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Abstract

We introduce two pieces of information into a diffusion process in which information
is transmitted when individuals meet and forgotten at an exogenous rate. At most one
information can be transmitted at a meeting, which introduces opportunity costs in the
process. Individuals differ according to which information they find more interesting, and
that is the one they transmit if they face a choice. We find that both pieces of information
survive under the same parameter values, and that relative interest is the main determinant
in the number of people informed of one piece in the long run. Thus our model is able to
explain the variety of information in the public sphere. Next, we apply our framework to
answer questions relating to segregation according to information interests. We find that
in a segregated group, only the preferred information survives, i.e., segregation leads to
polarization. Segregation also reduces the overall number of people informed in the long
run. Finally, we ask when does segregation endogenously occur. We find that it is more
likely if information preferences are extreme, and/or the number of individuals interested
in different pieces of information is very varied. Its likelihood decreases as information
transmission itself is facilitated.
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1 Introduction

Social networks are a crucial factor in the diffusion of information in a society, as highlighted

already in in Lazarsfeld et al. (1968) or Katz and Lazarsfeld (1970). For information transmission

through casual contacts, a standard way to model this diffusion is to treat “being informed”

as a state that spreads like a contagion on a network (see Jackson and Rogers (2007), López-

Pintado (2008), Jackson and Yariv (2010), Jackson and López-Pintado (2013)). So far, these

models have assumed that there exists a unique state that spreads through the population. In

the context of information though, it appears obvious that many distinct pieces of information

diffuse simultaneously. This creates competition among them. In Twitter data, e.g., Leskovec

et al. (2009) have shown that the arrival of a particularly popular hashtag does not lead to more

tweets. The total volume of tweets stays roughly constant over time. Rather, it coincides with

reduced tweets of other hashtags. Different pieces of information do appear to crowd each other

out,1 a fact that the standard model of information contagion does not accommodate.

The present paper introduces a model in which two pieces of information, l = {A,B},

simultaneously diffuse on a network, in which nodes denote agents and links meetings. The

basic diffusion process is the Susceptible-Infected-Susceptible (SIS) framework, as employed in

Jackson and Rogers (2007), López-Pintado (2008), Jackson and Yariv (2010), and Jackson and

López-Pintado (2013), among others.

Our model exhibits three main features. First, as in the standard SIS framework, we consider

a population in which agents transition between being susceptible to information (state S), or

infected with it (state I). I.e., they are either uninformed, or informed. Agents transition

between states either if an agent susceptible to information l becomes informed of it during

a meeting, or if he forgets it. We focus on the existence and properties of the steady-state

(prevalence) of each information. The introduction of two pieces of information increases the

set of infectious states. Compared to the standard model, in which I is a single state, our model

incorporates a set of infectious states of I = {IA\B , IB\A, IAB}.

The second main feature, which is entirely novel, is the introduction of opportunity costs,

through the assumption that the two pieces of information share an agent’s limited communi-

1This fact has been recognized also long before the recent increase in online communication. A prime example
is the accusation that policy makers might try to “bury” unfavorable news through a manipulation of their release
date.
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cation time. Whenever two agents meet, each can communicate at most one piece.

Finally, we relate the choice of which information to communicate to intrinsic preferences of

agents. We assume that a subset of the population is intrinsically more interested in information

A, and the complement in B. If an agent is in state IAB , he will communicate information A

only if he belongs to group A, and information B otherwise. This assumption captures in a

parsimonious way the tendency of individuals to chat mainly about things they find interesting.

Despite being highly stylized, the model captures a basic trade-off that exists in casual in-

formation diffusion, both on- and offline. It predicts a number of observed phenomena. Among

them is a general resilience of information that remains although crowding out can be signifi-

cant. It also highlights the importance of relative, not absolute, interest in an information for

its survival in a population. Furthermore, the introduction of information preferences allows us

to analyze both the occurrence of homophily, and its impact on the prevalence of information.

We find that its occurrence is influenced by various parameters of the diffusion process, and rel-

ative information interests. If the population indeed becomes segregated according to interests,

information prevalence is reduced, and the population becomes polarized.

1.1 Related Literature

Within economics, the literature we are most closely related to is the network literature on

diffusion that builds on the SIS framework, such as Jackson and Rogers (2007), López-Pintado

(2008), or Jackson and Yariv (2010), but also Galeotti and Rogers (2013a), and Galeotti and

Rogers (2013b). This literature itself builds on work on epidemiological models in the natural

sciences, such as Bailey et al. (1975), Dodds and Watts (2004) Pastor-Satorras and Vespignani

(2001b,a), Pastor-Satorras and Vespignani (2002), or Watts (2002). More broadly, the paper

is also related to network processes of learning, best response dynamics, or explicit adoption

decisions. These processes however differ significantly from the SIS model we employ. See,

e.g., Jackson (2008) for an excellent introduction to the literature. While we share the basic

methodology of the SIS framework with this literature, in all of the above papers the focus is

on the diffusion of a unique state.

Diffusion of competing products or innovations instead has been analyzed in models of in-

fluence maximization, e.g., by Bharathi et al. (2007), Borodin et al. (2010), Dubey et al. (2006)
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and Goyal and Kearns (2012). These models differ significantly from an SIS diffusion process,

both with respect to the modeling characteristics, and the questions that they wish to answer.

The above papers are based on threshold models, in which contagion occurs on a fixed network

and nodes never recover. The central question in this strand of literature is which nodes a player

with a fixed budget would choose to infect to maximize the contagion of his product (in Goyal

and Kearns (2012), the focus is on how the efficiency of a “seeding” strategy depends on the

precise diffusion process and its interaction with the network structure) rather than questions

of prevalence, or crowding out, such as we consider. In all of the above papers, being infected

with one product precludes infection with another, which is unlikely to be the case for infor-

mation. Consequently, while this literature also considers competing diffusion processes, the

present results are of a complementary nature.

The impact that homophily has on information prevalence in our model is based entirely

on agents choosing which information to pass on, which differentiates it from other work in

that area, such as Golub and Jackson (2012) or Granovetter (1973). Indeed, our results on the

impact of segregation on polarization are complementary to those of Baccara and Yariv (2008),

Flaxman et al. (2013), Gentzkow and Shapiro (2010), Rosenblat and Mobius (2004), or Sunstein

(2009) who study the impact of biased news/information consumption on polarization. In our

model, agents in each group are initially informed to the same amount of both information, and

the non-preferred information is not strategically withheld.

We are more closely related to contagion models that study the diffusion of multiple states,

such as Beutel et al. (2012), Karrer and Newman (2011), Pathak et al. (2010) and Prakash

et al. (2012). In contrast to the present paper, in these models infection with one virus/state

provides full or partial immunity against the other. Such immunity introduces a tendency for

the more virulent state to be the only one that survives in the population. These results are

reminiscent of those of influence maximization processes. The fact that the present paper finds

that information is resilient highlights the importance of the stage at which competition takes

place.

Finally, both Myers and Leskovec (2012) and Weng et al. (2012) are close in spirit to our

paper, as they aim to determine the interaction of multiple pieces of information, making use of

Twitter data. In both papers, nodes are allowed to be infected with more than one information
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at a time. The competition among information in Weng et al. (2012) stems again from limited

capabilities of nodes to store information. Myers and Leskovec (2012) in turn focus on estimating

interaction patterns. While close in spirit, the framework and insights of these papers differ

significantly from our own.

The rest of the paper is organized as follows. Section 2 presents the model and derives the

prevalence of each information, while Section 3 quantifies crowding out and relates it to net-

work characteristics. Section 4 investigates the impact of homophily and derives the conditions

under which agents themselves wish to segregate according to information interests. Section 5

concludes.

2 The Model

2.1 Propagation Mechanism

We consider a population in which two pieces of information, A and B, are of interest to agents.

It is worthwhile to take a moment to fix ideas about what A and B represent. The simplicity

of our model allows us to be quite broad about this. They can be verifiable facts, opinions, or

even unverifiable rumors. Any of these types of information appears to travel though chit-chat

both on- and offline. We exclude only what might be termed “obvious lies”, i.e., statements

that are factually incorrect and directly verifiable by an agent.2 Thus one can think of A as a

piece of celebrity gossip and B as some political news. Else, A and B may both relate to the

same topic, such as arguments for and against the severity of climate change. Yet again, they

might be different ideological viewpoints on the same issue.

The population consists of an infinite number of agents, who represent nodes on a network.

The links of the network denote meetings between agents. Following the SIS framework, we

assume that this network is realized every period. We also assume that the network is regular,

such that each agent meets k others at any time t, and we solve for the meanfield approximation

of the system, assuming that t is continuous. The set of possible states in which an agent can be

is {S, IA\B , IB\A, IAB}. If an agent susceptible to information l ∈ {A,B} gets informed about

it at a meeting, or when he forgets information l ∈ {A,B}, he transitions between states. We

2Such as “the sky is green”.
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denote by ν the rate at which information is transmitted at a meeting and by δ the rate at

which it is forgotten. In line with the previous literature and the epidemiological roots of the

model, we refer to ν as the (per contact) infection rate and δ as the recovery rate.3

A central assumption is that at each meeting, at most one information can be communi-

cated, as communication time is limited. We endow agents with preferences over the two pieces

of information and assume that the preferred information is the one that is communicated, con-

ditional on communication taking place at all. A proportion νA ∈ [0, 1] of the population prefers

A, while the remaining proportion νB = 1 − νA prefers information B.4 Agents who prefer A

are in group A and agents who prefer B are members of group B. Note that if agents are

either in state IA\B or IB\A, their information preferences will not matter for the rate at which

they pass on information l. In particular, individuals are non-strategic in the way they pass

on information, i.e., they neither distort the information they possess, nor do they strategically

choose not to transmit an information.5

Formally, we define ρA\B , ρB\A and ρAB as the proportion of the population in the three

infection states, IA\B , IB\A, and IAB , respectively. By definition, the following relationships

hold

ρA = ρA\B + ρAB

ρB = ρB\A + ρAB

ρ = ρA\B + ρB\A + ρAB .

(1)

Denote by θl the probability that, conditional on information being communicated, a ran-

domly encountered individual will transmit information l,

θA = ρA\B + νAρAB = ρA − νBρAB ,

θB = ρB\A + νBρAB = ρB − νAρAB .
(2)

3If agents never forgot, all information would eventually be known by everybody, which does not appear to be
a relevant case. Much of the information that is transmitted as chit-chat is not immediately pay-off relevant, and
often it is unknown whether it ever will be. Such information may be a prime target to be forgotten if memory
limitations exist.

4Our results will not change if we instead assume that νl is the probability that a single agent in state IAB

passes on information l. This assumption would not allow us to investigate questions of the effect of segregation
according to information interests, though.

5For models of strategic information transmission on a network, see, e.g., Galeotti et al. (2013), Hagenbach
and Koessler (2010), or recently Bloch et al. (2014).
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This is (weakly) less than ρl, as not everybody aware of an information will necessarily pass

it on. This is the essence through which the existence of a second information −l imposes an

externality on the diffusion of l.

The rate at which a susceptible individual becomes infected with information l is kνθl. We

assume that the infection rate ν is sufficiently small that this rate approximates the chance that

an individual becomes informed of l through his k independent interactions at t. Similarly, we

assume that the recovery rate δ is sufficiently small such that δ approximates the probability

that an agent forgets a particular topic at time t.6

We assume that A and B diffuse through the population independently of each other. Knowl-

edge of one does not make knowledge of the other any more or less likely. The information prop-

agation process exhibits a steady-state if the following three differential equations are satisfied,

∂ρA
∂t

= (1− ρA)kνθA − ρAδ = 0, (3)

∂ρB
∂t

= (1− ρB)kνθB − ρBδ = 0, (4)

∂ρAB
∂t

= (ρA − ρAB)kνθB + (ρB − ρAB)kνθA − 2ρABδ = 0, (5)

i.e., the proportion of agents who become aware of an information at t equals the proportion of

agents who forget it.7

6In essence, this assumption implies that at most one information is forgotten at any t. This assumption
simplifies the analytical derivations, but also seems reasonable for the short time frames we approximate with
this model. Finally, as for small ν infection with both information at t has zero probability, our assumption of a
similarly small δ ensures that the setup is not exogenously biased against information survival.

7We assume that δ is the unique rate at which both A and B are forgotten. There are numerous alternative
ways to model forgetting, e.g., the preferred information might be forgotten at a lower rate, or being aware of
multiple pieces of information increases the rate at which all of them are forgotten. On the other hand, it might
also be the complexity of an information that is the determining factor in forgetting, something that is entirely
exogenous to the model. The unique value of δ allows us to derive very cleanly the impact that the existence of
a second information has on the diffusion process, without additional complications.
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2.2 Steady-States and Diffusion Threshold

Define λ = kν
δ as the diffusion rate of information. The (implicit) steady-states of ρA, ρB , and

ρAB are

ρA =
λθA

1 + λθA
, (6)

ρB =
λθB

1 + λθB
, (7)

ρAB =
λ2θAθB

(1 + λθA)(1 + λθB)
= ρAρB , (8)

and we denote the values of ρA and ρB that solve equations (6)-(8) as the prevalence of infor-

mation A and B. Due to the inherent symmetry of the model, in the remainder of the paper

we focus, without loss of generality, on the case in which νA ≥ νB .

Remark 1. For any given diffusion rate λ ≥ 0, there exists a steady-state in which ρl = 0 for

l ∈ {A,B}.

The existence of a steady-state in which nobody is informed is trivial. If the initial conditions

are such that no agent is informed about a topic, nobody ever will be. Questions of interest

instead concern the existence of a steady-state in which ρl > 0 for either or each l ∈ {A,B},

and its characteristics. To analyze these, we adapt the following definition from López-Pintado

(2008).

Definition 1. For each l ∈ {A,B}, let λ∗l be such that the following two conditions are satisfied

for all λ > λ∗l :

1. There exists a positive steady-state for information l, i.e., a steady-state in which a strictly

positive fraction of the population is informed about it. For all λ ≤ λ∗l , such a positive

steady-state does not exist for information l.

2. The positive steady-state is globally stable. That is, starting from any strictly positive

fraction of agents informed about l, the dynamics converge to the positive steady-state.

For all λ ≤ λ∗l , the dynamics converge to a steady-state in which no agent is informed

about l.
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We call λ∗l the diffusion threshold of information l.8

Furthermore, we are interested in how the diffusion threshold and the prevalence of either

information l compare to the case in which information l is the unique information diffusing on

the network. We therefore define the following concepts.

Definition 2. Let λd be the diffusion threshold of information in case a unique information

diffuses through the network.

Definition 3. Let ρ̃ denote the positive steady-state of an information if it is the unique

information that diffuses through the network.

For the present diffusion process, it has been established (see, e.g., López-Pintado (2008) or

Jackson (2008) and the reference therein) that λd = 1 and ρ̃ = 1−λ−1. We are now in a position

to state our first set of results regarding the existence and stability of positive steady-states for

either information l ∈ {A,B}.

Proposition 1. The diffusion threshold λ∗l depends on the value of νl:

1. If νl ∈ (0, 1) for each l ∈ {A,B}, then λ∗A = λ∗B = λd = 1.

2. If νl = 0 for some l ∈ {A,B}, there exists no finite value of λ∗l .

3. If νl = 1 for some l ∈ {A,B}, λ∗l = λd = 1. For λ > 1, ρl = ρ̃.

Independent of the value of νl, there exists at most one positive steady-state.

Proof. See Appendix A.

Our result that λ∗l is identical to λd for almost all values of νl highlights the enormous

resilience of information. The independence of the diffusion threshold from the number of

topics that propagate through the network is striking and deserves some closer attention. In

epidemiology, it is a well-established result that an infection exhibits a positive prevalence if

its basic reproduction number (R), the number of agents to which an infected agent spreads

the disease on average, is larger than 1. This in turn explains why for a unique information,

the diffusion threshold is λd = 1. As λ = νk
δ , it is exactly the average number of nodes that

8López-Pintado (2008) actually defines a critical threshold above which a positive steady-state exists, and a
diffusion threshold above which this positive steady-state is stable. In the present setting, these two thresholds
coincide.
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“catch” information from an informed node, i.e., λ = R. In the present model, Rl ≤ λ, as not

every agent that is given the chance to communicate l will do so. Instead, out of all nodes that

are aware of A, a proportion ρB are also aware of B, and of those, a proportion νB will never

communicate A at a meeting. Hence, only a proportion 1−νBρB of all agents aware of A would

ever communicate it. I.e., the basic reproduction number for information l is

Rl = λ(1− ν−lρ−l). (9)

Lemma 1. For either l ∈ {A,B}, the following is true for Rl: (i) If νl ∈ (0, 1), then Rl > 1 if

and only if λ > 1. (ii) If νl = 1, then Rl = λ. (iii) If νl = 0, then Rl = 1, independent of the

value of λ.

The results in Lemma 1 are derived in Appendix E.9 It is true that, while the basic repro-

duction number Rl is in general different from λ (except for the case of νl = 1), it is nevertheless

larger than 1 only if λ > 1. Intuitively, this is because an increase in λ increases both ρA and

ρB : If λ is just slightly above 1, information l has only a very low diffusion rate, but so does

information −l, which implies a low value of ρ−l, in which case the proportion of agents aware

of l and willing to spread it is almost 1. The positive, direct, effect of an increase in λ on l

through increasing its diffusion rate is always larger than the indirect, negative, effect it has on

l through increasing ν−lρ−l. The two effects are identical and offset each other if ν−l = 1. In

this case, it can be shown10 that ρ−l = 1− λ−1, which leads to Rl = 1, independently of λ.

Proposition 1 explains the longevity of diverse rumors, gossips, or opinions. Assume that

λ > 1. Then any piece of information that is deemed the most interesting by some individuals,

will survive on this network, no matter how much of a niche topic it might be. The Proposition

also provides insights into the practice of “burying news”. In the model, media coverage plays the

role of planting the initial seed of information in the population. The prevalence of information

is entirely independent of this. While news might be buried if they are released simultaneously

with other major events, this is the result of differential interest in the population only, and

independent of differences in news coverage. We now go beyond the qualitative results of

information prevalence and quantify the extent to which two information crowd each other out.

9The argument makes use of the explicit solutions of ρA and ρB , which are derived in Appendix B.
10see Appendix A
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3 Crowding Out of Information

Independently of νl, if λ ≤ 1, no positive steady-state exists, neither in the single information

case nor in the case of two information diffusing. Hence, in the remainder of the paper, we focus

on the more interesting case of λ > 1 and on positive information prevalence.

We know from Proposition 1 that if νl = 1, ρl = 1−λ−1, identical to the one-information case.

This identity is not surprising: As νl = 1, information l does not in fact face any competition

from −l. We define crowding out of a piece of information as follows:

Definition 4. For any νl ∈ [0, 1], crowding out of information l is given by ρ̃− ρl.

Note that for νl = 1, crowding out of information l is zero, while it is complete for information

−l. To analyze crowding out of information for values of νl ∈ (0, 1), we derive the positive

prevalence of A and B. Let

C ≡ −(1− λνAνB) +
[
(1− λνAνB)2 − 4νAνB(1− λ)

] 1
2 ,

then we can express the positive steady-states of A and B as:

θA = C
2λνB

⇒ ρA = C
2νB+C (10)

θB = C
2λνA

⇒ ρB = C
2νA+C . (11)

The derivations of (10) and (11) can be found in Appendix B. The following Lemma for-

malizes that the existence of two pieces of information diffusing simultaneously indeed causes

them to (partially) crowd each other out.

Lemma 2. 1. For any finite λ > 1 and any νl ∈ (0, 1), ρl is strictly increasing in νl. If, in

addition, νA ≥ νB, then

0 < ρB ≤ ρA < ρ̃

holds, with strict inequality if νA > νB.
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2. For any νl ∈ (0, 1), ρl is strictly increasing in λ.

Proof. See Appendix C.

Lemma 2 shows that, although crowding out is never complete for interior values of νl, it is

also never zero. The fact that communication time is fixed and has to be split between different

pieces of information demands that fewer people are aware of each of them. In fact, crowding

out may be substantial. In figure 1, we compare the positive steady-states for ρl for varying

values of νl and λ to the corresponding values of ρ̃. The horizontal axes plot λ−1 ranging from

1 to 0, while the vertical axes give ρ̃, ρA, and ρB . In panel 1a, we set νA = νB = 0.5, while in

panel 1b, the values are νA = 0.8 and νB = 0.2.

(a) νA = νB = 0.5 (b) νA = 0.8, νB = 0.2

Figure 1: Population information rates in steady-state as functions of the inverse of the diffusion
rate, λ−1.

The effect on ρl in moving from νB = 0.5 to νB = 0.2 is substantial. As an example, a

value of λ = 2 is sufficient for 50% of the population to be informed about B if it was the only

information. The same value of λ leads to roughly 38.2% of the population informed about B

if both A and B are preferred by half the population. However, if 80% of the population prefer

to talk about A, a value of λ = 2 implies that the prevalence of B drops to 18.78%.11 These

are large differences, especially as we consider ordinal preferences over information pieces. The

fact that 80% of the population prefer to talk about topic A does not imply that these agents

have no interest in B whatsoever. The difference in valuation might be small.12

11Conversely, to inform half of the population about B if νB = 0.2 would require a value of λ ≈ 5.55.
12This interpretation would differ if we had considered νl to be the likelihood with which each agent com-
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Figure 1 highlights a second interesting aspect of the crowding out process. The impact

of λ−1 on ρl is convex, i.e., crowding out depends on the exact parameters of the diffusion

process. This is due to the two effects that an increase in λ has on ρl, discussed before: It

directly increases ρl as information diffuses more easily, but as it also increases ρ−l there exists

a negative, indirect, effect on ρl. The following Proposition establishes how crowding out and

relative prevalence depend on network characteristics.

Proposition 2. For any νl ∈ (0, 1) and finite λ > 1, the following holds:

1. There exists a unique value of λ, denoted λc that maximizes crowding out of both infor-

mation,

λc =
1

1− νAνB

[
1 +

1− 2νAνB
(νAνB)1/2

]
,

which is decreasing in νAνB.

2. The ratio of crowding out of A relative to B is independent of λ: ρ̃−ρA
ρ̃−ρB =

(
νB
νA

)2
.

3. If νA > νB, the ratio ρA
ρB

is decreasing in λ.

Proof. See Appendix D.

The first part of Proposition 2 establishes that the loss of information due to to crowding out

is maximized for “intermediate” values of the diffusion rate. An increase in λ always increases the

prevalence of any information. But if multiple information diffuse simultaneously, this increase

is smaller than in the one-information case for λ < λc and larger for λ > λc. Relative crowding

out, in turn, depends only on relative interest. It is particularly interesting that differences in the

sizes of groups A and B have magnified effects on crowding out. E.g., if group A is three times

as large as B then the extent of crowding out of B is nine times as large as that of A. Finally,

the prevalence growth rate as λ is increased is always larger for the information preferred by

the minority. It might be argued that technological advances such as OSNs represent increases

in the diffusion rate λ, as they might increase the number of interactions per period (k) or the

likelihood that communication occurs at a meeting (ν). Proposition 2 predicts that if this is the

municates information l at a meeting. Under such an interpretation, the difference between νA and νB should
be treated as cardinal. Our present setup does not exclude the possibility that small differences in information
valuation might lead to big differences in the proportion of informed agents. We return to implications of cardinal
differences in information valuation in section 4.
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case, it will (i) increase overall information prevalence, (ii) have an ambiguous effect on crowding

out of information, and (iii) will benefit disproportionally the prevalence of information that is

of minority interest.

4 Segregation and Integration

4.1 Information Prevalence

In the preceding analysis, agents of groups A and B interact randomly with each other, ir-

respective of group membership. It is however a well-documented fact that individuals have

a tendency to interact relatively more with others that are similar to them, i.e., interaction

patterns exhibit homophily.13

In the present framework, homophily will determine the likelihood that an individual of

group A meets an individual of group B. In particular, we will focus on the difference in

information prevalence in an integrated society (groups A and B interact randomly with each

other) as opposed to a segregated society (all interactions are within the same group). Our first

result arises as a Corollary of Proposition 1.

Corollary 1. Assume that the society is segregated according to interest groups. Then, for any

finite λ > 1, the prevalence of information l among members of group l is ρ̃, while the prevalence

of information −l in group l is zero.

The implications of Corollary 1 are stark. Independent of the amount of media coverage, or

the diffusion rate of information λ, information B will never become endemic in group A and vice

versa. This in itself gives credence to the idea that segregation might lead to polarization. If we

interpret A and B as two alternative points of view on the same topic, segregation immediately

implies polarization: Under full segregation, there exists no positive steady-state for ρAB and

agents are informed of at most one point of view. This occurs even if initial news consumption

is entirely unbiased, and it is independent of biases in messages, updating, or bounded memory.

While the potential for polarization due to segregation is in itself important, our next result

establishes that the prevalence of either information is lower in a segregated society than in an

integrated one.

13One of the earliest work on this is Lazarsfeld et al. (1954). See also the survey by McPherson et al. (2001).
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Proposition 3. For νl ∈ (0, 1) and finite λ > 1, the prevalence of information l is ρl in an

integrated society and it is νlρ̃ in a segregated society. We find that:

1. The prevalence of information l is larger in an integrated society than in a segregate society.

2. The prevalence of information l among group l, νlρl, is larger in a segregated society than

in an integrated society.

Proof. See Appendix F

The loss of information due to segregation goes beyond the potentially polarizing impact

on society of having no agent informed about both A and B in the long run. Indeed, there

are many instances in which information A and B are entirely unrelated, in which case being

informed about both might not have perceivable benefits. Nevertheless, even in such a case,

segregation has an impact. Of course, whether or not the loss of information is considered

harmful or beneficial for society depends entirely on the type of information.

A noteworthy aspect is the distinction between overall information prevalence and infor-

mation prevalence among each group. If, e.g., A is a piece of celebrity gossip and B a piece

of political news, the value that individuals in group A put on being informed about B (and

vice versa) might be limited. That is, while overall information is lost due to segregation, it

maximizes prevalence among those that value the respective information more. This leads us

to question under which conditions agents themselves have incentives to segregate, which we

address now.

4.2 Endogenous Segregation

To address the question of endogenous segregation, we need to impose some additional structure

on the utility agents gain from being informed. To keep the analysis as simple as possible, we

assume that agents derive utility directly from being informed about A and/or B. We assume

that an agent in group l receives a flow utility of h while he is informed about l and a flow utility

of s while he is informed about −l, where h ≥ s ≥ 0.14 The prevalence of information l, ρl,

14Such utility flows could arise if agents truly valued information in itself, but also if they value it because
there is the possibility that it will be useful at an uncertain, future, date. E.g., agents might value to be informed
about current events / history / politics, not so much because it provides them with any benefit as such, but
because there is a chance that these topics might be discussed in their presence, and not being informed would
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denotes the time that an agent spends being informed about l in steady-state. We also assume

that agents care only about the steady-state values of ρl and ρ−l. The utility of an agent in

group l in an integrated and a segregated society is then

Ul|int = ρlh+ ρ−ls, and (12)

Ul|seg = ρ̃h. (13)

Corollary 2 follows immediately from these utilities and the fact that ρl < ρ̃.

Corollary 2. Assume that λ > 1 and finite. If h > 0 and s = 0, all agents prefer segregation

over integration. If s = h > 0, all agents prefer integration.

More generally, members of group l prefer a segregated society if

s

h
<
ρ̃− ρl
ρ−l

, (14)

which leads to the following Proposition.

Proposition 4. For any νl ∈ (0, 1) and finite λ > 1, a decrease in s
h makes it more likely that

a segregated society will emerge.

Proof. Obvious given equation (14).

I.e., the more extreme information preferences are, the more likely it is that we observe a

segregated society. We state Proposition 4 as a likelihood that segregation occurs, as the exact

value of s
h at which individuals are indifferent between segregation and integration depends on

the values of ρl and ρ−l, which in turn depend on λ and νl.

Proposition 5. For all finite λ > 1, ρ̃−ρl
ρ−l

is decreasing in both νl and λ.

Proof. See Appendix F.

brand them as ignorant. Alternatively, the information might pertain to the state of the world and an agent
knows that at an uncertain point in the (distant) future he will have to take an action whose pay-off depends
on the state. In either case, the expected utility of an agent would be increasing in the amount of time he is
informed, which is captured in our simple utility function.
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That is, as we decrease the size of the group that prefers information l, segregation is preferred

for larger values of s
h . As segregation is driven by the group that has a lower valuation for an

integrated society, this result implies that a society in which interest in information A and B is

evenly split, νA = νB , is the least likely to segregate into separate groups. On the other hand,

for both groups the incentive to segregate is decreasing in λ. Propositions 4 and 5 paint a mixed

picture of the effect of the Internet and OSNs on segregation. Arguably, they have made it easier

for individuals to find others that share similar interests. Hence, they might offer the possibility

to segregate that did not exist in the offline world. Given our results, we would expect that

groups that make use of this possibility are those that (i) are particularly interested in niche or

very specialized pieces of information, and (ii) are extreme in their valuation of information, i.e.,

they care little about information apart from their preferred one. On the other hand, if their

rise indeed represents an improvement in the diffusion rate (an increase in λ), this will translate

into lower incentives to segregate for any group.

5 Conclusion

The present paper models the diffusion of two pieces of information under communication con-

straints in a simple and standard diffusion process. Individuals may be aware of one or both

pieces of information, but if they are aware of both, they will communicate the piece that they

find more interesting. The type of information diffusion that is best captured by our model is

casual chit-chat, which most individuals engage in on a daily basis.

Our results contribute to the understanding of how communication constraints affect the

diffusion of information. They are able to shed light on the mechanism that underlies the

possibility of “burying” information, and to explain why so many pieces of information, many

very obscure, seem to survive. The model also offers strong predictions on the impact of the

Internet and OSNs on information diffusion: If they represent increases in the diffusion rate,

they will be particularly beneficial for “niche” information, and decrease the likelihood that

individuals segregate according to their information interests.

Finally, our model predicts that segregation according to interests will unambiguously lead

to polarization, and a loss of information. If offered, segregation will become more likely as
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information preferences become more extreme, and will be chosen predominantly by individuals

whose interest lies in niche topics.

To the best of our knowledge, communication costs of any type have not before been analyzed

in an SIS framework. Indeed, we have kept our model deliberately simple to highlight the strong

implications that opportunity costs have for its predictions. Polarization due to segregation in

particular has often been analyzed. Our model highlights a complementary channel in this

process that has not received much attention, if any. That is, even without biased messages, or

news consumption, information that is of relatively little interest has no chance of surviving in

a segregated group. As a consequence, campaigns to introduce “competing” information into

segregated groups will not have any long term impact, only a reduction of segregation will.

A richer framework could allow for a more general interaction structure of individuals, or

indeed a fixed network. Although the second route promises to be interesting, previous work

in this area has shown that it is a problem of substantial complexity. Another promising area

is the question of how individuals choose which information to communicate. While we believe

our assumption to link this to intrinsic preferences is a valid starting point, there are numerous

other factors that might contribute to this decision. It might, e.g., depend on how likely it

is that the information is “new” information to the other party. This is an area that we are

currently working on, but that we believe goes beyond the scope of the present paper.
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A Diffusion Thresholds and Steady-States

Proof of Proposition 1
In steady-state,

ρA =
λθA

1 + λθA
(15)

ρB =
λθB

1 + λθB
(16)

with

θA = ρA[1− νBρB ] (17)

θB = ρB [1− νAρA] (18)

where we made use of the fact that ρAB = ρAρB . Due to the symmetry of information A
and B, note that we can change the labels of the information to apply any arguments that we
make about A also for B. We will therefore prove proposition 1 for information A, without loss
of generality.

First, by substituting equation (17) into (15) and (18) into (16), it is immediate that the
steady-state ρA = ρB = 0 always exists. Furthermore, if νA = 1, then (15) becomes

ρA =
λρA

1 + λρA
(19)

which is identical to the steady-state condition in the one-information case, i.e., the uniquely
positive steady-state of A is ρA = 1− λ−1, and it is globally stable. This proves the final part
of proposition 1.

We constrain ourselves to look now for the existence and stability properties of steady-states
in which ρl > 0 for both l. If ρB > 0, we can rewrite equation (16) as a function of ρA and
parameters only:

ρB = 1− 1

λ(1− νAρA)
(20)

Substituting equations (15) and (20) into equation (17), we can express θA as

θA = H(θA) =
λθA

1 + λθA

νA +
νB

λ
(

1− νA λθA
1+λθA

)
 , (21)

i.e.,

H(θA) =
λνAθA

1 + λθA
+

νBθA
1 + νBλθA

(22)

And the steady-state of θA is the fixed point of (22). Following the argument put forward
in López-Pintado (2008), note that H(0) = 0 and that

H(1) =
λνA

1 + λ
+

νB
1 + λνB

,

which some manipulation shows to be strictly below 1. I.e., if H ′(θA) > 0, H ′(0) > 1
and H ′′(θA) < 0, then any θ∗A > 0 that solves equation (22) is unique and globally stable.
Consequently, so is any ρ∗A relating to θ∗A.
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Indeed,

H ′(θA) =
λνA

(1 + λθA)2
+

νB
(1 + λνBθA)2

> 0, (23)

H ′′(θA) = −2λ
[
λνA(1 + λθA)−3 + ν2B(1 + λνBθA)−3

]
< 0, (24)

and
H ′(0) = λνA + νB , (25)

which is larger than 1 for νl ∈ (0, 1) if and only if λ > 1. This completes the proof that for
νl ∈ (0, 1), the diffusion thresholds for both A and B are identical and equal to 1. If, however,
νA = 0, we see that independently of the value of λ, H ′(0) = 1, i.e., there exists no positive
steady-state for θA, consequently not for ρA either. This completes the proof that for νl = 0,
information l does not have a strictly positive steady-state.

B Derivation of steady-state θl

From equation (22), we know that a steady-state of the θA is such that

θA =
λνAθA

1 + λθA
+

νBθA
1 + νBλθA

. (26)

Note again that θA = 0 is always a solution. For θA > 0, re-arranging of (26) yields

(1 + λθA)(1 + λνBθA) = λνA(1 + λνBθA) + νB(1 + λθA)

1 + λθA(1 + νB) + λ2νBθ
2
A = λνA + λ2νAνBθA + νB + λνBθA

νA(1− λ) + λ2νBθ
2
A + λθA(1− λνAνB) = 0

which in turn implies that

θA1,2 =
1

2λνB

{
−(1− λνAνB)±

[
(1− λνAνB)2 − 4νAνB(1− λ)

] 1
2

}
.

Note that for all λ > 1, the square-root is larger than (1− λνAνB), which implies that there
exists a unique positive steady-state for θ∗A, with

θ∗A =
1

2λνB

{
−(1− λνAνB) +

[
(1− λνAνB)2 − 4νAνB(1− λ)

] 1
2

}
=

C

2λνB
, (27)

as stated in equation (10). Finally, as ρA = λθA
1+λθA

, by equation (6), plugging this value of

θA in, we arrive at the result that ρ∗A = C
2νB+C . The derivations of θ∗B and ρ∗B are identical.

C Properties of ρl

Proof of Lemma 2, Point 1
The ranking of ρB , ρA, and ρ̃ is established straightforwardly: The fact that ρA > ρB if and

only if νA > νB and that ρA = ρB if and only if νA = νB is obvious from equations (10) and
(11). Also, note that for ρA > 0, we know that
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ρA = 1− 1

λ(1− νBρB)

which can be used to show that

ρ̃− ρA = 1− 1

λ
− 1 +

1

λ(1− νBρB)

=
νBρB

λ(1− νBρB)

(28)

which is strictly positive whenever ρB > 0 and zero if ρB = 0. This establishes that 0 < ρB ≤
ρA < ρ̃.

As ρA = λθA
1+λθA

, it is increasing in νA whenever θA is increasing in νA, i.e., if

dθA
dνA

=
1

2λν2B

[
C +

dC

dνA
νB

]
> 0, (29)

which in turn holds if C + dC
dνA

νB > 0. Given the definition of C, we work with a change of

variable of x = νAνB , which means that we can calculate dC
dνA

= dC
dx (1− 2νA), where

dC

dx
= λ+

−2 + λ(1 + λx)

c1/2

with c = (1−λx)2− 4x(1−λ). This is obviously positive if −2 +λ(1 +λx) > 0 (which holds
for sure for all λ > 2). If −2 + λ(1 + λx) < 0, some re-arranging yields the same result, i.e.,
dC
dx > 0 if

λc1/2 > 2− λ(1 + λx)

λ2(1− λx)2 − 4xλ2(1− λ) > 4− 4λ− 4λ2x+ λ2 + 2λ3x+ λ4x2

0 > 4(1− λ)

which is true for all λ > 1. The sign of dC
dνA

is hence ambiguous; it is positive if νA <
1
2 , zero if

νA = 1
2 , and negative otherwise. Hence, for νA >

1
2 , the sign of dθ

dνA
is not immediately obvious.

In full, dθ
dνA

> 0 if

−(1− λx) + c1/2 + [λc−1/2(−2 + λ(1 + λx))](νB − 2x) > 0

−(1− λx)c1/2 + c+ [λc1/2 − 2 + λ(1 + λx)](νB − 2x) > 0

1 + 2λx+ λ2x2 − 2νB + λνB(1 + λx)− 2λx(1 + λx) > −c1/2(−1 + λνB − λx)

(1 + λx)(1 + λν2B) > c1/2(1− λν2B).

(30)

Again, we consider two cases, if 1−λν2B < 0, this condition is always satisfied. If 1−λν2B > 0,

we define D ≡ 1−λν2
B

1+λν2
B

and can write

(1 + λx) > c1/2D

(1 + λx)2 > (1− λx)2D2 − 4x(1− λ)D2

(1 + λx)2 > (1 + λx)2D2 − 4xD2

(31)

which is always true as D < 1. Consequently, dρA
dνA

> 0 for all values of νA and λ > 1.
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Proof of Lemma 2, Point 2
Note that ρl is increasing in C (strictly if νl ∈ (0, 1)). To prove the dependence of ρl on λ,

it suffices to show that C is increasing in λ. Indeed,

dC

dλ
= x+

x(1 + λx)

c1/2
> 0 (32)

Q.E.D.

D Crowding out

Note that, as the ratio of crowding out for νl ∈ (0, 1) is independent of λ, a unique value of λc
must maximize crowding out of both A and B. At least one finite λc must exist, as for both
λ = 1 and λ→∞, crowding out of either information is zero, while for finite λ > 1, by Lemma
2, crowding out is positive. We proceed to show that λc is unique, i.e., it maximizes crowding
out, and is as stated in Proposition 3. We work again with ρA. It is convenient to work with
ρA = 1− 1

λ(1−νBρB) . In this case,

d(ρ̃− ρA)

dλ
= νB

λdρBdλ − ρB(1− νBρB)

λ2(1− νBρB)2
(33)

which is equal to zero if

λ
dρB
dλ

= ρB(1− νBρB) (34)

substituting ρB = C
2νA+C and dρB

dλ =
2νA

dC
dλ

(2νA+C)2 , this simplifies to

2λ
dC

dλ
= C(2 + C). (35)

Substituting the values for C from the main text and for dC
dλ from equation (32), this simplifies

to

2λx
c1/2 + 1 + λx

c1/2
= [−(1− λx) + c1/2](1 + λx+ c1/2)[

1 + λ2x2 − 4x
]2

= (1− λx)2c[
(1− λx)2 + 2x(λ− 2)

]2
= (1− λx)4 − 4x(1− λ)(1− λx)2

x(λ− 2)2 = (1− λx)2

λ2x(1− x)− 2λx− 1 + 4x = 0

(36)

and the solution of

λc =
1

1− x

[
1± 1− 2x

x1/2

]
. (37)

It is straightforward to show that only λc = 1
1−x

[
1 + 1−2x

x1/2

]
satisfies the additional condition

that λc > 1. Substituting x = νAνB yields the expression in Proposition 2. Finally, taking the
derivative of λc with respect to x yields

dλc
dx

=
1

(1− x)2
− 1

x(1− x)

[
3

2
x1/2 +

1

2
x−1/2

]
=

1

2x3/2(1− x)2

[
2x3/2 − x2 − 1

]
< 0

(38)
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which is negative as the maximum value that x can take is 1
4 , i.e., the term in square brackets,

which is itself increasing in x, can never be positive.

Relative crowding out, however, does not depend on network characteristics. Using the
expression of crowding out of information l established in equation (28), we can express relative
crowding out as

ρ̃− ρA
ρ̃− ρB

=
νB
νA

ρB(1− νAρA)

ρA(1− νBρB)
(39)

and substituting equations (6) and (7), as well as noting that θl = C
2λνl

, into this expression
yields the result,

ρ̃− ρA
ρ̃− ρB

=
νB
νA

θB(1 + νBλθA)

θA(1 + νAλθB)

=

(
νB
νA

)2

.

(40)

Finally, as ρl = C
2νl+C

, we have ρA
ρB

= 2νA+C
2νB+C . The derivative with respect to λ is straight-

forward,

d ρAρB
dλ

=
2dCdλ

(2νB + C)2
(νB − νA), (41)

which is decreasing if νA > νB .

E Basic Reproduction Number

The basic reproduction number for information A is

RA = λ(1− νBρB). (42)

As the prevalence of A can be written as

ρA = 1− 1

λ(1− νBρB)
= 1− 1

RA
(43)

it is trivial that there exists a positive prevalence of A if and only if RA > 1. It is also trivial
that if either νB = 0 or ρB =, then RA > 1 ⇔ λ > 1. It remains to show that this is also true
if ρB > 0 and νB ∈ (0, 1).

The positive prevalence of B is

ρB =
C

2νA + C
. (44)

Substituting this expression into equation (42), we can write

RA = λ
νA(2 + C)

2νA + C
(45)

and as C = −(1 − λνAνB) +
[
(1− λνAνB)2 − 4νAνB(1− λ)

] 1
2 , we find that if λ = 1, then

C = 0. In this case, equation (45) simplifies to
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RA = λ = 1. (46)

To complete the proof, we show that RA is strictly increasing in λ, i.e., for any value of
λ > 1, RA > 1 as well. Note that we have already established in Appendix C that dρA

dλ > 0.

But, since we can write ρA = 1−R−1A , it is true that

dρA
dλ

= R−2A
d RA
dλ

(47)

which is positive only if d RA
dλ > 0. QED.

F Segregation and Integration

The fact that in a fully segregated society more agents are in the long run informed about their
preferred information follows trivially from the fact that for finite λ and νl ∈ (0, 1), ρl < ρ̃. If
the society is fully integrated, the proportion of agents informed about l who also care about l is
simply νlρl. Under full segregation, society is split into two exclusive groups, of (proportionate)
size νl and 1−νl respectively. Hence, a total proportion of νlρ̃ will be informed of their preferred
information in the long run. As ρ̃ > ρl, so νlρ̃ > νlρl.

Conversely, integration implies a larger proportion of the population being informed about
l (irrespective of preferences) if ρl > νlρ̃. Working with l = A, this is true if

νAρ̃− ρA =
2νAνB(λ− 1)− C(νBλ+ νA

λ(2νB + C)
< 0, (48)

i.e., if

(νBλ+ νA)[−(1− λνAνB) + c1/2] > 2νAνB(λ− 1)

(νBλ+ νA)c1/2 > 2νAνB(λ− 1) + (νBλ+ νA)(1− λx)

(νBλ+ νA)2 > νAνB(λ− 1) + (νBλ+ νA)(1− λνAνB)

(νBλ+ νA)νB [λ(1 + νA)− 1] > νAνB(λ− 1)

(1 + νA)(λνB + νA) > 1

(49)

which is always true, as both terms on the left-hand side are strictly larger than 1 for any
λ > 1 and any νl ∈ (0, 1). As this expression also holds if we switch the labels of A and B, also
νB ρ̃ < ρB , which completes the proof.

Proof of Proposition 5

We provide here the proof of Proposition 5 for the case of group A by showing that
d
ρ̃−ρA
ρB

dνA
< 0.

The proof for group B is analogous. First, note that

ρ̃− ρA
ρB

=
νB

λ(1− νBρB)
(50)

Its first derivative with respect to νA is then
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d ρ̃−ρAρB

dνA
=
−λ(1− νBρB)− νBλ

(
ρB − νB dρB

dνA

)
λ2(1− νBρB)2

=
1

λ(1− νBρB)2

[
−1 + ν2B

dρB
dνA

]
< 0

(51)

as dρB
dνA

< 0. QED.

Similarly, to proof that ρ̃−ρl
ρ−l

is decreasing in λ, we give only the proof that ρ̃−ρA
ρB

is decreasing

in λ, as the derivations for ρ̃−ρB
ρA

proceed in identical fashion.
First, we know that

ρ̃− ρA =
νBρB

λ(1− νBρB)
.

In Appendix E we defined λ(1 − νBρB) = RA, and showed that RA is increasing in λ.
Consequently,

d ρ̃−ρAρB

dλ
=
d νBRA
dλ

= − νB
R2
A

dRA
dλ

< 0

(52)

QED.
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