constructed by allowing agents to “eat”shares of objects at the same unit speed,
over the time interval [0, 1], in decreasing order of their preferences; at any
moment each agent is eating from the object she most prefers among those
still available. However, when indifferences are allowed, guaranteeing effi ciency
becomes a non-trivial task. The Serial assignment is then constructed through a
rather cumbersome multistep algorithm, involving repeated computation of the
maximal flow in a network, and the exact nature of the final allocation becomes
diffi cult to grasp.
The main purpose of this paper is to provide a welfarist re-definition of

the Serial rule. It is simple and intuitive, and applies to strict as well as non
strict preferences. It works equally well when objects are available in arbitrary
quantities3 (as long as each agent is entitled to exactly one unit total). The
Serial assignment is shown to be the unique one which leximin maximizes the
vector of total shares of objects, consumed by our agents, above their respective
different indifference thresholds.
This alternative definition may also be thought of as an axiomatic charac-

terization of the Serial rule, based on a single, entirely new principle.
We evaluate any given assignment by the list of numbers ti(k), the total

shares agent i gets of objects from her first k indifference classes, for all i and
k. We show that the Serial assignment is the unique (utility wise) leximin
maximizer of the vector (ti(k))i,k over all feasible assignments.
Note a somewhat counter-intuitive feature: in the list (ti(k))i,k, an agent j

with few indifference classes is represented by less numbers, then another agent
l whose preferences fully rank all objects. However, a parallel characterization
is available, where the length of the vector t does not depend on the number
of agents’ indifference classes. Define t′i(a) to be the total share of objects at
least as good as a agent i gets. The Serial assignment is also the unique leximin
maximizer of the (t′i(a))i,a.
A welfarist nature of our definition can be illustrated by the following in-

terpretation. Split each agent in as many “sub-agents” as the number of in-
difference classes in her preferences. Agent i’s first sub-agent only cares about
her first indifferent class, her second sub-agent only cares about her two top
indifferent classes, etc. Thus, the utility of agent i’s k-th sub-agent is measured

3This is a natural assumption for the model with infinitely divisible objects. See also [11]
(2012).
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by the total amount of objects she gets from her first k indifference classes. Our
result is that Serial rule maximizes the leximin (“Rawlsian”) collective utility
of those sub-agents. It first attempts to maximize the utility of the worst-off
sub-agent, then the utility of the second worst-off one, and so on.
Rephrasing, the Serial rule is the most egalitarian (the Rawlsian maximizer)

in attempting to equalize agents’ shares of top ranked objects (i.e. of upper
counter sets of objects) under different cutoffs. Recall that agents only report
rankings of objects, not their relative valuations, so equalizing allocated shares
for different upper counter sets seems to be the best available instrument for an
egalitarian mechanism designer.
Note that, while the vector (ti(k))i,k for Serial assignment is leximin pre-

ferred to one for any other assignment, it is not Lorenz dominant vector (in
fact, for a generic preference profile, there is no assignment with Lorenz dom-
inant vector t). The only exception is the dichotomous preference domain, as
discussed in [2] (2004) and [8] (2006).
In addition to our main result, we also present a yet another characterization

of Serial rule. While it is more in line with recent literature (and is heavily
based on it), it is nevertheless the first one which singles out Serial rule by
properties of (sd) effi ciency, fairness (sd no-envy), and strategy-proofness (for
the lexicographic extension of deterministic rankings to the domain of lotteries).
An axiomatic characterization of the Serial rule was elusive for a decade.

Recently, several characterization results, similar in nature, were obtained. In
[6] (2011), [5] (2012), [3] (2012), [7] (2012) (this last paper deals with the full
domain) the Serial rule is characterized by “sd”(first order stochastic-dominance
based) effi ciency and envy-freeness, together with an invariance axiom, and, for
the case of non-unit demand, a consistency property (see also [9] (2011) and [4]
(2011)). For the profiles where all preference orderings are present, [10] (2011)
notes that the only sd effi cient and envy-free assignment is given by Serial rule.
[4] (2011) proposes a characterization, for the case when not all objects are
acceptable, partly based on the axiom they call “Rawlsian Criterion”. It requires
separability in that the rule should distribute “the worst still acceptable object”
separately from the rest (which is the main driving force of this axiom), and
partial egalitarianism in that this object should be assigned so as to maximize
the total objects’share of the least served agent.
While our result can be also interpreted as an axiomatic characterization of

the Serial rule, it is based on completely different ideas.
Papers [6] (2011) and [3] (2012) introduce a representation of arbitrary ran-

dom assignments by “consumption processes” over time. Finally, [11] (2012)
shows that the Serial rule is strategy-proof under the lexicographic preferences
extension to the lotteries.
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1 Model and Results

Let N = {1, ..., n} be the set of agents, and A = {a1, ..., am} be the set of
objects.4 Let R be the set of all orderings over A. Each i ∈ N has preferences
Ri ∈ R over A, and a preference profile is R = (Ri)i∈N . Given a particular R, we
denote by Ui(a) = {b ∈ A : bRia} the upper contour set over a under preferences
Ri. We write Uki for the set of objects which are in the top k indifference classes
for preferences Ri. We use the notation Mi(B) for the set of objects which are
the most preferred in B ⊂ A by preferences Ri, and MI(B) =

⋃
i∈I

Mi(B) for

the set of objects which are the most preferred in B ⊂ A by at least one of the
agents in I.
The set P of feasible assignments consists of |N |×|A|matrices P = (pia)i∈N,a∈A,

where pia is interpreted as the probability for agent i to get object a or as the
share of object a assigned to agent i.5 We denote by Pi its row corresponding
to agent i, and by P a its column corresponding to object a.
An assignment rule is a correspondence f : Rn ⇒ P, which is essentially

single-valued. Specifically, f(R) ⊂ P , f(R) 6= ∅, and all agents are indifferent
between any two P, P ′ ∈ f(R). This last requirement means

∑
a∈Uk(Ri)

pia =∑
a∈Uk(Ri)

p′ia for all i and k. Restricted to the strict domain, an assignment rule

is always a (single-valued) function.
Fix a preference profile R. For an arbitrary assignment P we define ti(a) =

tPi (a) =
∑

b∈Ui(a)
pib, the total share of objects, at least as good as a, which agent

i receives under P .
We can interpret any assignment P as the result of “consumption process”

over time interval [0, 1]. Each agent i “consumes”shares of objects at unit speed
and up to quotas assigned to her by P , in decreasing order of her preferences.
Since P specifies how much of each object an agent can consume, during this
process she might be often forced to leave her preferred object when it is still
available. We fix an arbitrary ordering a1, ..., am of objects, and assume that,
when an agent is indifferent between several objects, she consumes first those
which come earlier in this ordering6 . Let P [t] be the partial assignment obtained
by this process by time t. The time tPi (a) will be exactly the last moment in
this process when agent i consumes objects at least as good for her as a.7

For each agent, we define a vector ti = (ti(1), ..., ti(Ki)), where Ki is the
number of indifference classes in Ri. Here ti(k) =

∑
b∈Uk

i

pib is the total share

4For the clarity of presentation, assume that each object has quota 1 and is valued above
getting nothing (“null object”). Those assumptions can be relaxed – see the comment after
the proof.

5Birkoff theorem tells us that the convex hull of zero-one bistochastic matrices (determin-
istic assignments) contains all bistochastic matrices. Thus, such matrices P are exactly those
which can be represented as lotteries over deterministic assignments.

6Alternatively, we could consider the set of all utility-equivalent consumption processes. In
this case, we do not need to specify in which order an agent consumes her equivalent objects.

7Note that P [t] is continuous in t on [0, 1].
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agent i gets of objects from her first k indifference classes, or the moment at
which she stops consuming such objects in consumption process P [t].8

When preference profile R is strict, the Serial rule assignment S = S(R) is
defined as the result of the consumption process where any agent at any moment
consumes from the best for her good among those not yet exhausted. For an
arbitrary preference profile R, we extend the notion of Serial assignment S(R)
(a subset of P), based on the same principle. We propose the following, rather
informal, construction to do it9 .
We start from the set of all feasible assignments, and then repeatedly shrink

this set, each time specifying the allocation of some objects. At each step, we
only care about distributing to each agent the best for her among still available
objects; and we pursue the egalitarian goal to guarantee the best treatment for
the worst off agents.
At step 1, we discard all assignments which do not maximize mini ti(1). I.e.,

we only keep the assignments under which the agent who receives the smallest
share of her top indifference class is treated the best (assignments for which the
smallest share of top objects is the largest possible). It is easy to see, that all
those assignments fully distribute the same set B1 of “bottleneck” (the most
demanded) objects, and to the same agents, those who are the worst off; each
such agent gets share r1 of her top objects. We are left with a reduced set of
objects A2 = A\B1 to allocate.

At each step k, we start with previously reduced set of assignments and
reduced set Ak of objects. We then only keep assignments which maximize
mini ti(ki), where ki is the best for agent i indifference class in which some
objects are still available (i.e., are in Ak). In other words, given an assignment,
for each agent i we calculate ti(ki) – the total share of objects, at least a good
for her as her best objects in Ak. We then only keep assignments which maximize
the total share ti(ki) of the worst treated agent i. Again (see the algorithm
below), all those assignments fully distribute the same set Bk of bottleneck
objects to the same group of the worst off agents. Each such agent i gets share
rk of objects at least as good as ones in ki. Hence, the set of still unallocated
objects is further reduced, to Ak+1 = Ak\Bk.

This process ends in a finite number of steps with a set of utility equivalent
allocations (again, this easily follows from the algorithm below), which we shell
call Serial assignment.

The standard formal definition of the Serial assignment on the full domain,
used in the literature, is obtained by the following algorithm.10

8Note two different usages: tPi (a) with a ∈ A for the strict preferences, and tPi (k) with an
integer k for the preferences with indifferences.

9The only definition proposed and used in the literature so far is the algorithmic one,
provided by [8] (2006), which we present below. Our description almost immediately leads to
our re-definition of the Serial rule (Theorem 1), and thus can be considered as yet another
version of our main result.
10This is a concise description of the algorithm introduced in [8] (2006), who first extended

the Serial rule for the full domain. We refer the reader to their paper for the extensive
discussion and illustrating examples.
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(1) Set A1 = A, c(i, 1) = 0 for all i ∈ N , k = 1
(2) Step k: At each step k, we find the largest share λk such that each agent

can consume at least λk of her most desired objects from Ak, the set of objects
still available at this step. Each agent is then guaranteed the share λk of her
preferred objects. Maximality of λk implies that some objects are exhausted
at this point. We define Ak+1 to be the set of not yet exhausted objects and
proceed to step k + 1.

For this purpose, we construct the following directed network, with the set
of edges Ak ∪N ∪{s}∪ {t}. (i) From the “source”s we draw an arc of capacity
c(i, k)+λ toward each agent i ∈ N . (ii) From each agent i ∈ N we draw an arc
of infinite capacity toward each of her best in Ak objects, those from Mi(Ak).
(iii) From each object in Ak we draw an arc of capacity 1 toward the “sink” t.
Here λ ≥ 0 is a parameter. For each λ we find the maximal flow through

this network, which can be sent from the source s to the sink t. When we
continuously increase λ from zero on, there is the last moment λ = λk after
which the maximal flow is less then the total “out” capacity of the source,∑
i∈N

(c(i, k) + λ).

Maximal flow through a network is known to be equal to the capacity of a
minimal cut. A cut is a partition of the network’s nodes into Ss 3 s and St 3 t,
and its capacity is the sum of capacities of all arcs going from Ss to St. In our
network, all cuts of finite capacity are such that Ss = {s}∪X∪W where X ⊂ N
and MX(Ak) ⊂W ⊂ Ak. The capacity of such cut is

∑
i∈N\X

(c(i, k) + λ) + |W |,

so in a minimal cut it has to beMX(Ak) =W . When λ ≤ λk, the maximal flow
is equal to the “out” capacity of the source (Ss = {s} is a minimal cut). For
λ > λk, Ss = {s} stops to be a minimal cut. Hence (by continuity of our process
in λ), when λ = λk, there is another minimal cut with Ss = {s}∪Xk whereXk ⊂

N , Xk 6= ∅. It has to be thatXk ∈ arg min
X⊂N

( ∑
i∈N\X

(c(i, k) + λ) + |MXk
(Ak)|

)
.

If the above argmin is not a singleton, we choose Xk to be the largest set in the
sense of inclusion.11

We hence must have
∑
i∈N

(c(i, k) + λk) =
∑

i∈N\Xk

(c(i, k) + λk) + |MXk
(Ak)|,

or

λk =

|MXk
(Ak)| −

∑
i∈Xk

c(i, k)

|Xk|
= min

X⊂N

|MX(Ak)| −
∑
i∈X

c(i, k)

|X| .

Agents from Xk constitute the “bottleneck” of our algorithm at Step k.
When each agent from Xk is assigned her “in” capacity c(i, k) + λk of her
top good, the set Bk = MXk

(Ak) of their top goods is completely exhausted.
Maximality of Xk implies that it is feasible to give all agents from N\Xk shares,
strictly larger then their “in”capacity c(i, k)+λk, of their top in Ak goods, using
only goods from Ak\MXk

(Ak).

11 It is easy to check that a union of two such “minimal”X will also be minimal.
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Given this observation, we assign to each agent i ∈ Xk the share λk of
her top in Ak goods. We define the set of available goods for the next step,
Ak+1 = Ak\MXk

(Ak). Finally, we set the new capacity of agents from the
bottleneck, i ∈ X, to be c(i, k + 1) = 0, and we increase the capacity of agents,
not involved in the bottleneck, j ∈ N\Xk, to be c(j, k + 1) = c(j, k) + λk.

Since at each step at least one good is exhausted, the algorithm will finish
in K ≤ m steps, with each agent getting exactly one unit total of goods’shares,
and with

∑
1≤k≤K

λk = 1. It is easy to see that rk =
∑

1≤j≤K
λj (where rk is

the share of at least as good as ki-class objects for worst off agents i in Step
k from our informal description above). Also, rk is the time moment in the
consumption process S[t] when step k of the algorithm stops.

Note that there could be multiple maximal flows (and hence multiple assign-
ments) at each step, but all of them are utility-equivalent (and any assignment,
utility-equivalent to one constructed this way, can also be constructed this way).

Definition 1 The leximin order L on Rn is defined as follows. For any
x = (x1, ..., xn) ∈ Rn, let x∗ = (x∗1, ..., x

∗
n) ∈ Rn be a permutation of the

coordinates of vector x in the increasing order: x∗1 ≤ ... ≤ x∗n. We say that xLy
if there is a j ∈ {1, ..., n} such that x∗j > y∗j , while x

∗
i = y∗i for all i < j.

Theorem 1
For all preference profiles R, the Serial assignment S(R) is exactly the set of

feasible assignments which leximin maximize the vector12 of shares (t1, ..., tn).
Proof.
This statement is very intuitive on the strict domain, where the above vector

coincides with the vector of ti(a), for all i ∈ N , a ∈ A. So we present the
argument for strict preferences first.
Fix a strict preference profile R. Let P 6= S, and let τ ∈ [0, 1] be the last

moment t such that P [t] = S[t]. There is an agent j and an object b, such
that the object b is still available at time τ , but under the consumption process
corresponding to P this agent j switches at the moment τ to some object c
which she values less then b. Note that all tSi (a) = tPi (a) for all i, a such
that tSi (a) ≤ τ , while tPi (a) > τ implies tSi (a) > τ . However, tSj (b) > τ while
tPj (b) = τ .
Now, fix an arbitrary preference profile R. Let P /∈ S(R) and let τ ∈ [0, 1]

be the last moment t such that P [t] is utility equivalent to {S[t] : S ∈ S(R)}.
Let r be such that

∑
1≤k≤r

λk ≤ τ <
∑

1≤k≤r+1
λk. Thus, the consumption process

P [t] coincides utility-wise with the Serial process S[t] during its first r steps (in
both assigned and guaranteed shares), but deviates from the Serial assignment
algorithm during its step r + 1.

12Remember that each ti is itself a vector, ti = (ti(1), ..., ti(Ki)), where ti(k) =
∑

b∈Uki

pib.

Hence, (t1, ..., tn) is the vetor of length
∑
i∈N

Ki.
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In (any) Serial consumption process S[t], along the time interval Tr =[ ∑
1≤k≤r

λk,
∑

1≤k≤r+1
λk

]
each agent i consumes her best goods from Ar+1, which

belong to her lr(i)-th indifference class among the whole set of objects A.
However, the consumption process P [t] differs utility-wise, from the moment

τ . Thus, there must be at least one agent who under P [t] immediately after
τ stops consuming objects from her lr(i)-th indifference class..We now check
that under P [t] there is an agent j, who at time τ starts consuming objects
from lower indifference classes then lr(j)-th class (one she consumes from under
S[t]).

Consider two cases:
(i)

∑
1≤k≤r

λk < τ (divergence from S[t] occurs in the middle of algorithm’s

step r+1). Since under S[t] everyone consumes from the best available objects
(same ones before and after τ), any agent who under P [t] does differently utility-
vise is getting objects from lower indifference classes.
(ii)

∑
1≤k≤r

λk = τ (divergence occurs at the start of algorithm’s step r + 1).

??

However, the consumption process P [t] differs utility-wise, from the moment
τ . Thus, as in the case of strict preferences, there is an agent j and an object
b, such that the object b is still available at time τ , but under P [t] this agent j
switches at the moment τ to some object c which she values strictly less then
b. Let object b be from the l-th indifference class for this agent j. Again,
tSi (k) = tPi (k) for all i and their indifference classes k, such that t

S
i (k) ≤ τ ,

while tPi (k) > τ implies tSi (k) > τ . However, tSj (l) > τ while tPj (l) = τ . �

Remark 1: The same line of argument allows us to prove a parallel char-
acterization. Let t′i(a) to be the total share of objects at least as good as a
agent i gets. The vector t′ = (t′i(a))i,a has fixed length nm, no matter whether
preferences are strict or not.
Theorem 1’
For all preference profiles R, Serial assignment S(R) is also the set of leximin

maximizers of the t = (t′i(a))i,a.
Remark 2: It is easy to see that our result admits the following extensions.
(1) When agents find some objects “unacceptable”, we introduce “null ob-

ject”, with as many copies as there are agents. We assume that each agent
is indifferent between the “null object”and any her unacceptable object. The
argument above still goes through.
(2) When different objects are available in different, even non-integer, quan-

tities, our result is valid provided that each agent it entitled to the same unit
total share of objects. This extension is important when we think of the second
interpretation of our model (assignment with infinitely divisible goods).
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Remark 3: While the vector (ti(k))i∈N,k is leximin maximized at the Serial
assignment, it is not, in general, Lorenz dominant on the set of such vectors for
different feasible assignments (this is only true for the dichotomous domain of
preferences, see [2] (2004)).

We conclude by providing a yet another characterization of the Serial rule.
This one is much more in line with recent axiomatic work on random assignment,
but apparently it was overlooked. It is however strongly related to the new
definition of the Serial rule we propose. Indeed, on the strict domain Theorem
1 defines Serial rule as one leximin maximizing the vector of objects’ shares
all agents get. Thus, it can be regarded as the most fair rule when social
planner, as well as agents, have lexicographic-type preferences. Our second
result abstracts from social planner’s preferences, and characterizes Serial rule
as the unique appealing rule (effi cient, fair, and incentive compatible) when
agents’preferences over lotteries are lexicographic. Note that this is the first in
the literature characterization of a specific assignment rule by those three basic
classical requirements, without need for any additional technical axioms.
We do not formally define all the properties, as our proof heavily relies on

the existing results. The exception is the property of limited invariance, which
is explicitly used in the proof. An assignment rule P (R) satisfies limited invari-
ance, if the following is true for any initial preference profile R, any object a,
and any agent i.When this agent i rearranges her preference ordering of objects
she ranks below a, it does not affect her share of the object a. Formally, if her
preferences R′i are such that U(R

′
i, a) = U(Ri, a) and R′i|U(Ri,a) = Ri|U(Ri,a),

then it has to be pia(R) = pia(Ri, R−i).
Definition 2 An agent has lexicographic preferences over 4(A), the set of

all probability distributions over objects, if she has strict preferences over A, say,
a1 � a2 � ... � am, and prefers p = (pa)a∈A ∈ 4(A) to q = (qa)a∈A ∈ 4(A) as
long as there is a j ∈ {1, ..., n} such that paj > qaj , while pai = qai for all i < j.

Theorem 2
On the strict ordinal preference domain, Serial rule is the only one which

is sd-effi cient, sd-envy-free, and strategy-proof on the lexicographic preference
domain extension for lotteries.
Proof.
Serial rule is well-known to be sd-effi cient and sd-envy-free. [11] (2012) shows

that the Serial rule is strategy-proof on the lexicographic preference domain
extension13 . [5] (2012) shows that Serial rule is the only one which is sd-effi cient,
sd-envy-free, and satisfies limited invariance. Thus, it is enough to show that
strategy-proofness on the lexicographic domain implies limited invariance.
Indeed, assume that a rule fails limited invariance. Hence, there is a prefer-

ence profile R, agent i, object a, and preferences R′i, with U(R
′
i, a) = U(Ri, a)

13They need a condition that the smallest quantity of a good available is at least as large
a the largest quota to which an agent is entitled. This condition is clearly satisfied in our
setting, as all agents are entitled to 1 unit and each good exists in (at least) one unit.
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andR′i|U(Ri,a) = Ri|U(Ri,a) and , such that
∑

b∈U(Ri,a)

pib(R) 6=
∑

b∈U(Ri,a)

pib(Ri, R−i).

Given such R and i, assume a to be the best for agent i object among those for
which this inequality is true. Then, for any c which is better for i then a (at ei-
ther Ri or R′i), we have

∑
b∈U(Ri,c)

pib(R) =
∑

b∈U(Ri,c)

pib(Ri, R−i). Hence, for those

c we have pic(R) = pic(Ri, R−i), while for a we obtain pic(R) 6= pic(Ri, R−i).
Thus, there is a manipulation for agent i (either at profile R, or at profile

R′ = (Ri, R−i)) which increases her total share of good a, keeping the same
her shares of goods better then a. The result of this manipulation will be
lexicographically preferred to telling the truth, so strategy-proofness is violated.
�
Remark 4: This result cannot be extended to the full (non-strict) ordinal

domain of preferences. While the argument in the proof goes through, Serial
rule is not strategy-proof on the lexicographic extension of the full domain. Here
is a counterexample (borrowed from [8] (2006)), with 3 agents and 3 objects.
Consider the preference profile R, where agent 1 has preferences a ∼1 b �1 c,
agent 2 has preferences a �2 b �2 c, and agent 3 has preferences a �3 c �3 b.
If agent 1 reports preferences R′1 with a �1′ b �1′ c, Serial assignment S(R′)
gives her lexicographically better row of probabilities then S(R) would, as can
be seen below:

S(R) =

a b c
1 0 3/4 1/4
2 1/2 1/4 1/4
3 1/2 0 1/2

and S(R′)S =

a b c
1 1/3 1/2 1/6
2 1/3 1/2 1/6
3 1/3 0 2/3

Remark 5: The axioms of sd-effi ciency and sd-envy-freeness in Theorem 2
are based on the incomplete first order stochastic dominance relation, induced
on the set of lotteries by ordinal preference reports over deterministic objects.
One might be tempted to consider instead effi ciency and envy-freeness for the
lexicographic extension to lotteries. Notice that the requirement of effi ciency for
lexicographic extension (and, indeed, for any extension of deterministic rankings
into lotteries which respects first order stochastic dominance) is at least as
strong as sd-effi ciency14 , while lexicographic no-envy is weaker then sd-no-envy.
Unfortunately, when we weaken no-envy in this way, Serial rule is not singled
out by our axioms anymore. The reader can easily check (going stage by stage),
that the following “Boston mechanism”is lexicographically: envy-free, effi cient
and strategy-proof.
Stage 1: Start with the full set of objects A0 = A and fully distribute each

object, which is the top choice for at least one person, equally between those
agents who value it the best. Let A1 ⊂ A0 be the set of remaining unassigned
objects.
Stage k: Start with the set Ak of not yet assigned objects, and with those

agents who so far got less then full share 1 of objects. We distribute each object
a, which is the best in Ak for at least one such agent, equally between those

14 In fact, lexicographic effi ciency is equivalent to sd-effi ciency: both of them are equivalent
to acyclicity condition from [1] (2001).
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agents Ia who value it the best, subject to the constraint that no agent should
get more then 1 unit total of objects’shares. Specifically, each agent i who ranks
object a ∈ Ak as her top in Ak, and who was already assigned the total quantity
SHk−1(i) < 1 of objects in preceding stages, gets shk(i) = min{λ, 1−SHk−1(i)}
of object a, where λ is such that

∑
i∈Ia

shk(i) = 1. Let Ak+1 ⊂ Ak be the set of

remaining unassigned objects.
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