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1 Introduction

The objective of this paper is to provide axiomatic foundations for extensions
of the core to games in partition function form. It is well known that, if one
moves beyond the highly competitive, zero-sum game environment of van
Neumann and Morgenstern (1944), the worth of a coalition cannot be de-
fined independently of the coalition structure formed by other players. The
natural description of a cooperative environment is then a game in parti-
tion function form (Thrall and Lucas (1963)) specifying for each coalition
structure and each coalition embedded in that coalition structure, the worth
that the coalition can achieve. Ray (2007) contains a thorough discussion of
the difference between partition function games and coalitional games, and
references to the early literature on partition functions.

Unfortunately, in games in partition function form, the dominance re-
lation which supports the core cannot be defined unambiguously. When a
coalition of players deviates, the payoff they expect to obtain depends on the
way they expect external players to react to the deviation. This ambiguity
has long been recognized – at least since Aumann (1967) – and various defini-
tions of the core have been proposed corresponding to different specifications
of the expectations of deviating players on the reaction of external players.
For example, Hart and Kurz (1983) describe the α and β cores, based on
pessimistic beliefs where players expect external players to organize in such
a way that they minimize the payoffs of deviating players, and the γ and δ
cores, where players anticipate that coalitions which have been left by some
members of the deviating group either disintegrate into singletons, or stick
together.1 Chander and Tulkens (1997) and de Clippel and Serrano (2008)
focus attention on a model where deviating coalitions expect all other players
to remain singletons whereas Maskin (2003) and McQuillin (2009) suppose
that they expect all other players to form the complement. Shenoy (1979)
assumes that deviating players are optimistic and anticipate that external
players organize in order to maximize the deviating players’ payoffs. Hafalir
(2007) compares different core notions based on different expectation forma-
tion rules and proves that for convex partition function form games and some
expectation formation rules, the resulting cores are nonempty.

Definitions of the core of partition function games proposed in the litera-
ture are thus based on ad hoc assumptions on the reaction of external players
to the deviation. By contrast, our objective in this paper is to ground the

1The γ model finds its roots in Von Neumann and Morgenstern (1944) who discuss a
game of coalition formation among three agents which requires unanimity and is equivalent
to the γ game.
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expectations of deviating players on axioms, and derive the core of a par-
tition function game on the basis of properties satisfied by the expectation
formation rule. We first propose a set of axioms that pertains to the relation
between the current partition and the expectations formed by deviating play-
ers. An expectation formation rule is independent of the original partition
or independent of the position of deviating players in the original partition
if players do not tie their expectations to the current state. It is instead
responsive if different partitions of external players always give rise to differ-
ent expectations. The second set of axioms deals with the compatibility of
expectations among groups of players. Compatibility is needed to guaran-
tee that group expectations are well defined. Path independence guarantees
that group expectations are independent of the order in which individual ex-
pectations are aggregated. Subset consistency prevents disagreement among
players over the group expectations. Coherence of expectations introduces a
compatibility condition between the expectations formed by S and its com-
plement. It guarantees that groups hold rational expectations over the behav-
ior of their complements. Finally, we define superadditivity as the property
that the coalitional function generated by the expectation formation rule is
always superadditive.

We analyze which of the commonly used expectation formation rules sat-
isfy these axioms, and characterize the projection rule (by which players
anticipate that external players form a coalition structure which is the pro-
jection of the current coalition structure) – also known as the δ rule in Hart
and Kurz (1983) – as the only expectation formation rule that satisfies the
two properties responsiveness and subset consistency, or the three properties
subset consistency, independence of position of deviating players in the orig-
inal partition, and coherence of expectations. If instead of responsiveness to
the current partition, we require independence of the current partition, the
only rules that satisfy subset consistency are exogenous rules where deviating
players anticipate external players to organize according to the projection of
an exogenous partition M. Notice in particular that if M is a partition
of singletons, the M-exogenous rule corresponds to the γ rule of Chander
and Tulkens (1997) or the externality-free rule of de Clippel and Serrano
(2008), whereas if M is the partition formed by the grand coalition, the
M-exogenous rule specifies that agents anticipate external players to form a
single component as in Maskin (2003) and McQuillin (2009). We also note
that the pessimistic rule (the α rule) is the only expectation formation rule
which satisfies superadditivity. Our final result shows that the expectation
formation rule under which balancedness of the coalitional game is equivalent
to nonemptiness of the core is the optimistic rule.
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To the best of our knowledge, our paper represents the first attempt to
axiomatize the reaction of external players to a deviation in order to define
the core of partition function games. However, the need to specify the parti-
tion of external players also appears in studies of extensions of the Shapley
value to partition function games. Starting with Myerson (1977), several
extensions of the Shapley value to partition function games have been pro-
posed. Recently, Macho-Stadler, Perez-Castrillo and Wettstein (2007) have
proposed an axiomatization based on the classical axioms of Shapley. De
Clippel and Serrano (2008) base their value on axioms of marginality and
monotonicity. McQuillin (2009) uses an approach based on the recursion
axiom, which states that the solution applied to the game generated by the
solution itself should return the same outcome. Grabisch and Funaki (2012)
propose an extension of the Shapley value based on the process of coalition
formation. Borm, Ju and Wettstein (2013) base their extension of the Shap-
ley value on a noncooperative implementation mechanism. Dutta, Ehlers and
Kar (2010) extend the axioms of consistency and the potential approach to
partition function games. While the axioms we discuss in the current paper
are applied to a different object than the axioms studied in the context of the
Shapley value, there are clear similarities between our approaches. In order
to use the potential approach, Dutta, Ehlers and Kar (2010) need to define
restrictions of partition function games after one player leaves. They pro-
pose axioms on restriction operators, including a path independence axiom
which guarantees that the restricted games do not depend on the order in
which players leave. Implicitly, their axioms embody conditions on the par-
tition formed after a player leaves. By contrast, our axioms apply directly
to expectation formation rules. Hence, their axiomatizations and ours are
complementary.

The rest of the paper is organized as follows. We present our model of
partition function games and expectation formation rules in the next section.
Section 3 is devoted to the description of axioms on expectation formation
rules. Section 4 contains the axiomatizations of the projection and exogenous
rules and a discussion of superadditivity. We discuss the construction of the
core of partition function games generated by expectation formation rules in
Section 5. Section 6 concludes and proposes directions for future research.
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2 The Model

2.1 Partition function games

We consider a set N of players with cardinality n ≥ 3. A partition on N
is a collection of pairwise disjoint, nonempty subsets of N covering N . Let
Π(N) be the set of all partitions on N , with typical element N . Similarly,
for any subset S of N , we denote by Π(S) the set of all partitions on S with
typical element S. The partition of S formed only of singletons is denoted
S = {{i} | i ∈ S} and the partition of S formed only by the set S is denoted
S = {S}. For any set S, Sc denotes the complement of S in N . Given a set S
and a partition S of S and a subset T of S, we let S|T denote the projection
of S onto T , i.e. the partition T of T such that i and j belong to the same
block in T if and only if they belong to the same block in S.

We suppose that the strategic situation faced by the agents is captured by
a TU game in partition function form. Partition function games, introduced
by Thrall and Lucas (1963), generalize coalitional games by allowing for
externalities across coalitions. They arise naturally in environments where
players can form binding agreements, and cooperate inside coalitions but
compete across coalitions (see Ray (2007)). Formally, a partition function
v associates to each partition N and each block S ∈ N a positive number
v(S,N ) specifying the worth of coalition S in partition N . Notice that a
partition function only assigns worths to those subsets which are blocks in
N . If S does not belong to N , then v(S,N ) is not defined.

2.2 Coalitional games

A TU game in coalitional function form associates a real number to any
nonempty subset of N . Formally, for any S ⊆ N , S 6= ∅, w(S) ∈ <+ denotes
the worth of coalition S. A coalitional game is superadditive if the worth of
the union of two disjoint coalitions is greater than the sum of the worths. This
property is justified by the fact that members of the two merging coalitions
can always reproduce the behavior they adopted when the coalitions where
separate, and can in addition benefit from cooperating after merging the two
coalitions. A coalitional function w is superadditive if for all S, T such that
S ∩ T = ∅,

w(S ∪ T ) ≥ w(S) + w(T ).
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2.3 Expectation formation rules

Consider a coalition S of players contemplating a deviation. Players in S
may contemplate deviating as a block – we call this a block deviation. Al-
ternatively, they may consider deviating together but breaking into separate
coalitions, re-arranging into a partition S of S – we call this a general devia-
tion. In order to assess the value of the deviation, players in S need to form
an expectation about the reaction of external players to their deviation. We
define expectation formation rules assigning to every deviating coalition S
an expectation over the coalition structure formed by the players in Sc. We
assume that coalitions have deterministic expectations, and that expectations
may depend on the deviating coalition S and the partition S formed by these
deviating players, on the current partition N , and on the partition function
v.

Definition 2.1 An expectation formation rule is a mapping f associating a
partition f(S,S,N , v) of Sc with each coalition S, partition S of S, partition
N of N , and partition function v.2

2.4 Generating coalitional functions from partition func-
tions

For any expectation formation rule f and partition N ∈ Π(N), we generate
a coalitional function wNf from the partition function v by assuming that
external players react to a deviation according to f . When coalition S de-
viates, reorganizes itself into a partition S, and expects external players to
react according to f , it obtains an expected worth of∑

T∈S

v(T,S ∪ f(S,S,N , v)).

We assume that players in S can choose to re-arrange themselves in such a
way that they maximize the total worth of the coalition. Hence, the coali-
tional function is defined by using a superadditive cover and we have

wNf (S) = max
S∈Π(S)

∑
T∈S

v(T,S ∪ f(S,S,N , v)). (1)

Notice that, in general, the coalitional function wNf is indexed by the current
partition N . However, wNf is not a partition function, as it assigns worths
to all subsets S of N , including subsets which are not blocks in N .

2The expectation formation rule is not defined for S = N and S = ∅.
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2.5 Some rules of expectation formation

In this subsection, we provide a list of the different expectation formation
rules that have been proposed in the literature. We have named these rules
in a manner that is descriptive of their nature.

The disintegration rule: This rule was introduced by Von Neumann and Mor-
genstern (1944). They propose that coalitions be formed by unanimous agree-
ment of their members, resulting in an expectation formation rule where
deviating players expect the coalitions they leave to disintegrate into single-
tons. In this model (also labeled the γ rule by Hart and Kurz (1983)), for any
T ∈ N , such that T ∩ S 6= ∅, T \ S disintegrates into T \ S in f(S,S,N , v)
and for any T ∈ N such that T ∩ S = ∅, T remains in f(S,S,N , v).

The projection rule: Hart and Kurz (1983) introduce the δ model of coalition
formation, where coalitions are formed by all players announcing the same
coalition. This results in an expectation rule where players expect the coali-
tions that they leave to remain together. Hence, the expectation rule is given
by f(S,S,N , v) = N|Sc .

M-Exogenous rules: An exogenous rule is indexed by a partition M of N .
Players in S expect that external players organize according to the projection
of M onto Sc: f(S,S,N , v) = M|Sc . Two special exogenous rules are the
N -exogenous rule, where players anticipate that all external players will form
singletons (Chander and Tulkens (1997), Hafalir (2007) and de Clippel and
Serrano (2008)), and the N -exogenous rule, where players anticipate that all
external players join in a single coalition Sc (Maskin (2003), Hafalir (2007),
and McQuillin (2009)).

The optimistic rule: According to the optimistic rule, proposed by Shenoy
(1979), players expect external members to select the3 partition which max-
imizes the payoff of the players in S:4

f(S,S,N , v) = argmaxSc∈Π(Sc)

∑
T∈S

v(T,S ∪ Sc).

3We are aware that the argmax partition in this definition may not be unique and the
same holds for the argmin in the pessimistic rule or the argmax in the max rule. Some
tie-breaking rule can be used to choose a partition, but in order to avoid unnecessary
notation, throughout the rest of the analysis we assume that the partition is unique up to
symmetry considerations for the optimistic, pessimistic, and max rules.

4Following our method of denoting a partition of a set with the calligraphic letter, we
use the notation Sc for a partition of Sc. Since we use the notation N|Sc for the projection
of a coalition structure N onto Sc, our notation should not cause any confusion.
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The pessimistic rule: The pessimistic rule is most in line with the idea that a
coalition should consider the worth that it can guarantee itself independent
of the behavior of players that are not in the coalition - an idea that underlies
the very definition of coalitional games. In the pessimistic rule, inspired by
Aumann’s (1967)’s definition of the α-core, and discussed by Hart and Kurz
(1983), players expect external players to select the partition which minimizes
the payoff of the players in S:

f(S,S,N , v) = argminSc∈Π(Sc)

∑
T∈S

v(T,S ∪ Sc).

The max rule: In the max rule, discussed by Hafalir (2007) and singled out
by Borm, Ju and Wettstein (2013), players expect external players to select
a partition which maximizes the payoff of the players in Sc:

f(S,S,N , v) = argmaxSc∈Π(Sc)

∑
T∈Sc

v(T,S ∪ Sc).

3 Axioms on expectation formation rules

In this section, we define axioms for expectation formation rules, and show
how these axioms can be used to discriminate among different rules. We
first introduce axioms on the dependence of f(·) with respect to the initial
partition N . We then present axioms relating expectations formed by players
in a coalition and the expectations formed by players in smaller coalitions.
We also introduce an axiom on the coherence of expectations formed by S
and Sc. Finally, we discuss conditions under which an expectation formation
rule generates superadditive coalitional functions.

3.1 Independence and responsiveness to N
When external players react to the formation of S by coalition S, they can
either be tied by the current partition, N , or can freely reorganize indepen-
dently of the original partition. In a more subtle way, the reaction of external
players may or may not depend on the position in N of players perpetrat-
ing the deviation. The following axioms capture these different notions of
independence.

Definition 3.1 An expectation formation rule f is independent of the orig-
inal partition (IOP) if f(S,S,N , v) = f(S,S,N ′, v) for all N ,N ′ ∈ Π(N).
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Definition 3.2 An expectation formation rule f is independent of the posi-
tion of deviating players in the original partition (IPDOP) if f(S,S,N , v) =
f(S,S,N ′, v) for all N ,N ′ ∈ Π(N) such that N|Sc = N ′|Sc.

Definition 3.3 An expectation formation rule f is responsive to the posi-
tion of external players in the original partition (RPEOP) if f(S,S,N , v) 6=
f(S,S,N ′, v) for all N ,N ′ ∈ Π(N) such that N|Sc 6= N ′|Sc.

Notice that all usual rules but the disintegration rule and the projection
rule are independent of the original partition. The disintegration rule does
not satisfy IPDOP nor RPEOP, whereas the projection rule satisfies both
axioms.

3.2 Path independence and subset consistency

The axioms of path dependence and subset consistency establish a connection
between the expectations formed by different coalitions. Path independence
states that, when a subset S ∪ T forms expectations, the expectations can
either be formed first by S and then by T or first by T and then by S. In
other words, the expectation formation rule must be independent of the order
in which deviating agents form expectations. Subset consistency relates the
expectations formed by a set S and any subset T of S and requires that
these expectations be compatible, so that the projection of the expectations
of members of T on Sc must be equal to the expectations of the members of
S.

To understand the motivation underlying the two axioms, consider a coali-
tion S contemplating a deviation. In order to assess whether the deviation
is profitable, each member of S must hold an expectation over the reaction
of external players. The difficulty is to construct a group expectation for
the coalition S. Path independence guarantees that this group expectation
is well defined. If path independence did not hold, the group expectation
would depend on the order in which individual expectations are aggregated,
so that different orders would result in different values of the group expec-
tation. Subset consistency guarantees that all players agree on the behavior
of external players. If subset consistency failed, disagreement among players
would prevent the construction of a single group expectation for coalition S.

Definition 3.4 An expectation formation rule f satisfies path independence
(PI) if, for any S, T ⊂ N with S, T 6= ∅ and S∩T = ∅, and for all S ∈ Π(S),
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T ∈ Π(T ), N ∈ Π(N),

f(S ∪ T,S ∪ T ,S ∪ f(S,S,N , v), v) = f(S ∪ T,S ∪ T , T ∪ f(T, T ,N , v), v)
(2)

Definition 3.5 An expectation formation rule f satisfies subset consistency
(SC) if, for all S ⊆ N, T ⊂ S, S ∈ Π(S), N ∈ Π(N),

f(T,S|T ,N , v)|Sc = f(S,S,N , v). (3)

A direct– but not trivial – consequence of subset consistency is that the
expectation formation rule is independent of the coalition structure S formed
by members of S.5 Note that if we restrict attention to block deviations – as
is often done in the literature – the fact that expectations are independent
of S is irrelevant. In addition, subset consistency and independence of S are
not equivalent – there exist expectation formation rules that are independent
of S but not subset consistent.6 Thus, subset consistency tells us something
very subtle about the manner in which group expectations are formed by
nested coalitions.

For an expectation formation rule that is subset consistent, RPEOP im-
plies IPDOP, as we demonstrate in the following proposition.

Proposition 3.6 If the expectation formation rule f satisfies subset con-
sistency and is responsive to the position of external players in the original
partition, then it is independent of the position of deviating players in the
original partition.

Proof: Because the expectation formation rule satisfies subset consistency,
the partition S does not influence f(S,S,N , v) and we omit S as an argument
of the expectation formation rule f .
By RPEOP of f , we know that f(S,N , v) 6= f(S,N ′, v) for allN ,N ′ ∈ Π(N)
such that N|Sc 6= N ′|Sc . From this we derive that

|{f(S,N , v) | N ∈ Π(N)}| ≥ |{N |Sc | N ∈ Π(N)}|.

Suppose that in addition to f satisfying RPEOP, there exist N ′,N ′′ ∈ Π(N)
with N ′|Sc = N ′′|Sc and f(S,N ′, v) 6= f(S,N ′′, v). Then it follows that

|{f(S,N , v) | N ∈ Π(N)}| > |{N |Sc | N ∈ Π(N)}|.
5To see this, let S ⊂ N , S,S ′ ∈ Π(S), and i ∈ S. Note that S|{i} = {i} = S ′|{i}. Thus,

it follows from subset consistency that f(S,S,N , v) = f(i, {i},N , v)|Sc = f(S,S ′,N , v).
6This is evidenced in Example 3.8.
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This, however, leads to a contradiction because

{f(S,N , v) | N ∈ Π(N)} ⊆ Π(Sc) = {N |Sc | N ∈ Π(N)}.

We conclude that for all N ′,N ′′ ∈ Π(N) with N ′|Sc = N ′′|Sc it must be the
case that f(S,N ′, v) = f(S,N ′′, v). Thus, f satisfies IPDOP. �

Path independence and subset consistency impose restrictions on cross-
variations of the expectation formation rule on different variables: path inde-
pendence considers variations in the original partition, whereas subset con-
sistency focuses on variations in the set of deviating players. In spite of these
differences, subset consistency implies path independence for expectation for-
mation rules that are IPDOP.

Proposition 3.7 If the expectation formation rule f satisfies subset consis-
tency and independence of the position of deviating players in the original
partition, then it satisfies path independence.

Proof: Let N ∈ Π(N). Consider two coalitions S, T such that S ∩ T = ∅,
and partitions S ∈ Π(S), T ∈ Π(T ).
Applying subset consistency to coalitions S and S ∪ T , we obtain

f(S,S,N , v)|(S∪T )c = f(S ∪ T,S ∪ T ,N , v).

Because S ∈ Π(S), f(S,S,N , v) ∈ Π(Sc), and (S ∪ T )c ⊆ Sc, adding S to
f(S,S,N , v) does not modify the projection onto (S ∪ T )c so that

(S ∪ f(S,S,N , v))|(S∪T )c = f(S,S,N , v))|(S∪T )c

Thus, we obtain

(S ∪ f(S,S,N , v))|(S∪T )c = f(S ∪ T,S ∪ T ,N , v). (4)

Similarly, we derive

(T ∪ f(T, T ,N , v))|(S∪T )c = f(S ∪ T,S ∪ T ,N , v). (5)

Given (4) and (5), we can apply IPDOP to obtain

f(S ∪ T,S ∪ T ,S ∪ f(S,S,N , v), v) = f(S ∪ T,S ∪ T , T ∪ f(T, T ,N , v), v),

which demonstrates path independence. �

The following examples show that the two axioms of path independence
and subset consistency are not equivalent.
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Example 3.8 (The expectation formation rule f satisfies path independence
(and IOP) but not subset consistency)
Let N = {1, 2, 3, 4}. We define an expectation formation rule that only
depends on the deviating coalitions S and let f(S,S,N , v) = Sc if |S| = 1,
and f(S,S,N , v) = Sc for all S such that |S| ≥ 2.

This expectation formation rule obviously satisfies IOP (and thus also the
weaker property IPDOP). The rule also satisfies path independence, because
for all disjoint S, T ⊂ N we have |S∪T | ≥ 2 so that f(S∪T,S ∪ T ,N , v) =
(S ∪ T )c, independently of the partitions S, T , or N .

The expectation formation rule does not satisfy subset consistency. To
see this, let N ∈ Π(N), S = {1, 2}, S = {12},7 and T = {1}. Then
f(T,S|T ,N , v)|Sc = {2|3|4}|{3,4} = {3|4}, whereas f(S,S,N , v) = {34}.

The intuition for the discrepancy between path independence and sub-
set consistency underlying Example 3.8 is that path independence does not
impose any restrictions on the expectations of singletons, whereas subset
consistency imposes a condition on the link between the expectations of sin-
gletons and those of larger coalitions. The following example illustrates that
the requirement that f satisfies IPDOP cannot be omitted from the state-
ment of Proposition 3.7.

Example 3.9 (The expectation formation rule f satisfies subset consistency
but not path independence)
Suppose that N = {1, 2, 3, 4}. We define an expectation rule that only de-
pends on the deviating coalitions S and the partitions N and so we suppress
S and v in the notation. Let f(S,N ) = Sc if N = N or N = {i|j|kl},8 and
f(S,N ) = N|Sc otherwise.

This expectation formation rule satisfies subset consistency, because if
N = N or N = {i|j|kl}, then f(T,N )|Sc = (T c) |Sc = Sc = f(S,N ), and
for all other N it holds that f(T,N )|Sc = (N|T c) |Sc = N|Sc = f(S,N ).
However, f violates path independence: Let S = {1}, T = {2}, and N =

7In examples, we use the less cluttered and commonly used notation of denoting a
partition by separating the players in various blocks with the symbol | . Hence, we write
{12} instead of {{1, 2}}, {1|2} instead of {{1}, {2}}, and so on.

8In order to keep the examples as uncluttered as possible, we will omit quantifiers like
“i ∈ N” and “i, j ∈ N , i 6= j” whenever this can be done without causing confusion.
Thus, S = {i} means that S is a singleton coalition, and N = {i|j|kl} means that N is a
partition that consists of two singleton blocks and one two-player block, and so on.
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{1|234}. When 1 forms expectations first, we obtain

f(S ∪ T, {S} ∪ f(S,N )) = f({1, 2}, {1} ∪ {1|234}|{2,3,4})
= f({1, 2}, {1|234})
= {1|234}|{3,4} = {34}.

However, when 2 forms expectations first, we obtain

f(S ∪ T, {T} ∪ f(T,N )) = f({1, 2}, {2} ∪ {1|234}|{1,3,4})
= f({1, 2}, {1|2|34})
= {3, 4} = {3|4}.

3.3 Coherence of expectations

The next axiom imposes consistency between the formation of expectations
of a coalition S and those of its complement Sc. Suppose that a coalition
S contemplates reorganizing itself and forming a partition S, expecting that
the complement Sc reacts by forming f(S,S,N , v). The axiom of coherence
of expectations states that if indeed Sc forms this partition after S reorga-
nizes and forms S, members of Sc expect that the members of S will not
subsequently reorganize again and form a partition different from S.

Coherence of expectations is a basic requirement that guarantees that
expectations are ”rational” in the following sense. Whenever a group con-
templates a deviation based on the belief that external players react in a
given way, these external players believe that if they behave in that given
way, the original group conforms to the contemplated deviation. Expectation
formation is an eductive reasoning, where coalitions anticipate the reactions
to their moves. If coherence of expectations were violated, this eductive
reasoning would not converge: the partition on N would continue to evolve.

Definition 3.10 The expectation formation rule f satisfies coherence of ex-
pectations (COH) if, for all S, S ∈ Π(S) and N ∈ Π(N),

f(Sc, f(S,S,N , v),S ∪ f(S,S,N , v), v) = S. (6)

Coherence of expectations puts restrictions only on expectations held by
a coalition and its complement, whereas subset consistency puts restrictions
on expectations held by nested coalitions. Thus, the two axioms are inde-
pendent, as demonstrated in the following two examples.
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Example 3.11 (An M-exogenous rule satisfies subset consistency and vio-
lates coherence of expectations.)
Let N = {1, 2, 3, 4}, M = {12|3|4} and let f be the M-exogenous rule.
f satisfies subset consistency because f(T, T ,N , v)|Sc = ({12|3|4}|T c) |Sc =
{12|3|4}|Sc = f(S,S,N , v) for all T ⊂ S ⊂ N . The expectation rule f
does not satisfy coherence of expectations because, for example, for S =
{1, 2} and S = {1|2}, it holds that f(Sc, f(S,S,N , v),S ∪f(S,S,N , v), v) =
{12|3|4}|S = {12} 6= {1|2} = S.

Example 3.12 (A rule that satisfies coherence of expectations but is not
subset consistent.)
Suppose that N = {1, 2, 3, 4}. Define the expectation rule f that does not
depend on v as follows. If |S| = 1 or |S| = 3, then f(S,S,N ) = N|Sc. If
S = {i, j}, then f(S, {i|j},N ) = {k|l} and f(S, {ij},N ) = {kl}.

This rule satisfies coherence of expectations. This is seen as follows. If
|S| = 1 or |S| = 3, then
f(Sc, f(S,S,N ),S∪f(S,S,N )) = f(Sc,N|Sc ,S∪N|Sc) = (S∪N|Sc)|S = S.
If S = {i, j}, and S = {i|j}, then
f(Sc, f(S,S,N ),S∪f(S,S,N )) = f({k, l}, {k|l}, {i|j}∪{k|l}) = {i|j} = S.
If S = {i, j} and S = {ij}, then
f(Sc, f(S,S,N ),S ∪ f(S,S,N )) = f({k, l}, {kl}, {ij} ∪ {kl}) = {ij} = S.

The rule violates subset consistency, because with N = {1234}, S =
{1, 2}, S = {1|2}, and T = {1}, we have that f(T,S|T ,N )|Sc = {34} 6=
{3|4} = f(S,S,N ).

3.4 Superadditivity

The next axiom pertains to the superadditivity of the coalitional functions
wNf generated by the expectation formation rule f .

Definition 3.13 The expectation formation rule f satisfies superadditivity
(SA) if, for every partition function v, the coalitional function wNf is super-
additive for all N ∈ Π(N).

Superadditivity is an interesting property to study in the context of the
core because the core of a coalitional game is based on the assumption that
the grand coalition N will be formed - an assumption that is generally ac-
knowledged to be problematic when the coalitional game is not superadditive.
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4 Axiomatizations of expectation formation

rules

In this section we demonstrate that the axioms on expectation formation
rules that we identified in the previous section can be used to axiomatize some
of the rules. We first consider rules that satisfy responsiveness to the position
of external players in the original partition and find that the projection rule
takes a special position in the class of responsive expectation formation rules.
We then consider rules that are independent of the original partition and find
that the M-exogenous rules and the pessimistic rule are singled out among
the independent expectation formation rules based on some of the axioms.

4.1 Responsive rules

We first axiomatize rules which depend on the current partition N . The
following theorem demonstrates that the projection rule is the only subset
consistent rule among the responsive expectation formation rules.

Theorem 4.1 Let n ≥ 4. An expectation formation rule f satisfies sub-
set consistency and responsiveness to the position of external players in the
original partitions if and only if it is the projection rule.

Proof: It is clear that the projection rule satisfies subset consistency and
RPEOP. Now, consider an expectation formation rule f that satisfies the two
axioms. Because the expectation formation rule satisfies subset consistency,
the partition S does not influence f(S,S,N , v) and we omit S as an argument
of the expectation formation rule f . Also, by Proposition 3.6 f satisfies
IPDOP and thus for any N ∈ Π(N) it holds that

f(S,N , v) = f(S,U ∪ N|Sc , v) for any U ∈ Π(S). (7)

Using this, and with minimal abuse of notation, we can write f(S,N|Sc , v)
whenever we do not want to explicitly specify the behavior of N on players
not in Sc.

First notice that if |S| = n−1, then Sc = {i} for some i ∈ N and trivially
f(S,N , v) = {i} for all N .

Claim 4.2 For any S ⊆ N such that |S| = n − 2, and any N ∈ Π(N) it
holds that f(S,N , v) = N|Sc.
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Proof of the Claim: Because the expectation rule f satisfies RPEOP, it
must assign a different partition to every N|Sc ∈ Π(Sc) when taken as given
a coalition S ⊂ N and partition function game v. Thus, for every pair of
players i, j ∈ N , either

f({i, j}c, {ij}, v) = {ij} and f({i, j}c, {i|j}, v) = {i|j}

or
f({i, j}c, {ij}, v) = {i|j} and f({i, j}c, {i|j}, v) = {ij}.

Hence, once we determine f({i, j}c, {ij}, v), we have no flexibility in choosing
the expectation f({i, j}c, {i|j}, v).

Consider three players, 1, 2 and 3, the set T = {1, 2, 3}c, and the three
sets S1 = {2, 3}c, S2 = {1, 3}c and S3 = {1, 2}c. Notice that T 6= ∅ as n ≥ 4.
Given that the expectation formation rule satisfies RPEOP, it is sufficient to
construct f(Si, {jk}, v) for each Si (where i ∈ {1, 2, 3} and j, k ∈ {1, 2, 3} \
{i}, j 6= k), so there are eight ways in which we can construct the partitions
f(Si,N|Sc

i
, v), i = 1, 2, 3. Disregarding cases which are symmetric up to a

permutation of the players, we only need to consider four different cases: (i)
the case where f(Si, {jk}, v) = {jk} for all i = 1, 2, 3, (ii) the case where
f(Si, {jk}, v) = {jk} for two players i ∈ {1, 2, 3}, and f(Si, {jk}, v) = {j|k}
for the third player, (iii) the case where f(Si, {jk}, v) = {jk} for one player
i ∈ {1, 2, 3}, and f(Si, {jk}, v) = {j|k} for the other two players and (iv) the
case where f(Si, {jk}, v) = {j|k} for all three players.

Now consider the expectations of players in T = {1, 2, 3}c. T is a subset
of Si for each i ∈ {1, 2, 3}. We will use subset consistency to prove that cases
(ii), (iii) and (iv) result in a contradiction.

Consider case (ii) when f(S1, {23}, v) = {23}, f(S2, {13}, v) = {13},
and f(S3, {12}, v) = {1|2}. Then, by subset consistency, for a partition
N ∈ Π(N) such that N|T c = {123},

f(T, {123}, v)|{12} = f(S3, {12}, v) = {1|2}
f(T, {123}, v)|{13} = f(S2, {13}, v) = {13}
f(T, {123}, v)|{23} = f(S1, {23}, v) = {23}

resulting in a contradiction, as we cannot find a partition f(T, {123}, v) of
{123} that projects into {1|2}, {13}, and {23}.

Consider case (iii) when f(S1, {23}, v) = {23}, f(S2, {13}, v) = {1|3},
and f(S3, {12}, v) = {1|2}. Again, by subset consistency,

16



f(T, {1|2|3}, v)|{12} = f(S3, {1|2}, v) = {12}
f(T, {1|2|3}, v)|{13} = f(S2, {1|3}, v) = {13}
f(T, {1|2|3}, v)|{23} = f(S1, {2|3}, v) = {2|3}

resulting in a contradiction because we cannot find a partition f(T, {1|2|3}, v)
of {123} that projects into {12}, {13}, and {2|3}.

Finally, in case (iv), consider

f(T, {1|23}, v)|{12} = f(S3, {1|2}, v) = {12}
f(T, {1|23}, v)|{13} = f(S2, {1|3}, v) = {13}
f(T, {1|23}, v)|{23} = f(S1, {23}, v) = {2|3}

resulting in a contradiction because we cannot find a partition f(T, {1|23}, v)
of {123} that projects into {12}, {13}, and {2|3}.

Since cases (ii), (iii), and (iv) all lead to a contradiction, we are left the
conclusion that case (i) must hold, which proves the claim.

We finish the proof of the theorem by induction. Let m < n such that
m ≥ 3 and suppose that we have shown that f(S,N|Sc , v) = N|Sc for all
coalitions S such that |Sc| < m, and any N ∈ Π(N). Consider a set T such
that |T c| = m. For all i ∈ T c, define the set Si := T ∪ i. Let N ∈ Π(N). For
each i ∈ T c, we have T ⊂ Si and |Sc

i | = m− 1, and thus by applying subset
consistency and the induction hypothesis, we obtain

f(T,N|T c , v)|Sc
i

= f(Si,N|Sc
i
, v) = N|Sc

i
. (8)

Fix two players i, j ∈ T c. Then either i and j belong to different blocks in
the partition N or they belong to the same block in the partition N . Because
|T c| = m ≥ 3, we can find a player k ∈ T c, k 6∈ {i, j}, and by equation (8)
we know that for the set Sk = T ∪ k

f(T,N|T c , v)|Sc
k

= N|Sc
k
.

Note that i and j do not belong to Sk. It thus follows that i and j belong
to different blocks in the partition f(T,N|T c , v) if and only if they belong to
different blocks in the partition N|Sc

k
, and they belong to different blocks in
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the partition N|Sc
k

if and only if they belong to different blocks in N . This
establishes that f(T,N|T c , v) = N|T c , completing the proof of the theorem.
�

Theorem 4.1 characterizes the projection rule as the only responsive rule
that satisfies subset consistency. Notice that this characterization only holds
for n ≥ 4. For n = 3, we can find responsive and subset consistent rules that
are not the projection rule, as is shown in the following example.

Example 4.3 (A rule that is responsive and subset consistent for n = 3 and
that does not coincide with the projection rule).
Suppose that N = {1, 2, 3}. Define the expectation formation rule f as fol-
lows. If S = {i, j}, then f(S,S,N , v) = {k}. If S = {i} and N|Sc =
{jk}, then f(S, {i},N , v) = {j|k}. If S = {i} and N|Sc = {j|k}, then
f(S, {i},N , v) = {jk}.

Clearly, f satisfies RPEOP. It also satisfies subset consistency, because
the only possible choices for two nested coalitions T ⊂ S ⊆ N are S = {i, j}
and T = {i} and then f(T,S|T ,N , v)|Sc = {k} because the only possible par-
tition of a singleton is a singleton. However, the rule f is not the projection
rule.

An alternative characterization of the projection rule can be given in
terms of subset consistency and coherence of expectations.

Theorem 4.4 An expectation formation rule f satisfies subset consistency,
independence of the position of deviating players in the original partition and
coherence of expectations if and only if it is the projection rule.

Proof: It is easy to check that the projection rule satisfies coherence of
expectations and IPDOP in addition to subset consistency. Now, consider
an expectation formation rule f that satisfies the three axioms. Because the
expectation formation rule satisfies subset consistency, S does not influence9

f(S,S,N , v) and because the expectation formation rule satisfies IPDOP,
we know that the behavior of N on S does not influence f(S,S,N , v). Let
S ⊆ N , S ∈ Π(S), and N ∈ Π(N). We obtain

f(S,S,N , v) = f(S, f(Sc,N|Sc ,N , v),N , v)

= f(S, f(Sc,N|Sc ,N , v),N|Sc ∪ f(Sc,N|Sc ,N , v), v)

= N|Sc ,

9See footnote 5.
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where the first equality follows from subset consistency (changing the parti-
tion of S from S to f(Sc,N|Sc ,N , v) has no influence on the expectation), the
second equality follows from IPDOP because (N|Sc ∪ f(Sc,N|Sc ,N , v)) |Sc =
N|Sc , and the third equality follows by applying coherence of expectations
(with the roles of Sc and S interchanged). This shows that f is the projection
rule. �

The three axioms in Theorem 4.4 are logically independent. The rule in
Example 3.11 satisfies subset consistency and IPDOP, but violates coherence
of expectations. The rule in Example 3.12 satisfies coherence of expectations
and IPDOP, but is not subset consistent. Finally, the next example displays
a rule that satisfies subset consistency and coherence of expectations, but
violates IPDOP.

Example 4.5 (A rule that satisfies subset consistency and coherence of ex-
pectations, but violates independence of the position of deviating players in
the original partition.)
We define an expectation formation rule f that does not depend on S or v
and we simplify notation accordingly. We define f(S,N ) = N|Sc if N 6= N
and f(S,N) = Sc.

f satisfies subset consistency because for any T ⊂ S ⊆ N it holds that
f(T,N )|Sc = (N|T c) |Sc = N|Sc = f(S,N ) if N 6= N , while f(T,N)|Sc =
T c|Sc = Sc = f(S,N).

f satisfies coherence of expectations because f(Sc,S∪f(S,N )) = f(Sc,S∪
N|Sc) = (S ∪ N|Sc)|S = S if N 6= N , while f(Sc,S ∪ f(S,N)) = f(Sc,S ∪
Sc) = (S ∪ Sc)|S = S.

f does not satisfy IPDOP and indeed is not the projection rule.

4.2 Independent expectation formation rules

In this subsection, we consider expectation formation rules that do not de-
pend on the current partition N . Our first result points out that subset
consistency then results in exogenous projections.

Theorem 4.6 An expectation formation rule f satisfies subset consistency
and independence of the original partition if and only if it is an exogenous
rule.

Proof: It is clear that for any M, the M-exogenous rule satisfies subset
consistency and independence of the original partition. Now, consider an ex-
pectation formation rule f that satisfies these two axioms. This implies that
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neither the new partition of deviating players S nor the original partition N
influence the expectations, and the expectation formation rule only depends
on S and v. To economize notation, we let f(S, v) denote the expectation
formation rule throughout the remainder of this proof.

To prove that f is an exogenous rule, we need to show that for any two
players i, j ∈ N and any two coalitions S1, S2 ⊆ {i, j}c, it holds that i and
j are in the same block in the partition f(S1, v) if and only if they are in
the same block in the partition f(S2, v) or, equivalently, that f(S1, v)|{i,j} =
f(S2, v)|{i,j}. But this follows directly from subset consistency, which implies

f(S1, v)|(S1∪S2)c = f(S1 ∪ S2, v) = f(S2, v)|(S1∪S2)c .

Notice that {i, j} ⊆ (S1 ∪ S2)c, so that i and j belong to the same block in
f(S1, v) if and only if they belong to the same block in f(S2, v). �

Theorem 4.6 implicitly points out that common independent expecta-
tion formation rules such as the optimistic, pessimistic and max expectation
rules, do not satisfy subset consistency and result in an inconsistency in the
expectation of a coalition of deviating players and a subset of this coalition.

We now turn to superadditivity. For an expectation formation rule f
that is independent of the original partition, the coalitional function wNf is
the same for all N and thus there is a unique coalitional function that is
generated by f and we refer to this function as wf . We show in the next
proposition that when the expectation formation rule is the pessimistic rule,
then the coalitional game wf is superadditive.

Proposition 4.7 The pessimistic rule satisfies superadditivity.

Proof: Let f be the pessimistic rule. We simplify notation by suppressing
the original partition and write f(S,S, v).

Let S, T ⊂ N , S, T 6= ∅, with S ∩ T = ∅. Define

Ŝ = arg max
S∈Π(S)

∑
Si∈S

v(Si,S ∪ f(S,S, v))

and let T̂ be defined similarly. The partition Ŝ (respectively T̂ ) is the parti-
tion that gives S (respectively T ) the maximal worth given its expectations
according to the pessimistic expectation formation rule f and thus

wf (S) =
∑
Si∈Ŝ

v(Si, Ŝ ∪ f(S, Ŝ, v))
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and
wf (T ) =

∑
Ti∈T̂

v(Ti, T̂ ∪ f(T, T̂ , v)).

The worth wf (S ∪ T ) is obtained when the members of S ∪ T organize
themselves into a partition that maximizes their worth, expecting that the
players in (S ∪ T )c will form a partition that minimizes the worth of the
players S ∪ T . Since Ŝ ∪ T̂ is a partition of S ∪ T that may or may not be
optimal for S ∪ T ,

wf (S ∪ T ) ≥
∑
Si∈Ŝ

v(Si, Ŝ ∪ T̂ ∪ f(S ∪ T, Ŝ ∪ T̂ , v))

+
∑
Ti∈T̂

v(Ti, Ŝ ∪ T̂ ∪ f(S ∪ T, Ŝ ∪ T̂ , v)).

Because the expectations f(S, Ŝ, v) are pessimistic,∑
Si∈Ŝ

v(Si, Ŝ ∪ T̂ ∪ f(S ∪ T, Ŝ ∪ T̂ , v)) ≥
∑
Si∈Ŝ

v(Si, Ŝ ∪ f(S, Ŝ, v))

= wf (S).

Similarly, ∑
Ti∈T̂

v(Ti, Ŝ ∪ T̂ ∪ f(S ∪ T, Ŝ ∪ T̂ , v)) ≥ wf (T ),

so that wf (S ∪ T ) ≥ wf (S) + wf (T ) follows. �

As the following example shows, superadditivity is a very strong require-
ment, and other commonly used expectation rules that are independent of
the original partition fail to satisfy this axiom.

Example 4.8 (A partition function game that does not generate a super-
additive coalitional game for usual independent expectation formation rules
other than the pessimistic rule.)
Let N = {1, 2, 3, 4}. Consider the symmetric partition function game v de-
fined by v(i, i|j|k|l) = 2, v(ij, ij|k|l) = 7, v(k, ij|k|l) = 0, v(ij, ij|kl) = 10,
v(ijk, ijk|l) = 8, v(l, ijk|l) = 4, v(ijkl, ijkl) = 21.

Note that wf (N) is independent of the expectation formation rule f . In
this example, it is accomplished in the partition N and equals 21. Also, when
|S| = n−1, then Sc = {i} for some i ∈ N and necessarily f(S,S,N , v) = {i},
no matter how the rule f is defined. Thus, wf (S) is independent of the
expectation formation rule that is used, and in this example it is equal to 8.
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If the expectation formation rule f is the N-exogenous rule, then we derive
wf (i) = v(i, i ∪ j|k|l) = 2 and wf (i, j) = max{v(ij, ij ∪ k|l), v(i, i|j ∪ k|l) +
v(j, i|j ∪ k|l)} = 7. This coalitional game is shown in the second column of
the table below.

We list the values for the coalitional games wf for other IOP expectation
formation rules f without computations.

|S| N-exogenous N-exogenous optimistic pessimistic max
1 2 4 4 0 4
2 7 10 10 7 10
3 8 8 8 8 8
4 21 21 21 21 21

While the coalition game wf obtained when f is the pessimistic rule is
superadditive, all the coalitional games derived from the other IOP rules do
not satisfy superadditivity because for the games wf in the other columns it
holds that wf (i) + wf (j, k) > wf (i, j, k).

4.3 Summary of properties of expectation formation
rules

The table below summarizes the properties satisfied by the usual expectation
formation rules.

IOP IPDOP RPEOP PI SC COH SA
Disintegration X X
Projection X X X X X
M-Exogenous X X X X
Optimistic X X X
Pessimistic X X X X
Max X X X

Most verifications have been covered in the preceding subsections or are
immediate. The remaining (lack of) checkmarks in the table are addressed
in an appendix. An interesting observation from the table is that path in-
dependence does not allow us to distinguish between the various commonly
used expectation formation rules. The other consistency axioms - subset
consistency and coherence of expectations - are much more discriminating.
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5 Cores of partition function games

In this section we take a closer look at cores of partition function form games.
In Subsection 5.1 we explain that each expectation formation rule gives rise
to a different definition of the core of a partition function game, and we show
that the core with respect to the optimistic rule is the smallest and the core
with respect to the pessimistic rule the largest. In Subsection 5.2 we extend
the idea of balancedness for coalitional games to partition function games
and show that this approach leads us to the core based on the optimistic
rule.

5.1 Expectation formation rules and cores of partition
function games

Given an expectation formation rule f and a partition N , we construct the
TU coalitional game wNf as in equation (1):

wNf (S) = max
S∈Π(S)

∑
T∈S

v(T,S ∪ f(S,S,N , v)).

The cores of these games - the set of imputations that are immune to devia-
tions by any coalition - will obviously depend on the expectation formation
rule used and also on the original partition. As coalitional functions gen-
erated by partition functions are not necessarily superadditive, the grand
coalition N does not necessarily form, and the description of the core must
entail a characterization of the coalition structure N which is formed and
serves as a status quo to evaluate coalitional deviations. Clearly, if N does
not maximize the sum of values of all players, the grand coalition can propose
a coalitional deviation which increases the payoff of all players. Hence, the
only candidate for a coalition structure in the core is a coalition structure
N ∗ that maximizes the sum of values of all players,

N ∗ = argmaxN∈Π(N)

∑
S∈N

v(S,N ).

Definition 5.1 The core Cf (v) of partition function game v with respect to
expectation formation rule f is the set of vectors (x1, x2, ..., xn) in <n that
satisfy the following two conditions:

1.
∑

i∈N xi =
∑

S∈N ∗ v(S,N ∗)

2.
∑

i∈S xi ≥ wN
∗

f (S) for all coalitions S ⊆ N .
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Keeping the partition function game v fixed and denoting the optimistic
and pessimistic expectation formation rules by o and p, respectively, we have
that for any expectation formation rule f and all S ⊆ N ,

wp(S) ≤ wN
∗

f (S) ≤ wo(S).

Thus, the optimistic core is the smallest core and the the pessimistic core is
the largest core:

Co(v) ⊆ Cf (v) ⊆ Cp(v)

for all expectation formation rules f . In his study of the core of partition
function games, Hafalir (2007) focuses on convex partition function games10

and shows that when the partition function game is convex, the grand coali-
tion is efficient so that N ∗ = N . He also shows that for the N -exogenous
expectation formation rule, the core of a convex partition function game is
nonempty, implying that the pessimistic core of convex partition function
games is nonempty.

5.2 Balancedness of partition function games

One way of trying to select a core generated by a particular expectation
formation rule is to parallel the balancedness approach for coalitional games.
The core of a coalitional game is a convex polytope characterized by a set of
linear inequalities. In order to guarantee the existence of a solution to the
set of inequalities, one can consider the dual linear programming problem,
resulting in the definition of balanced coalitional games.

By following a similar approach for partition function games, we are led to
define the set of embedded coalitions E(N) = {(S,N ) | S ∈ N ∈ Π(N)} and
weights δ(S,N ) ≥ 0, (S,N ) ∈ E(N). A collection of embedded coalitions
E ⊆ E(N) is balanced if there exist balancing weights δ(S,N ) > 0, (S,N ) ∈
E , such that for each i ∈ N ∑

(S,N )∈E: i∈S

δ(S,N ) = 1.

Definition 5.2 A partition function game v is balanced if, for any balanced
collection of embedded coalitions E with balancing weights (δ(S,N ))(S,N )∈E ,∑

(S,N )∈E

δ(S,N ) v(S,N ) ≤
∑
S∈N ∗

v(S,N ∗).

10A partition function v is convex if, for any N ∈ Π(N) and S, T ∈ N , v(S ∪ T,N \
{S, T} ∪ {S ∪ T}) + v(S ∩ T,N \ {S, T} ∪ {S \ T, T \ S, S ∩ T}) ≥ v(S,N ) + v(T,N ).
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The extension of balancedness to partition function games is related to the
optimistic expectation formation rule, as evidenced by the next proposition.

Proposition 5.3 A partition function game v is balanced if and only if its
optimistic core Co(v) is nonempty.

Proof: Let v be a partition function form game. Consider the linear program

maximize
∑

(S,N )∈E(N)

δ(S,N ) v(S,N )

subject to
∑

(S,N )∈E(N): i∈S

δ(S,N ) = 1 for each i ∈ N (9)

δ(S,N ) ≥ 0 for all (S,N ) ∈ E(N)

and its dual

minimize
∑
i∈N

xi

(10)

subject to
∑
i∈S

xi ≥ v(S,N ) for all (S,N ) ∈ E(N)

The duality theorem tells us that the optimal values of the two programs are
the same if they have a solution. We observe that the optimal value of (9)
is at least

∑
S∈N ∗ v(S,N ∗), because this value is attained for the balancing

weights δ(S,N ∗) = 1 for each S ∈ N ∗ and δ(S,N ) = 0 for all other embedded
coalitions.

It follows from the definitions that v is balanced if and only if the optimal
value of (9) equals

∑
S∈N ∗ v(S,N ∗). By the duality theorem this is the

case if and only if the optimal value of (10) equals
∑

S∈N ∗ v(S,N ∗). In
turn, this is the case if and only if there exist (x1, x2, ..., xn) ∈ <n such that∑

i∈S xi ≥ v(S,N ) for all (S,N ) ∈ E(N) and
∑

i∈N xi =
∑

S∈N ∗ v(S,N ∗).
The latter is the case if and only if Co(v) 6= ∅ (because for all S ⊆ N it holds
that v(S,N ) ≤ wo(S) for all N ∈ Π(N) such that S ∈ N , and there exists
an S ∈ Π(S) and an Sc ∈ Π(Sc) such that wo(S) =

∑
T∈S v(T,S ∪ Sc)). �

Proposition 5.3 shows that balancedness of the partition function game
is equivalent to the optimistic core of the game being nonempty. However,
because the optimistic core is the smallest core, for a balanced game the cores
generated by all expectation formation rules are nonempty.
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6 Conclusion

This paper proposes axiomatic foundations to expectation formation rules,
by which deviating players anticipate the reaction of external players in a
partition function game. We single out the projection rule – where players
anticipate that external players project the current partition – as the only rule
satisfying the two properties subset consistency and responsiveness, or the
three properties subset consistency, independence of the original partition
of deviating players, and coherence of expectations. Exogenous rules are
the only rules satisfying subset consistency and independence of the original
partition, and the pessimistic rule is the only rule among the common rules
proposed in the literature that gives rise to superadditive coalitional games.

One of the major drawbacks of our analysis (as of any analysis of the
core) is that we only consider myopic deviations, and do not describe the
full process by which coalitions successively deviate from an allocation. In
particular, we do not submit the allocation of deviating players to the same
stability test as the original allocation. In the context of partition func-
tion games, the recursive core studied by Huang and Sjostrom (2003) and
Koczy (2007) captures this requirement, by assuming that deviating players
anticipate that external players will select a point in the core of the game
restricted to external players. Alternatively, one could consider sequential
models of coalition formation, as in Bloch (1996) or Ray and Vohra (1999),
or farsighted players, as in Chwe (1994) or Diamantoudi and Xue (2003). An
important extension of our work would be to analyze the farsighted core of
the game generated by different expectation formation rules. When expec-
tation formation rules are independent of the original partition, we suspect
that the analysis of the farsighted core is a straightforward extension of the
myopic core. When expectation formation rules are responsive to the original
partition, as in the case of the projection rule, the analysis of the farsighted
core involves a dynamic process of expectation formation, and we hope to
undertake such an analysis in future research.
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A Verifications of properties of common ex-

pectation formation rules

We first consider the disintegration rule. This rule satisfies path indepen-
dence because for any deviating coalition S it predicts that all blocks U in N
that do not intersect S remain intact, while the other blocks disintegrate into
singletons. This is obviously independent of the order in which the members
of S form expectations. The disintegration rule also satisfies coherence of
expectations because in the partition S ∪ f(S,S,N , v) the blocks in S do
not intersect the blocks in f(S,S,N , v). The disintegration rule violates all
other axioms:

Example A.1 (The disintegration rule.)
Let N = {1, 2, 3, 4} and let f be the disintegration rule. Because this rule

does not depend on S or v, we simplify notation and write f(S,N ).
IPDOP (and thus IOP) is violated because for N = {ijkl} and N ′ =

{ij|kl}, and S = {i, j}, we have that N|Sc = N ′|Sc, while f(S,N ) = {k|l} 6=
{kl} = f(S,N ′).

RPEOP is violated because for N = {ijkl} and N ′ = {i|j|k|l}, and
S = {i, j}, we have that N|Sc 6= N ′|Sc, while f(S,N ) = {k|l} = f(S,N ′).

Subset consistency is violated because for S = {i, j}, T = {i}, and N =
{i|jkl}, we have that f(S,N ) = {k|l}, while f(T,N ) = {jkl}.

SA is violated for the partition function game in Example 4.8 when N =
{i|jkl} because wNf (i) + wNf (jk) = v(i, i|jkl) + v(jk, i|jk|l) = 4 + 7 > 8 =
v(ijk, ijk|l) = wNf (ijk).
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We have already established that the projection rule satisfies IPDOP,
RPEOP, PI, SC, and COH. The rule violates SA for the game in example
4.8 when N = {i|jkl}, because wNf (i) +wNf (jk) = v(i, i|jkl) +v(jk, i|jk|l) =
4 + 7 > 8 = v(ijk, ijk|l) = wNf (ijk).

The M-exogenous projection rules satisfy IOP, and thus PI. Because
these rules satisfy SC and IPDOP, by Theorem 4.4 they violate COH.

The pessimistic, optimistic, and max rules satisfy IOP and thus also PI.
By theorem 4.6, they thus violate SC. The following example demonstrates
that these rules violate COH.

Example A.2 (Violations of coherence.)
Let N = {1, 2, 3, 4} and consider a partition function game in which

v(1|2|34) = (4, 4, 4), v(12|34) = (6, 10), v(1|2|3|4) = (1, 1, 1, 1), v(12|3|4) =
(5, 3, 3).

Then, for the optimistic rule o, and S = {12}, S = {1|2}, we have
o(S,S, v) = {34} and o(Sc, o(S,S, v), v) = o(34, {34}, v) = {12} 6= S,
demonstrating that the optimistic rule violates COH.

For the pessimistic rule p, and S = {12}, S = {12}, we have p(S,S, v) =
{3|4} and p(Sc, p(S,S, v), v) = p(34, {3|4}, v) = {1|2} 6= S, demonstrating
that the pessimistic rule violates COH.

The max rule m violates COH because when S = {12}, S = {12}, we have
m(S,S, v) = {34} and m(Sc,m(S,S, v), v) = m(34, {34}, v) = {1|2} 6= S.
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