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Abstract

An evidence game is a strategic disclosure game in which an informed agent

who has some pieces of verifiable evidence decides which ones to disclose to

an uninformed principal who chooses a reward. The agent, regardless of his

information, prefers the reward to be as high as possible. We compare the

setup where the principal chooses the reward after the evidence is disclosed

and the mechanism-design setup where he can commit in advance to a re-

ward policy, and show that under natural conditions related to the evidence

structure and the inherent prominence of truth, the two setups yield the

same outcome.
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1 Introduction

Ask someone if they deserve a pay raise. The invariable reply (with very

few and, therefore, notable exceptions) is, “Of course.” Ask defendants in

court whether they are guilty and deserve a harsh punishment, and the again

invariable reply is, “Of course not.”

So how can reliable information be obtained? How can those who de-

serve a reward, or a punishment, be distinguished from those who do not?

Moreover, how does one determine the right reward or punishment when ev-

eryone, regardless of information and type, prefers higher rewards and lower

punishments?

These are clearly fundamental questions, pertinent to many important

setups. The original focus in the relevant literature was on equilibrium and

equilibrium prices. This approach was initiated by Akerlof (1970), and fol-

lowed by the large body of work on voluntary disclosure, starting with Gross-

man and Hart (1980), Grossman (1981), Milgrom (1981), and Dye (1985).

In a different line, the same problem was considered by Green and Laffont

(1986) from a general mechanism-design viewpoint, in which one can commit

in advance to a policy.

As is well known, commitment is a powerful device.1 The present pa-

per nevertheless identifies a natural and important class of setups—which

includes voluntary disclosure as well as various other models of interest—

that we call “evidence games,” in which the possibility to commit does not

matter, namely, the equilibrium and the optimal mechanism coincide. This

issue of whether commitment can help was initially addressed by Glazer and

Rubinstein (2004, 2006).

An evidence game is a standard communication game between an “agent”

who is informed and sends a message (that does not affect the payoffs) and

a “principal” who chooses the action (call it the “reward”). The two distin-

guishing features of evidence games are, first, that the agent’s private infor-

mation (the “type”) consists of certain pieces of verifiable evidence, and the

1Think for instance of the advantage that it confers in bargaining, in oligopolistic
competition (Stackelberg vs. Cournot), and also in cheap talk (cf. Example 3 below).
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agent can reveal in his message all this evidence (the “whole truth”), or only

some part of it (a “partial truth”).2 The second feature is that the agent’s

preference is the same regardless of his type—he always prefers the reward to

be as high as possible3—whereas the principal’s utility, which does depend

on the type, is single-peaked—he prefers the reward to be as close as possible

to the “right reward.” Voluntary disclosure games, in which the right reward

is the conditional expected value, corresponds to the case where the principal

(who may well stand for the “market”) has quadratic-loss payoff functions

(we refer to this as the “basic case”). See the end of the Introduction for

more on this and further applications.

The possibility of revealing the whole truth, an essential feature of evi-

dence games, allows one to take into account the natural property that the

whole truth has a slight inherent advantage. This is expressed by slight

increases in the agent’s utility when telling the whole truth, and in his prob-

ability of doing so; the equilibria selected by this approach are called truth-

leaning. Formally, truth-leaning amounts to the following two conditions: (i)

when the reward for revealing a partial truth is the same as the reward for

revealing the whole truth, the agent prefers to reveal the whole truth; and (ii)

there is a small positive probability that the whole truth is revealed.4 These

simple conditions, which may be viewed as part of the setup or as equilib-

rium selection criteria, are most natural. The truth is after all a focal point,

and there must be good reasons for not telling it.5 As Mark Twain wrote,

“When in doubt, tell the truth,” and “If you tell the truth you don’t have

to remember anything.”6 Truth-leaning turns out to be consistent with the

various refinement conditions offered in the literature, and equivalent to some

of them (such as the equilibria used in the voluntary disclosure literature);

see Appendix C.4.

2Try to recall the number of job applicants who included rejection letters in their files.
3This differs from signaling and screening setups, where costs depend on type, and

cheap-talk setups, where utility depends on type.
4For example, the agent may be nonstrategic with small but positive probability; cf.

Kreps, Milgrom, Roberts, and Wilson (1982).
5Psychologists refer to the “sense of well-being” associated with telling the truth.
6Notebook (1894). When he writes “truth” it means “the whole truth,” since any partial

truth requires remembering what was revealed and what wasn’t.
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To see the effect of commitment we consider the two distinct ways in

which the interaction between the two players may be carried out. One way

is for the principal to decide on the reward only after receiving the agent’s

message; the other way is for the principal to commit to a reward policy,

which is made known before the agent sends his message (i.e., the principal

is the Stackelberg leader; this is the mechanism-design setup).

Our equivalence result can be stated as follows (Section 1.1 below provides

simple examples that illustrate the result and the intuition behind it):

In evidence games the truth-leaning equilibria without commit-

ment yield the same (ex-post) payoffs as the optimal mechanisms

with commitment.

A number of comments are in order. First, the result implies in particular

that among all Nash equilibria, the truth-leaning equilibria are optimal, i.e.,

most preferred by the principal.7

Second, the “truth structure” of evidence games (which consists of the

partial truth relation and truth-leaning) guarantees that commitment can-

not yield any advantage. Whereas in the above-mentioned work of Glazer

and Rubinstein (2004, 2006) and Sher (2011), the commitment outcome is

obtained in some equilibrium of the game, but in general not in its other

equilibria—and there is no good reason for the former to be picked out over

the latter—in evidence games all truth-leaning equilibria yield the commit-

ment outcome.

And third, the fact that commitment is not needed in order to guarantee

optimality is a striking feature of evidence games; as we will show, the truth

structure is indispensable for this result.

We stated above that evidence games constitute a very naturally oc-

curring environment, which includes a wide range of applications and well-

studied setups of much interest. We discuss three such applications. The

first one deals with voluntary disclosure in financial markets. Public firms

7Moreover, in the basic case where the optimal reward equals the expected value, the
truth-leaning equilibria turn out to yield the constrained Pareto efficient outcomes; see
Remark (c) in Section 3.
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enjoy a great deal of flexibility when disclosing information. While disclos-

ing false information is a criminal act, withholding information is allowed in

some cases, and is practically impossible to detect in other cases. This has

led to a growing literature in financial economics and accounting (see for ex-

ample Dye 1985 and Shin 2003, 2006) on voluntary disclosure and its impact

on asset pricing. The equilibria considered there turn out to be (outcome-

equivalent to) truth-leaning equilibria (see Proposition 8 in Appendix C.4),

and so our result implies that the market’s equilibrium behavior is in fact op-

timal: it yields the optimal separation between “good” and “bad” firms (i.e.,

even with mechanisms and commitments—such as managers’ contracts—it

is not worthwhile to separate more).

The second application concerns the judicial system. The system (the

“principal”) commits itself through constitutions, laws, legal doctrines,

precedents—which include inter alia rules of evidence. All this affects what

evidence the parties (the “agents”) provide in court. An essential objective

of the judicial criminal system is to induce the optimal amount of separation

between the guilty and the innocent and to get as close as possible to the

right judgement (“fit the punishment to the crime”). Our result says that the

power of these commitments may not, however, go beyond selecting among

equilibria the optimal ones, namely, the truth-leaning equilibria—which are

most natural in this setup. A case in point is the legal doctrine known as

“the right to remain silent.” In the United States, this right is enshrined

in the Fifth Amendment to the Constitution, and is interpreted to include

the provision that adverse inferences cannot be made, by the judge or the

jury, from the refusal of a defendant to provide information. While the right

to remain silent is now recognized in many of the world’s legal systems, its

above interpretation regarding adverse inference has been questioned and is

not universal. The present paper sheds some light on this debate. First, be-

cause equilibria in general, and truth-leaning equilibria in particular, entail

Bayesian inferences, the equivalence result implies that the same inferences

apply to the optimal mechanisms; therefore, adverse inferences should be

allowed, and surely not committedly disallowed.8 Second, truth-leaning may

8There are of course other reasons and motivations for the right to remain silent.
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well replace commitment: rather than committing to rules such as the right

to remain silent and its offshoots, one may strengthen and reinforce the ad-

vantages of truth-telling.9 In England, for instance, an additional provision

(in the Criminal Justice and Public Order Act of 1994) states that “it may

harm your defence if you do not mention when questioned something which

you later rely on in court,” which may be viewed, on the one hand, as allowing

adverse inference, and, on the other, as making the revelation of only partial

truth possibly disadvantageous—which is the same as giving an advantage

to revealing the whole truth (i.e., truth-leaning).

A third possible application concerns medical overtreatment, which is one

of the more serious problems in many health systems in the developed world;

see, e.g., Brownlee (2008). One reason for overtreatment may be fear of

malpractice suits; but the more powerful reason is that doctors and hospitals

are paid more when overtreating. To overcome this problem one needs to

give doctors incentives to provide evidence; the present paper may perhaps

help in this direction.

To summarize the main contribution of the present paper: first, the class

of evidence games that we consider models very common and important

setups in information economics, setups that lie outside the standard sig-

naling and cheap-talk literature; second, we prove the equivalence between

truth-leaning equilibria without commitment and optimal mechanisms with

commitment in evidence games; and third, we show that the conditions of

evidence games—most importantly, the truth structure—are indispensable

conditions beyond which this equivalence no longer holds. In a nutshell, the

paper identifies the natural structure of evidence with its associated truth-

leaning as the setup that guarantees that commitment cannot yield any ad-

vantage.

The paper is organized as follows. The Introduction continues below with

some examples and a survey of relevant literature. Section 2 describes the

model and the assumptions. The main equivalence result is stated in Section

3, and proved in Section 4 (with one of the proofs relegated to Appendix

9Or, at the very least, strengthen and reinforce the perception that truth-telling has an
advantage.
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A). In Appendix B it is shown that our conditions are indispensable for the

equivalence result, and Appendix C provides additional notes, discussions,

and extensions. Appendix D deals with mixed rewards (when there is no

concavity) and the connections to the work of Glazer and Rubinstein (2004,

2006) and Sher (2011). Finally, Appendix E presents the construction of

equilibria from optimal mechanisms using an extension of Hall’s marriage

result.

1.1 Examples

We provide simple examples that illustrate the equivalence result and explain

some of the intuition behind it.

Example 1 (A simple version of the model introduced by Dye 1985.) A

professor negotiates his salary with the dean. The dean would like to set the

salary as close as possible to the professor’s expected market value,10 while

the professor would naturally like his salary to be as high as possible. The

dean asks the professor if he can provide some evidence of his “value” (such

as whether a recent paper was accepted or rejected, outside offers, and so

on). Assume that with probability 50% the professor has no such evidence,

in which case his expected value is 60, and with probability 50% he does

have some evidence. In the latter case it is equally likely that the evidence

is positive or negative, which translates to an expected value of 90 and 30,

respectively. Thus there are three professor types: the “no-evidence” type

t0, with probability 50% and value 60, the “positive-evidence” type t+, with

probability 25% and value 90, and the “negative-evidence” type t−, with

probability 25% and value 30. The professor can provide only evidence that

he has, but he may choose which evidence to provide (thus, for example, t−

can either reveal his evidence, or act as if he had no evidence, i.e., as if he

10Formally, the dean wants to minimize (x − v)2, where x is the salary and v is the
professor’s value; the dean’s optimal response to any evidence is thus to choose x to be
the expected value of the types that provide this evidence. The dean wants the salary to
be “right” since, on the one hand, he wants to pay as little as possible, and, on the other
hand, if he pays too little the professor may move elsewhere. The same applies when the
dean is replaced by the “market.”
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were t0); see Figure 1.

30 60 90

t− t0 t+

value:

partial truth:

Figure 1: Values and possible partial truth messages in Example 1

Consider first the game setup (without commitment): the professor de-

cides whether to reveal his evidence, if he has any, and then the dean chooses

the salary. It is easy to verify (see Appendix C.1) that there is a unique

sequential equilibrium, where a professor with positive evidence reveals it

and is given a salary of 90 (equal to his value), whereas one with nega-

tive evidence conceals it and pretends that he has no evidence. When no

evidence is presented the dean’s optimal response is to set the salary at

50 = (50% · 60 + 25% · 30)/(50% + 25%), the expected value of the two types

that provide no evidence: the no-evidence type together with the negative-

evidence type. See Figure 2.

30 60 90

t− t0 t+

value:

partial truth:

prof. says:

dean pays: 30 50 90

Figure 2: Equilibrium in Example 1

Next, consider the mechanism setup (with commitment): the dean com-

mits to a salary policy (specifically, three salaries, denoted by x+, x−, and

x0, for those who provide, respectively, positive evidence, negative evidence,

and no evidence), and then the professor decides what evidence to reveal.

One possibility is of course the above equilibrium, namely, x+ = 90 and

x− = x0 = 50. Can the dean do better by committing? Can he provide

incentives to the negative-evidence type to reveal his information? In order

9



to separate between the negative-evidence type and the no-evidence type, he

must give them distinct salaries, i.e., x− 6= x0. But then the salary for those

who provide negative evidence must be higher than the salary for those who

provide no evidence (i.e., x− > x0), because otherwise (i.e., when x− < x0)

the negative-evidence type will pretend that he has no evidence and we are

back to the no-separation case. Since the value 30 of the negative-evidence

type is lower than the value 60 of the no-evidence type, setting a higher

salary for the former than for the latter cannot be optimal (indeed, increas-

ing x− and/or decreasing x0 is always better for the dean, as it sets the salary

of at least one type closer to its value). The conclusion is that an optimal

mechanism cannot separate the negative-evidence type from the no-evidence

type,11 and so the unique optimal policy is identical to the equilibrium out-

come, which is obtained without commitment. ¤

The following slight variant of Example 1 shows the use of truth-leaning;

the requirement of being a sequential equilibrium no longer suffices here.

Example 2 Replace the positive-evidence type of Example 1 by two types:

a (new) positive-evidence type t+ with value 102 and probability 20%, and

a “medium-evidence” type t± with value 42 and probability 5%. The type

t± has two pieces of evidence: one is the same positive evidence that t+

has, and the other is the same negative evidence that t− has (for example,

an acceptance decision on one paper, and a rejection decision on another).

Thus, t± may pretend to be any one of the four types t±, t+, t−, or t0. In the

sequential equilibrium that is similar to that of Example 1, types t+ and t±

both provide positive evidence and get the salary x+ = 90 (their conditional

expectation), and types t0 and t− provide no evidence, and get the salary

x0 = 50 (their conditional expectation). It is not difficult to see that this is

also the optimal mechanism outcome.

11By contrast, the positive-evidence type is separated from the no-evidence type, because
the former has a higher value. In general, separation of types with more evidence from
types with less evidence can occur in an optimal mechanism only when the former have
higher values than the latter (since someone with more evidence can pretend to have less
evidence, but not the other way around). In short, separation requires that more evidence

be associated with higher value. See Corollary 4 for a formal statement of this property,
which is at the heart of our argument.
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Now, however, the so-called “uninformative equilibrium” (also known as

“babbling equilibrium”) where the professor, regardless of his type, never

provides any evidence, and the dean ignores any evidence that might be

provided and sets the salary to the average value of 60—which is worse for

the dean, as it yields no separation between the types—is also a sequen-

tial equilibrium. This equilibrium is supported by the dean’s belief that it

is much more probable that the out-of-equilibrium positive evidence is pro-

vided by t± rather than by t+; such a belief, while possible in a sequential

equilibrium, appears hard to justify.12 The uninformative equilibrium is not,

however, a truth-leaning equilibrium, as truth-leaning implies that the out-

of-equilibrium message t+ is used infinitesimally by type t+ (for which it is

the whole truth), and so the reward there must be set to 102, the value of13

t+. ¤

Communication games, which include evidence games, are notorious for

their multiplicity of equilibria. Requiring the equilibria to be sequential may

eliminate some of them, but in general this is not enough (cf. Shin 2003).

Truth-leaning, which we view as part of the “truth structure” that is char-

acteristic of evidence games, thus provides a natural equilibrium refinement

criterion. See Section 2.3.1.

Finally, lest some readers think that commitment is not useful in our

general setup, we provide a simple variant of our examples—one that does not

belong to the class of evidence games—where commitment yields outcomes

that are strictly better than anything that can be achieved without it.

Example 3 There are only two types of professor, and they are equally

likely: t0, with no evidence and value 60, and t−, with negative evidence and

value 30. As above, the dean wants to set the salary as close as possible to

the value, and t0 wants as high a salary as possible. However, t− now wants

12It may be checked that this uninformative equilibrium satisfies all the standard refine-
ments in the literature; cf. Appendix C.4.

13While taking the posterior belief at unused messages to be the conditional prior would
suffice to eliminate the babbling equilibrium here (because the belief at message t+ would
be 80% − 20% on t+ and t±), it would not suffice in general; see Appendix B.4.
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his salary to be as close as possible to 50 (for instance, getting too high a

salary would entail duties that he does not like).14

There can be no separation between the two types in equilibrium: when no

evidence is provided the salary is between 45 and 60 (the posterior probability

of t−, which depends on his probability of providing no evidence, is at most

1/2, and so the resulting average of 30 and 60 is at least 45); but any salary

in that range is strictly preferred by t− to 30, which is what he gets when he

reveals his evidence. Thus the uninformative equilibrium where no evidence

is provided and the salary is set to 45, the average of the two values, is the

unique Nash equilibrium.

Consider now the mechanism where the salary policy is to pay 30 when

negative evidence is provided, and 75 when no evidence is provided. Since

t− prefers 30 to 75, he will reveal his evidence, and so separation is obtained.

The mechanism outcome is better for the dean than the equilibrium outcome

(he makes an error of 15 for t0 only in the mechanism, and an error of 15 for

both types in equilibrium).15 ¤

Note that the mechanism requires the dean to commit to pay 75 when he

gets no evidence; otherwise, after getting no evidence (which happens when

the type is t0), he will want to change his decision and pay 60 instead. In

general, commitment is required when implementing reward schemes that

are not ex-post optimal. Our paper will show that this does not happen in

evidence games (the requirement that is not satisfied in Example 3 is that

the agent’s utility be the same for all types).

1.2 Related Literature

There is an extensive and insightful literature addressing the interaction be-

tween a principal who takes a decision but is uninformed and an agent who

14Formally, take the utility of t− when he gets salary x to be −(x − 50)2. Nothing in
the example would be affected if we were to take the utility of t0 to be −(x− 80)2 and to
allow both types to send any message—the standard Crawford and Sobel (1982) cheap-
talk setup. The fact that commitment may well be advantageous in cheap-talk games is
known; see Krishna and Morgan (2007) and Goltsman et al. (2009).

15In the optimal mechanism the salary for no evidence is set to 70, and t− (who is now
indifferent between revealing and concealing his evidence) reveals his evidence.
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is informed and communicates information, either explicitly (through mes-

sages) or implicitly (through actions). Separation between different types

of the agent may indeed be obtained when the types have different utilities

or costs: signaling (Spence 1973 in economics and Zahavi 1975 in biology),

screening (Rothschild and Stiglitz 1976), cheap talk (Crawford and Sobel

1982, Krishna and Morgan 2007).

When different types have different possible actions—such as different

sets of messages—separation may be obtained even when the agent’s utility

and cost are the same regardless of his information. In the game setup where

the agent moves first, Grossman and O. Hart (1980), Grossman (1981), and

Milgrom (1981) initiated the voluntary disclosure literature. These papers

consider a salesperson who has private information about a product, which

he may, if he so chooses, report to a potential buyer. The report is verifiable,

that is, the salesperson cannot misreport the information that he reveals; he

can, however, conceal it and not report it. These papers show that in every

sequential equilibrium the salesperson employs a strategy of full disclosure:

this is referred to as “unraveling.” The key assumption here that yields this

unraveling is that it is commonly known that the agent is fully informed.

This assumption was later relaxed, as described below.

Disclosure in financial markets by public firms is a prime example of vol-

untary disclosure. This has led to a growing literature in accounting and

finance. Dye (1985) and Jung and Kwon (1988) study disclosure of account-

ing data. These are the first papers where it is no longer assumed that the

agent (in this case, the firm, or, more precisely, the firm’s manager) is known

to be fully informed. They consider the case where the information is one-

dimensional, and show that the equilibrium is based on a threshold: only

types who are informed and whose information is above a certain threshold

disclose their information. Shin (2003, 2006), Guttman, Kremer, and Skry-

pacsz (2014), and Pae (2005) consider an evidence structure in which infor-

mation is multi-dimensional.16 Since such models typically possess multiple

16While the present paper studies a static model, there is also a literature on dynamic
models. See, for example, Acharya, DeMarzo, and Kremer (2011) and Dye and Sridhar
(1995).
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equilibria, these papers focus on what they view as the more natural equilib-

rium. The selection criteria that they employ are model-specific. However,

it may be easily verified that all these selected equilibria are in fact “truth-

leaning” equilibria; thus truth-leaning turns out to be a natural way to unify

all these criteria.

In the mechanism-design setup where the principal commits to a reward

policy before the agent’s message is sent, Green and Laffont (1986) were

the first to consider the setup where types differ in the sets of possible mes-

sages that they can send. They show that a necessary and sufficient con-

dition for the revelation principle to hold for any utility functions is that

the message structure be transitive and reflexive—which is satisfied by the

voluntary disclosure models, as well as by our more general evidence games.

Ben-Porath and Lipman (2012), Kartik and Tercieux (2012), and Koessler

and Perez-Richet (2014) characterize the social choice functions that can be

implemented when agents can also supply hard proofs about their types.

Our social objective can be viewed as maximizing the fit between types and

rewards.

The approach we are taking of comparing equilibria and optimal mech-

anisms originated in Glazer and Rubinstein (2004, 2006). They analyze

the optimal mechanism-design problem for general type-dependent message

structures, with the principal taking a binary decision of “accepting” or “re-

jecting”; the agent, regardless of his type, prefers acceptance to rejection. In

their work they show that the resulting optimal mechanism can be supported

as an equilibrium outcome. More recently, Sher (2011) proved that the result

continues to hold when the principal’s decision is no longer binary provided

that the principal’s payoff is concave. See Appendix D.2 for a discussion of

the Glazer–Rubinstein setup and the appropriate condition for equivalence.

Our paper shows that, in the framework of agents with identical utili-

ties, the addition of the natural truth structure of evidence games—i.e., the

partial truth relation and the inherent advantage of the whole truth—yields

a stronger result, namely, the equivalence between equilibria and optimal

mechanisms.
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2 The Model

There are two players, an agent (“A”) and a principal (“P”). The agent’s

information is his type t, which belongs to a finite set T, and is chosen ac-

cording to a given probability distribution p = (pt)t∈T ∈ ∆(T ) (where ∆(T )

denotes the set of probability distributions on T ) with pt > 0 for all t ∈ T .

The agent knows the realized type t in T, whereas the principal knows only

the distribution p but not the realized type.

The general structure of the interaction is that the agent sends a message,

which consists of a type s in T, and the principal chooses an action, which

is given by a real number x in R. The message is costless: it does not

affect the payoffs of the agent and the principal. As for the action, we

assume that there are no further randomizations on the continuous variable17

x. An interpretation to keep in mind is that the type corresponds to the

(verifiable) evidence that the agent possesses, and the message corresponds

to the evidence that he reveals. The voluntary disclosure models (see Section

1.2) are all special cases of our model.

2.1 Payoffs and Single-Peakedness

A fundamental assumption of the model (which distinguishes it from the

signaling and cheap-talk setups) is that all the types of the agent have the

same preference, which is strictly increasing in x (and does not, as already

stated, depend on the message sent). Without loss of generality (only the

ordinal preference matters here) we assume that the agent’s payoff is x itself,

and refer to x as the reward (to the agent).

As for the principal, his utility does depend on the type t, but, again, not

on the message s; thus, let ht(x) be the principal’s utility for type t ∈ T and

reward x ∈ R (and any message s ∈ T ). For every probability distribution

q = (qt)t∈T ∈ ∆(T ) on the set of types T—think of q as a “belief” on types—

17Randomized rewards are indeed not needed when the principal’s utility is concave
(i.e., when the functions ht defined below are all concave, which includes in particular the
standard quadratic-loss case). In other cases mixed rewards may be useful; we analyze
this in Appendix D.
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the expected utility of the principal is given by hq(x) :=
∑

t∈T qt ht(x) for

each x ∈ R.

The functions ht are assumed to be differentiable and to satisfy:

(SP) Single-Peakedness. For every q ∈ ∆(T ) the principal’s expected utility

hq(x) is a single-peaked function of the reward18 x.

A differentiable real function f : R → R is single-peaked if there exists a

point v ∈ R such that f ′(v) = 0; f ′(x) > 0 for x < v; and f ′(x) < 0 for

x > v. Thus f has a global maximum at v, it strictly increases for x ≤ v,

and strictly decreases for x ≥ v.

Condition (SP) requires all functions ht, as well as all their weighted

averages, to be single-peaked. Let v(t) and v(q) denote the single peaks of

ht and hq, respectively. Then v(t) is the reward that the principal views as

most fitting (“ideal”) for type t; or, the “value” to the principal of t (as in

the Examples in the Introduction). Similarly, v(q) is the ideal reward, or the

value, when the types are distributed according to q.

Some instances where the single-peakedness condition (SP) holds are, in

increasing order of generality:19

• Basic example: Quadratic loss. For each type t let ht be the quadratic

distance from the ideal point: ht(x) = −(x − v(t))2. In this case, which is

common in much of the literature, the peak of hq is easily seen to be the

expectation with respect to q of the peaks v(t); i.e., v(q) =
∑

t∈T qt v(t).

• Strict concavity. For each type t let ht be a strictly concave function

that attains its (unique) maximum at a finite point (which then holds for any

weighted averages of such functions). For instance, take ht to be the negative

of some distance (not necessarily quadratic) from the ideal point v(t).

• Monotonic transformations. Apply a strictly increasing transformation

to the variable x, which preserves (SP) (but not concavity).

• Treat types differently, such as making different ht more or less sensitive

to the distance from the corresponding ideal point v(t); e.g., take ht(x) =

18Single-peakedness is taken with respect to the order on rewards that is induced by the
agent’s preference.

19In Appendix C.2 we show that concavity is not necessary for (SP), and all the functions
ht being single-peaked is not sufficient for (SP).
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−ct|x − v(t)|γt (with ct > 0 and γt > 1, so as to get strict concavity). Also,

the penalties for underestimating vs. overestimating the desired ideal point

may be different: take the function ht to be asymmetric around v(t).

We state a useful observation.

In-betweenness property of the peaks. Let x0 := mint∈T v(t) and

x1 := maxt∈T v(t); because all the functions ht(x) are strictly increasing

for x ≤ x0 and strictly decreasing for x ≥ x1, all the peaks v(q) for q ∈
∆(T ) satisfy x0 ≤ v(q) ≤ x1. More generally, if q is a weighted average of

probability vectors q1, q2, ..., qn in ∆(T ), i.e., q =
∑n

i=1 λi qi with
∑n

i=1 λi = 1

and λi > 0 for all i, then

min
1≤i≤n

v(qi) ≤ v(q) ≤ max
1≤i≤n

v(qi) (1)

(indeed, all the functions hqi
(x), and hence also hq(x) =

∑n
i=1 λi hqi

(x),

are strictly increasing for x ≤ mini v(qi) and strictly decreasing for x ≥
maxi v(qi)). In particular, if T is partitioned into disjoint nonempty sets

T1, T2, ..., Tn then min1≤i≤n v(Ti) ≤ v(T ) ≤ max1≤i≤n v(Ti), where v(T ) stands

for v(p) and v(Ti) for v(p|Ti) (recall that p is the prior; we write p|Ti for the

conditional of p given20 Ti).

The rewards may thus be restricted to the compact interval X = [x0, x1]

that contains all the peaks: any reward x outside X is strictly dominated for

the principal (by x0 when x < x0 and by x1 when x > x1).

2.2 Evidence and Truth

The agent’s message may be only partially truthful and he need not reveal

everything that he knows; however, he cannot transmit false evidence, as any

evidence disclosed is assumed to be verifiable. Thus, the agent must “tell the

truth and nothing but the truth,” but not necessarily “the whole truth.”

Let E be the set of (verifiable) pieces of evidence. A type t is identified

with a subset Et of E, namely, the set of pieces of evidence that the agent

20p is an average of the conditionals p|Ti; namely, p =
∑

i p(Ti)(p|Ti), where p(Ti) =
∑

t∈Ti
pt is the total probability of Ti.
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of type t can provide (e.g., prove in court). The possible messages of t are

then either to provide all the evidence Et that he has (“the whole truth”),

or to pretend to be another type s with less evidence (i.e., Es ⊆ Et) and

provide only the pieces of evidence in Es (a “partial truth”).21 Thus the set

of possible messages of the agent when the type is t, which we denote by

L(t), is identified with the set of types that have less (in the weak sense)

evidence than t, i.e., L(t) := {s ∈ T : Es ⊆ Et} ⊆ T. This is immediately

seen to entail two conditions:

(L1) t ∈ L(t) for every type t ∈ T ;

(L2) if s ∈ L(t) and r ∈ L(s) then r ∈ L(t).

(L1) says that revealing the whole truth is always possible: t can always say

t. (L2) is a transitivity condition: if s has less evidence than t and r has less

evidence than s, then r has less evidence than t; that is, if t can say s and s

can say r then t can also say r.

These conditions are standard; see for instance Green and Laffont (1986)

and Bull and Watson (2007). Appendix C.3 provides additional natural

setups where they hold.22 From now on we abstract away from any specific

setup and just assume (L1) and (L2).

Remark. A type t has thus two characteristics: his value to the principal

(expressed by the function ht and its peak v(t)) and the evidence that he

can provide (expressed by L(t)). We emphasize that no relation is assumed

between value and evidence; in particular, having more evidence need not be

associated with having a higher (or lower) value.

21If t were to provide a subset of his pieces of evidence that did not correspond to a
possible type s, it would be immediately clear that he was withholding some evidence
(think for instance of the professor who provides to the dean only the Report of Referee
#2). The only undetectable deviations of t are to reveal all the evidence of another possible
type s that has fewer pieces of evidence than t (i.e., pretending to be s).

22In particular, we show there that one may add messages outside T (for example, “type
t1 or type t2”) and the equivalence result continues to hold.
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2.3 Game and Equilibria

We first consider the game Γ where the principal moves after the agent (and

cannot commit to a policy). First, the type t ∈ T is chosen according to

the probability measure p ∈ ∆(T ), and revealed to the agent but not to the

principal. The agent then sends to the principal one of the possible messages

s in L(t). Finally, after receiving the message s, the principal decides on a

reward x ∈ R.

A strategy σ of the agent associates to every type t ∈ T a probability

distribution σ(·|t) ∈ ∆(T ) with support included in L(t); i.e., σ(s|t), which

is the probability that type t sends the message s, satisfies σ(s|t) > 0 only

if s ∈ L(t). A strategy ρ of the principal assigns to every message s ∈ T a

reward ρ(s) ∈ R.

A pair of strategies (σ, ρ) constitutes a Nash equilibrium of the game Γ if

the agent uses only messages that maximize the reward, and the principal sets

the reward to each message optimally given the distribution of types that send

that message. That is, for every message s ∈ T let σ̄(s) :=
∑

t∈T pt σ(s|t) be

the probability that s is used; if σ̄(s) > 0 let q(s) ∈ ∆(T ) be the conditional

distribution of types that chose s, i.e., qt(s) := pt σ(s|t)/σ̄(s) for every t ∈ T

(this is the posterior probability of type t given the message s), and q(s) =

(qt(s))t∈T . Thus, the equilibrium conditions for the agent and the principal

are, respectively:

(A) for every type t ∈ T and message s ∈ T : if σ(s|t) > 0 then ρ(s) =

maxs′∈L(t) ρ(s′);

(P) for every message s ∈ T : if σ̄(s) > 0 then hq(s)(ρ(s)) = maxx∈R hq(s)(x)

(and so ρ(s) = v(q(s)) by the single-peakedness condition).

The outcome of a Nash equilibrium (σ, ρ) is the resulting vector of rewards

π = (πt)t∈T ∈ RT , where

πt := max
s∈L(t)

ρ(s) (2)

for every t ∈ T. Thus πt is the reward when the type is t, and so the payoffs

are πt for the agent and ht(πt) for the principal.
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2.3.1 Truth-Leaning Equilibria

As discussed in the Introduction, evidence games may have many equilibria;

we are interested in those where truth enjoys a certain prominence. This

is expressed in two ways. First, if it is optimal for the agent to reveal the

whole truth, then he prefers to do so (this holds for instance when the agent

has a “lexicographic” preference: he always prefers a higher reward, but if

the reward is the same whether he tells the whole truth or not, he prefers to

tell the whole truth). Second, there is an infinitesimal probability that the

whole truth is revealed (which happens, for example, when the agent is not

strategic and instead always reveals his information—à la Kreps, Milgrom,

Roberts, and Wilson 1982; or, when there are “trembles,” such as a slip of

the tongue, or of the pen, or a document that is attached by mistake, or the

surfacing of an unexpected piece of evidence).

To formalize this we use a standard limit-of-small-perturbations approach.

Specifically, given εt > 0 and 0 < εt|t < 1 for all t ∈ T (denote such a col-

lection of ε-s by ε), let Γε denote the following perturbation of the game Γ.

First, the agent’s payoff increases by εt when the type is t and the message s

is equal to the type t; i.e., his payoff is equal to the reward x when s 6= t, and

to x + εt when s = t). Second, the agent’s strategy σ is required to satisfy

σ(t|t) ≥ εt|t for every type t ∈ T. The agent thus gets an εt “bonus” in payoff

when he reveals the whole truth, and he must do so with probability at least

εt|t. A Nash equilibrium (σ, ρ) of the original game Γ is truth-leaning if it is

a limit point of Nash equilibria of Γε as all the ε-s converge to 0; i.e., if there

there are sequences εn
t →n→∞ 0, εn

t|t →n→∞ 0, and (σn, ρn) →n→∞ (σ, ρ) such

that (σn, ρn) is a Nash equilibrium of Γε
n

for every n.

In terms of the original game, truth-leaning turns out to be essentially

equivalent to imposing the following two conditions on a Nash equilibrium

(σ, ρ) of Γ:

(A0) for every type t ∈ T : if ρ(t) = maxs∈L(t) ρ(s) then σ(t|t) = 1;

(P0) for every message s ∈ T : if σ̄(s) = 0 then hs(ρ(s)) = maxx∈R hs(x)

(and so ρ(s) = v(s) by the single-peakedness condition).
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Condition (A0) says that when the message t is optimal for type t, it is

chosen for sure (i.e., if the whole truth is optimal then it is strictly preferred

to any other optimal message). Condition (P0) says that, for every message

s ∈ T that is not used in equilibrium (i.e., σ̄(s) = 0), the principal’s belief

if he were to receive message s would be that it came from type s itself

(since there is an infinitesimal probability that type s revealed the whole

truth); thus the posterior belief q(s) at s puts probability one on s, and so

the principal’s optimal response is the peak v(s) of hq(s) ≡ hs. For a rough

intuition, (A0) obtains from the positive bonus in payoff, and (P0) from the

positive probability of revealing the type (if s is not used then it is not a

best reply for s by (A0), and so for no other type by transitivity (L2), which

implies that in Γε only s itself uses s with positive probability).

We state this formally in Proposition 1, which allows us to conveniently

use only (A0) and (P0) in the remainder of the paper.23

Proposition 1 (i) Truth-leaning equilibria exist. (ii) For every truth-leaning

equilibrium (σ, ρ) there is an equilibrium (σ′, ρ) that satisfies (A0) and (P0)

and has the same outcome π as (σ, ρ).

The proof24 is relegated to Appendix A.

Truth-leaning may thus be viewed as an equilibrium selection criterion

(a “refinement”); alternatively, as part of the setup (the actual game being

Γε for small ε). In Appendix C.4 we will see that truth-leaning satisfies the

requirements of most, if not all, the relevant equilibrium refinements that

have been proposed in the literature.

2.4 Mechanisms and Optimal Mechanisms

We come now to the second setup, where the principal moves first and com-

mits to a reward scheme, i.e., to a function ρ : T → R that assigns to every

23We could well have started directly with the natural conditions (A0) and (P0); how-
ever, we find the limit-of-small-perturbations approach to be more basic.

24The proof of (ii) turns out to be somewhat more delicate than the arguments above
suggest; in particular, it needs the differentiability of the functions ht. As for existence (i),
it follows from a standard fixed-point argument and compactness.
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message s ∈ T a reward ρ(s). The reward scheme ρ is made known to the

agent, who then sends his message s, and the resulting reward is ρ(s) (the

principal’s commitment to the reward scheme ρ means that he cannot change

the reward after receiving the message s).

This is a standard mechanism-design framework. The reward scheme ρ

is the mechanism. Given ρ, the agent chooses his message so as to maximize

his reward; thus, the reward when the type is t equals πt := maxs∈L(t) ρ(s).

A reward scheme ρ is an optimal mechanism if it maximizes the principal’s

expected payoff

H(π) =
∑

t∈T

pt ht(πt) (3)

among all mechanisms.

The assumptions that we have made on the truth structure, i.e., (L1) and

(L2), are easily seen to imply that the “Revelation Principle” applies: any

mechanism can be implemented by a “direct” mechanism where it is optimal

for each type to be “truthful” and reveal his type (see Green and Laffont

1986, or Appendix C.5). The incentive compatibility constraints are:

(IC) πt ≥ πs for every t, s ∈ T with s ∈ L(t).

Indeed, type t can pretend to be type s only if he can send message s,

i.e., s ∈ L(t); then L(t) ⊇ L(s) by the transitivity condition (L2), and

so πt = maxr∈L(t) ρ(r) ≥ maxr∈L(s) ρ(r) = πs. Thus an optimal mechanism

outcome is a vector π = (πt)t∈T ∈ RT that maximizes H(π) subject to (IC).

Remarks. (a) An optimal mechanism is just a Nash equilibrium of the

game where the principal moves first and chooses the reward scheme.

(b) The outcome π of any Nash equilibrium (σ, ρ) of the game Γ of the

previous section satisfies (IC) (by transitivity (L2)), and so an optimal mech-

anism can yield only a higher payoff to the principal: commitment can only

help the principal.

3 The Equivalence Theorem

Our main result is:
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Theorem 2 (Equivalence Theorem) There is a unique truth-leaning equi-

librium outcome, a unique optimal mechanism outcome, and these two out-

comes coincide.

The intuition is roughly as follows. Consider a truth-leaning equilibrium

where a type t pretends to be another type s. Then, first, type s reveals

the whole truth, i.e., his type s (had s something better, t would have it

as well); and second, the value of s must be higher than the value of t (no

one will want to pretend to be worth less than they really are).25 Thus t

and s are not separated in equilibrium, and we claim that in this case they

cannot be separated in an optimal mechanism either: the only way for the

principal to separate them would be to give a higher reward to t than to s

(otherwise t would pretend to be s), which is not optimal since the value of

t is lower than the value of s (decreasing the reward of t or increasing the

reward of s would bring the rewards closer to the values). The conclusion is

that optimal mechanisms can never separate between types more than truth-

leaning equilibria do (as for the converse, it is immediate since whatever can

be done without commitment can clearly also be done with commitment).

Remarks. (a) Outcomes. The Equivalence Theorem is stated in terms of

outcomes—which uniquely determine the (ex-post) payoffs of both the agent

and the principal for every type t. While there may be multiple truth-leaning

equilibria, this can happen only when both players are indifferent, and then

the payoffs are the same (see Appendix B.8).

(b) Tightness of the result. All the assumptions except differentiability

are indispensable for the Equivalence Theorem: dropping any single con-

dition yields examples where the result does not hold (see Appendix B).

As for differentiability, it is only a convenient technical assumption, as the

equivalence result holds also without it (see Appendix C.9).

(c) Constrained Pareto efficiency. In the basic quadratic-loss case, where,

as we have seen, v(q) equals the expectation of the values v(t) with re-

spect to q, condition (P) implies that the ex-ante expectation of the re-

25However reasonable these conditions may seem, they need not hold for equilibria that
are not truth-leaning.
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wards, i.e., E [πt] =
∑

t∈T pt πt, equals the ex-ante expectation of the values

E [v(t)] =
∑

t∈T pt v(t) = v(T ) (because E [πt|s] = v(q(s)) = E [v(t)|s] for

every message s that is used; take expectation over s). Therefore all Nash

equilibria yield to the agent the same ex-ante expected payoff E [πt] = v(T )

(they differ ex-post, however, in the way this amount is split among the

types). Since, by the Equivalence Theorem, the truth-leaning equilibria max-

imize the principal’s ex-ante expected payoff, it follows that the truth-leaning

equilibria are constrained Pareto efficient (i.e., ex-ante Pareto efficient among

all equilibria).

4 Proof of the Equivalence Theorem

The proof proceeds as follows. We start with some useful and interesting

properties of truth-leaning (Section 4.1), and then prove that the outcome

of any truth-leaning equilibrium outcome is an optimal mechanism outcome,

which is moreover unique (Proposition 6 in Section 4.2). Together with the

existence of truth-leaning equilibria (Proposition 1 (i) in Section 2.3.1) this

yields the result.26

4.1 Preliminaries

Proposition 3 Let (σ, ρ) be an equilibrium that satisfies (A0) and (P0), let

π be its outcome, and let S := {t ∈ T : σ̄(t) > 0} be the set of messages used

in equilibrium. Then

t ∈ S ⇔ σ(t|t) = 1 ⇔ v(t) ≥ πt = ρ(t) ; and (4)

t /∈ S ⇔ σ(t|t) = 0 ⇔ πt > v(t) = ρ(t) . (5)

Thus, the reward ρ(t) assigned to message t never exceeds the peak v(t)

of type t. Moreover, each type t that reveals the whole truth gets an outcome

that is at most his value (i.e., πt ≤ v(t)), whereas each type t that does not

reveal the whole truth gets an outcome that exceeds his value (i.e., πt > v(t)).

26An alternative proof, which also shows how to obtain a truth-leaning equilibrium from
an optimal mechanism, is provided in Appendix E.
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This may perhaps sound strange at first. The explanation is that the lower-

value types are the ones that have the incentive to pretend to be a higher-

value type, and so each message t that is used is sent by t as well as by

“pretenders” of lower value. In equilibrium, this effect is taken into account

by the principal by rewarding messages at their true value or less.

Proof. If t ∈ S, i.e., σ(t|t′) > 0 for some t′, then t is a best reply for type

t′, and hence also for type t (because t ∈ L(t) ⊆ L(t′) by (L1), (L2), and

t ∈ L(t′)); (A0) then yields σ(t|t) = 1. This proves the first equivalence in

(4) and in (5).

If t /∈ S then πt > ρ(t) (since t is not a best reply for t) and ρ(t) = v(t)

by (P0), and hence πt > v(t) = ρ(t) .

If t ∈ S then πt = ρ(t) (since t is a best reply for t); put α := πt = ρ(t).

Let t′ 6= t be such that σ(t|t′) > 0; then πt′ = ρ(t) ≡ α (since t is optimal

for t′); moreover, t′ /∈ S (since σ(t|t′) > 0 implies σ(t′|t′) < 1), and so, as

we have just seen above, v(t′) < πt′ ≡ α. If we also had v(t) < α, then the

in-betweenness property (1) would yield v(q(t)) < α (because the support

of q(t), the posterior after message t, consists of t together with all t′ 6= t

with σ(t|t′) > 0). But this contradicts v(q(t)) = ρ(t) ≡ α by the principal’s

equilibrium condition (P). Therefore v(t) ≥ α ≡ πt = ρ(t).

Thus we have shown that t /∈ S and t ∈ S imply contradictory statements

(πt > v(t) and πt ≤ v(t), respectively), which yields the second equivalence

in (4) and in (5).

Corollary 4 Let (σ, ρ) be an equilibrium that satisfies (A0) and (P0). If

σ(s|t) > 0 for s 6= t then v(s) > v(t).

Proof. σ(s|t) > 0 implies s ∈ S and t /∈ S, and thus v(s) ≥ ρ(s) by (4),

πt > v(t) by (5), and ρ(s) = πt because s is a best reply for t.

Thus, no type will ever pretend to be a lower-valued type (this does not,

however, hold for equilibria that are not truth-leaning, e.g., the uninformative

equilibrium in Example 2 in the Introduction). In particular, in cases where

evidence has always positive value—i.e., if t has more evidence than s then

25



the value of t is at least as high as the value of s (that is, s ∈ L(t) implies

v(t) ≥ v(s))—the (unique) truth-leaning equilibrium is fully revealing (i.e.,

σ(t|t) = 1 for every type t).

Remark. One may thus drop from L(t) every s 6= t with v(s) ≤ v(t); this

affects neither the truth-leaning equilibrium outcomes nor, by our Equiva-

lence Theorem, the optimal mechanism outcomes; it amounts to replacing

each L(t) with its subset L′(t) := {s ∈ L(t) : v(s) > v(t)} ∪ {t} (note that

L′ also satisfies (L1) and (L2)).

4.2 From Equilibrium to Mechanism

This section proves that any truth-leaning equilibrium outcome is an optimal

mechanism outcome and, moreover, that the latter is unique. We first deal

with a special case where there is no separation, and then show how a truth-

leaning equilibrium yields a decomposition into instances of this special case.

Proposition 5 Assume that there is a type s ∈ T such that s ∈ L(t) for

every t. If v(t) < v(T ) for every t 6= s then the outcome π∗ with π∗
t = v(T )

for all t ∈ T is the unique optimal mechanism outcome; i.e.,

∑

t∈T

pt ht(πt) ≤
∑

t∈T

pt ht(π
∗
t ) (6)

for every incentive-compatible π, with equality if and only if πt = π∗
t = v(T )

for all t ∈ T.

Thus every type can pretend to be s, and so s has the least amount of

evidence (e.g., no evidence at all). The condition v(t) < v(T ) for every t 6= s

implies that v(T ) ≤ v(s) by in-betweenness (1), and so v(t) < v(s) for every

t 6= s; see Figure 3. To get some intuition, consider the simplest case of only

two types, say, T = {s, t}. Because the (IC) constraint πt ≥ πs goes in the

opposite direction of the peaks’ inequality v(t) < v(s), it follows that the

maximum of H(π) = pshs(πs) + ptht(πt) subject to πt ≥ πs is attained only

when πt and πs are equal. Indeed, if πt > πs then we must have πt > v(t)
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or πs < v(s), and so decreasing πt or increasing πs brings it closer to the

corresponding peak, and hence increases the value of H. Thus πt = πs = x

for some x, and then the maximum is attained when x equals the peak of

hp(x) = pshs(x) + ptht(x), i.e., when x = v(T ).

Proof. First, v(t) < v(T ) for all t 6= s implies by in-betweenness (1) that

v(R) ≥ v(T ) for every set R ⊆ T that contains s. Next, let π maximize H(π)

subject to the (IC) constraints; we will show that π must equal π∗ (which

satisfies all (IC) constraints, as equalities).

Put α := mint πt and R := {r ∈ T : πr = α}. Because one may change the

common value of πr for all r ∈ R to any α′ close enough to α so that all (IC)

inequalities continue to hold (specifically, α′ ≤ β where β := mint/∈R πt > α),

the optimality of π implies that α must maximize
∑

t∈R ptht(x) = p(R)hR(x),

and so α = v(R). But R contains s (because the (IC) constraints include πs ≤
πt for all t 6= s), and so α = v(R) ≥ v(T ). Therefore H(π) =

∑

t ptht(πt) ≤
∑

t ptht(α) = hT (α) ≤ hT (v(T )) =
∑

t ptht(π
∗
t ) = H(π∗) (the first inequality

because πs = α, and for t 6= s the function ht(x) decreases after its peak v(t)

and πt ≥ α ≥ v(T ) > v(t); the second inequality because hT (x) decreases

after its peak v(T ) and α ≥ v(T )). Moreover, all the above functions are

strictly decreasing after their peaks, and so to get equalities throughout we

must have πt = α = v(T ) for all t, i.e., π = π∗.

Proposition 6 Let π∗ be a truth-leaning equilibrium outcome; then π∗ is the

unique optimal mechanism outcome.

Proof. Let (σ, ρ) be an equilibrium that satisfies (A0) and (P0) and has

outcome π∗ (by Proposition 1). Because π∗ satisfies (IC) (if s ∈ L(t) then

v(t) v(t′) v(s)v(T )

t t′ s

L:

IC: πs ≤ πt, πs ≤ πt′

Figure 3: Proposition 5
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L(s) ⊆ L(t) by (L2), and so π∗
s = maxr∈L(s) ρ(r) ≤ maxr∈L(t) ρ(r) = π∗

t ), we

need to show that H(π∗) > H(π) for every π 6= π∗ that satisfies (IC).

Let S := {s ∈ T : σ̄(s) > 0} be the set of messages that are used in the

equilibrium (σ, ρ), and, for each such s, let Ts := {t ∈ T : σ(s|t) > 0} be

the set of types that play s. For each t 6= s in Ts we then have s ∈ L(t) and

t /∈ S (because σ(s|t) < 1 implies σ(t|t) < 1), and so v(t) = ρ(t) < π∗
t =

π∗
s = ρ(s) = v(q(s)) (by (5) and (4) in Proposition 3, and the principal’s

equilibrium condition (P)). We can therefore apply Proposition 5 to the set

of types Ts with the distribution q(s) as prior, to get (6) for every π that

satisfies (IC), with equality only if πt = π∗
t for every t ∈ Ts.

For any π ∈ RT , the principal’s payoff H(π) can be split as:

H(π) =
∑

t∈T

pt ht(πt) =
∑

s∈S

σ̄(s)
∑

t∈Ts

qt(s) ht(πt). (7)

Multiplying (6) by σ̄(s) > 0 and summing over s ∈ S therefore yields H(π) ≤
H(π∗) for every π that satisfies (IC) (use (7) for both π and π∗); moreover,

to get equality we need equality in (6) for each s ∈ S, that is, πt = π∗
t for

every t ∈ ∪s∈STs = T.
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A Appendix: Proof of Proposition 1

We prove here the existence of truth-leaning equilibria, and their payoff-

equivalence to equilibria that satisfy (A0) and (P0).

Proof of Proposition 1. (i) Existence. First, a standard fixed-point

argument shows that the game Γε possesses a Nash equilibrium. Let Σε be

the set of strategies of the agent in Γε; then Σε is a compact and convex

subset of ∆(T )T . Every σ in Σε uniquely determines the principal’s best

reply ρ ≡ ρσ by ρσ(s) = v(q(s)) for every s ∈ T (cf. (P); in Γε every message

is used: σ̄(s) ≥ εsps > 0). The mapping from σ to ρσ is continuous: the

posterior q(s) ∈ ∆(T ) is a continuous function of σ (because σ̄(s) is bounded

away from 0), and v(q) is a continuous function of q (by the Maximum

Theorem together with the single-peakedness condition (SP), which gives

the uniqueness of the maximizer). The set-valued function Φ that maps each

σ ∈ Σε to the set of all σ′ ∈ Σε that are best replies to ρσ in Γε is therefore

upper hemicontinuous, and a fixed point of Φ, whose existence is guaranteed

by the Kakutani fixed-point theorem, is precisely a Nash equilibrium of Γε.

Second, the strategy sets of the two players are compact (for the principal,

see the final comment in Section 2.1), and so limit points of Nash equilibria

of Γε—i.e., truth-leaning equilibria of Γ—exist (it is immediate to verify

that any limit point of Nash equilibria of Γε is a Nash equilibrium of Γ, i.e.,

satisfies (A) and (P)).

(ii) (A0) and (P0). Let (σ, ρ) be a truth-leaning equilibrium, given by

sequences εn
t →n 0+, εn

t|t → 0+, and (σn, ρn) →n (σ, ρ) such that (σn, ρn) is a

Nash equilibrium in Γε
n

for every n (which is easily seen to imply that (σ, ρ)

is a Nash equilibrium of Γ, i.e., (A) and (P) hold).

Let t be such that σ(t|t) < 1. Then σ(s|t) > 0 for some s 6= t in L(t), and

so σn(s|t) > 0 for all (large enough) n. In Γε
n

we thus have: s is a best reply

for t, hence ρn(s) ≥ ρn(t) + εn
t > ρn(t), hence t is not optimal for any r 6= t

(because t ∈ L(r) implies s ∈ L(r) by transitivity (L2) of L and s gives to r

a strictly higher payoff than t in Γε
n

), and thus σn(t|s) = 0. Taking the limit

yields:

if σ(t|t) < 1 then σ(t|s) = 0 for all s 6= t; (8)
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this says that if t does not choose t for sure, then no other type chooses t.

Moreover, the posterior qn(t) after message t puts all the mass on t (since

σn(t|t) ≥ εn
t|t > 0 whereas σn(t|s) = 0 for all s 6= t), i.e., qn(t) = 1t, and so

ρn(t) = v(qn(t)) = v(t); in the limit:

if σ(t|t) < 1 then ρ(t) = v(t). (9)

This in particular yields (P0), because σ̄(t) = 0 implies σ(t|t) = 0 < 1.

To get (A0) we may need to modify σ slightly, as follows. Let t ∈ T be

such that t is a best reply for t (i.e., ρ(t) = maxs∈L(t) ρ(s)) but σ(t|t) < 1.

Then ρ(t) = v(t) by (9), and every message s 6= t that t uses, i.e., σ(s|t) > 0,

gives the same reward as message t, and so v(q(s)) = ρ(s) = ρ(t) = v(t).

Therefore we define σ′ to be identical to σ except that type t chooses only

message t; i.e., σ′(t|t) = 1 and σ′(s|t) = 0 for every s 6= t.

Let q′(s) be the new posterior after a message s 6= t that was used by t

(i.e., σ(s|t) > 0; note that σ̄′(s) ≥ ps > 0 since σ′(s|s) = σ(s|s) = 1 by (8)

applied to s). Let α := v(q(s)) = v(t) (see above); using the differentiability

of the functions hr we will show that the peak of hq′(s) is also at27 α. Indeed,

q(s) is a weighted average of q′(s) and 1t, and so hq(s) is a weighted average

of hq′(s) and ht. The derivatives of hq(s) and ht both vanish at α, and so the

derivative of hq′(s) must also vanish there—thus v(q′(s)) = α = v(q(s) = v(t).

It follows that (σ′, ρ) is a Nash equilibrium of Γ: the agent is indifferent

between the messages t and s, and the principal maximizes his payoff also

at the new posterior q′(s). Clearly (8) and (9), and hence (P0), continue

to hold; moreover, the outcome remains the same. Proceeding this way for

every t as needed will in the end yield also (A0).

27Example 13 in Section C.9 shows that this property need not hold without differen-
tiability. The argument below amounts to strict in-betweenness; see Section C.2.
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B Appendix: Tightness of the Equivalence

Theorem

We will show here that our Equivalence Theorem is tight. First, we show

that dropping any single condition (except for differentiability, which is as-

sumed for convenience; see Appendix C.9) allows examples where the equiva-

lence between optimal mechanisms and truth-leaning equilibria does not hold

(Sections B.1 to B.7). Second, we show that truth-leaning equilibria need be

neither unique nor pure (Sections B.8 and B.9).

B.1 Without Reflexivity (L1)

We provide an example where the condition (L1) that t ∈ L(t) for all t ∈ T

is not satisfied—some type cannot tell the whole truth and reveal his type—

and there is a truth-leaning Nash equilibrium whose payoffs are different from

those of the optimal mechanism.

Example 4 The type space is T = {0, 2, 4} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2,

and so v(t) = t for all t. Types 0 and 2 have less evidence than type 4, but

message 4 is not allowed; i.e., L(0) = {0}, L(2) = {2}, and L(4) = {0, 2}.
The unique optimal mechanism outcome is: π0 = v(0) = 0 and π2 = π4 =

v({2, 4}) = 3, i.e.,28 π = (π0, π2, π4) = (0, 3, 3).

Truth-leaning entails no restrictions here: types 0 and 2 have a single

message each (their type), and type 4 cannot send the message 4. There are

two Nash equilibria: (i) 4 sends message 2, ρ(0) = 0, ρ(2) = 3, with outcome

π = (0, 3, 3) (which is the optimal mechanism outcome); (ii) 4 sends message

0, ρ(0) = 2, ρ(2) = 2, with π′ = (2, 2, 2). Note that H(π) > H(π′). ¤

The evidence structure in this example is not “normal” (Bull and Watson

2007—see Appendix C.3—because there is no message m4 for type 4). We

therefore provide an additional example where normality holds.

28The order on types that is used when writing vectors such as π is increasing in value
(thus here π = (π0, π2, π4); recall that v(t) = t).
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Example 5 The same as above, with M = {a, b, c}, L(0) = {a, c}, L(2) =

L(4) = {b, c}; the evidence structure is normal: take m0 = a, m2 = b, and

m4 = c. The optimal mechanism yields π = (0, 3, 3), and the equilibrium

(σ, ρ) with outcome π′ = (2, 2, 2) where types 0 and 4 send c and type 2

sends b, and ρ(a) = 0, ρ(b) = ρ(c) = 2, satisfies (A0) and (P0) (revealing the

truth for type t means sending the message mt).

B.2 Without Transitivity (L2)

We provide an example where (L2) is not satisfied—the “less evidence” rela-

tion is not transitive—and there is a truth-leaning equilibrium outcome that

is different from the optimal mechanism outcome.

Example 6 The type space is T = {0, 2, 4} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2,

and so v(t) = t for all t. The allowed messages are L(0) = {0, 4}, L(2) =

{2}, and L(4) = {2, 4}. This does not satisfy (L2): type 0 can send message

4 and type 4 can send message 2, but type 0 cannot send message 2.

The unique optimal mechanism is given by29 the reward scheme ρ =

(0, 3, 0), with outcome π = (0, 3, 3); indeed, if 2 and 4 are separated then

the best is to set ρ(2) = v(2) = 2 and ρ(4) = v({0, 4}) = 2, yielding the

outcome π′ = (2, 2, 2); and if they are not separated then the best is to set

ρ(2) = v({2, 4}) = 3 and ρ(0) = ρ(4) = v(0) = 0, yielding the outcome

π = (0, 3, 3); the latter is better: H(π) = −2/3 > −8/3 = H(π′).

There is no equilibrium satisfying (A0) and (P0) with outcome π: type 0

must use 0 (by (A0), because ρ(0) = π0), types 2 and 4 must use 2 (because

π2 = π4 = 3), but then 4 is unused and so ρ(4) = v(4) = 4 (by (P0)),

contradicting (P).

Both π and π′ are truth-leaning equilibrium outcomes:30 take Γε with

29While type 0 can send message 4, he cannot fully mimic type 4, because he cannot
send message 2, which type 4 can. The incentive-compatibility constraints can no longer
be written as πt ≥ πs for s ∈ L(t) as in Section 2.4; they are πt = max{ρ(s) : s ∈ L(t)}
where ρ : T → R is a reward scheme (cf. Green and Laffont 1986).

30Once we go beyond our setup, the outcome equivalence given in Proposition 1 between
truth-leaning and (A0)+(P0) need no longer hold.
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εt = εt|t = ε for all t, then π obtains from the limit of31 σε(·|0) = (ε, 0, 1− ε),

σε(·|4) = (0, 1− ε, ε), and ρε = (0, 3− ε/(2− ε), 4ε); and π′ obtains from the

limit of σε(·|0) = (ε, 0, 1 − ε), σε(·|4) = (0, 0, 1), and ρε = (0, 2, 4/(2 − ε). ¤

B.3 Without (A0)

We provide an example of a sequential equilibrium that does not satisfy the

(A0) condition of truth-leaning, and whose outcome differs from the unique

optimal mechanism outcome.

Example 7 The type space is T = {0, 2, 4} with the uniform distribution:

pt = 1/3 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2

(and so v(t) = t) for each t ∈ T. Type 0 has less evidence than type 4,

who has less evidence than type 2; i.e., L(0) = {0}, L(2) = {0, 2, 4}, and

L(4) = {0, 4}.
The unique optimal mechanism outcome is π = (0, 3, 3), and in the unique

equilibrium that satisfies (A0) and (P0) types 2 and 4 send message 4 (type

0 must send 0) and32 ρ = (0, 0, 3). There is however another (sequential)

equilibrium: type 2 sends message 4 and type 4 sends message 0, and ρ′ =

(2, 2, 2), with outcome π′ = (2, 2, 2), which is not optimal (H(π′) < H(π)). At

this equilibrium (P0) is satisfied (since ρ′(2) = v(2) for the unused message

2), but (A0) is not satisfied (since message 2 is optimal for type 2 but he

sends 4). ¤

B.4 Without (P0)

Example 2 in the Introduction has an equilibrium (the uninformative equi-

librium) that satisfies (A0) but does not satisfy (P0), and its outcome differs

from the unique optimal mechanism outcome. However, that specific equi-

librium can be ruled out by requiring the belief of the principal after an

unused message to be equal to the conditional probability over the set of

31σε(·|0) = (ε, 0, 1 − ε) means that σε(s|0) = ε, 0, 1 − ε for s = 0, 2, 4, respectively (the
order on types is again increasing in value); similarly for ρε.

32By Corollary 4 (see L′ in the paragraph following it) we may drop 0 from L(2).
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types that can send that message. That is, if message t is unused then put

q(t) = p|L−1(t), the conditional of the prior p over the set L−1(t) := {r ∈
T : t ∈ L(r)} of all types r that can send t, and ρ(t) = v(q(t)) = L−1(t))

(instead of q(t) = 1t and ρ(t) = v(t) in (P0)). The following example shows

that replacing (P0) with this requirement is not enough to get equivalence.

Example 8 The type space is T = {0, 3, 10, 11} with the uniform distri-

bution: pt = 1/4 for each t. The principal’s payoff functions are ht(x) =

−(x− t)2 (and so v(t) = t) for each t ∈ T. Types 10 and 11 both have less ev-

idence than type 0, and more evidence than type 3; i.e., L(0) = {0, 3, 10, 11},
L(3) = {3}, L(10) = {3, 10}, and L(11) = {3, 11}.

The unique equilibrium that satisfies (A0) and (P0) is mixed: σ(·|0) =

(0, 0, 3/7, 4/7), all the other types t 6= 0 reveal their type, and ρ = (0, 3, 7, 7)

(use for instance the Remark on L′ at the end of Section 4.1; note that

v(q(10)) = v(q(11)) = v({0, 10, 11}) = 7). The unique truth-leaning and

optimal mechanism outcome is thus π = (7, 3, 7, 7).

Consider now the uninformative equilibrium where every type sends mes-

sage 3 and ρ = (0, 6, 5, 5.5) (note that ρ(3) = v(T ) = 6); its outcome

π′ = (6, 6, 6, 6) is different from π. This equilibrium satisfies (A0) (because

type 3 sends message 3) but not (P0) (for types 10 and 11). However, it

does satisfy the alternative condition above: ρ(0) = v(L−1(0)) = v(0) = 0,

ρ(10) = v(L−1(10)) = v({0, 10}) = 5, and ρ(11) = v(L−1(11) = v({0, 11}) =

5.5. ¤

B.5 Without Payoff or Probability Boost

We provide an example where in the perturbed games telling the truth gets

no payoff boost or no probability boost, and the resulting outcome differs

from the unique optimal mechanism outcome.

Example 9 The type space is T = {0, 2, 4, 6} with the uniform distribution:

pt = 1/4 for each t ∈ T. The principal’s payoff functions are ht(x) = −(x−t)2

(and so v(t) = t) for each t ∈ T. The mapping L is L(0) = {0, 4}, L(2) =

{0, 2, 4, 6}, L(4) = {4}, and L(6) = {4, 6} (e.g., type 4 has no evidence, type
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0 has some negative evidence, type 6 some positive evidence, and type 2 both

pieces of evidence; this is the same evidence structure as in Example 2 in the

Introduction33).

The unique optimal mechanism outcome is π = (2, 4, 2, 4), and in the

unique equilibrium that satisfies (A0) and (P0) types 0 and 4 send message

4 and types 2 and 6 send message 6.

The uninformative equilibrium where every type uses message 4 and the

outcome is π′ = (3, 3, 3, 3) (with H(π′) = −5 < −4 = H(π)) is the limit of

Nash equilibria (σε, ρε) of Γε with ε6 = 0 and all other εt and εt|t equal to

ε, as follows: σε(0|0) = σε(2|2) = σε(6|6) = ε, σε(6|2) = ε(6 − 5ε)/(2 + ε),

and with the remaining probabilities every type uses 4; and ρε = (0, 2, 3 −
4ε/(2 − ε), 3 − 4ε/(2 − ε)).

If we instead take ε6|6 = 0 and all other εt|t and εt to be equal to ε, then the

Nash equilibria of Γε with σε(0|0) = σε(2|2) = ε, σε(4|0) = σε(4|2) = 1 − ε,

σε(4|4) = σε(4|6) = 1, and ρε(0) = 0, ρε(2) = 2, ρε(4) = (6 − ε)/(2 + ε) ≥
ρε(6) (message 6 is unused) again yield π′ in the limit. ¤

B.6 Without (SP)

We provide an example where one of the functions ht is not single-peaked

and all the Nash equilibria yield an outcome that is strictly worse for the

principal than the optimal mechanism outcome.

Example 10 The type space is T = {1, 2} with the uniform distribution,

i.e., pt = 1/2 for t = 1, 2. The principal’s payoff functions h1 and h2 are both

strictly increasing for x < 0, strictly decreasing for x > 2, and piecewise

linear34 in the interval [0, 2] with values at x = 0, 1, 2 as follows: −3, 0,−2

for h1, and 2, 0, 3 for h2. Thus h1 has a single peak at v(1) = 1, whereas h2 is

not single-peaked: its global maximum is at v(2) = 2, but it has another local

maximum at x = 0. Type 2 has less evidence than type 1, i.e., L(1) = {1, 2}
and L(2) = {2}.

33The only reason that we do not work with Example 2 is that the numbers here are
smaller and easier to handle.

34The example is not affected if the two functions h1, h2 are made differentiable (by
smoothing out the kinks at x = 0, 1, and 2).
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Consider first the optimal mechanism; the only (IC) constraint is π1 ≥ π2.

Fixing π1 (in the interval [0, 2]), the value of π2 should be as close as possible

to one of the two peaks of h2, and so either π2 = 0 or π2 = π1. In the

first case the maximum of H(π) is attained at π = (1, 0), and in the second

case, at π′ = (2, 2) (because 2 is the peak of hp = (1/2)h1 + (1/2)h2). Since

H(π) = 1 > 1/2 = H(π′), the optimal mechanism outcome is π = (1, 0).

Next, we will show that every Nash equilibrium (σ, ρ), whether truth-

leaning or not, yields the worse outcome π′ = (2, 2). Indeed, type 2 can only

send message 2, and so the posterior q(2) after message 2 must put at least

as much weight on type 2 as on type 1 (i.e., q2(2) ≥ 1/2 ≥ q1(2); recall that

the prior is p1 = p2 = 1/2). Therefore the principal’s best reply is always 2

(because hq(2)(0) < 0, hq(2)(1) = 0, and hq(2)(2) > 0). Therefore type 1 will

never send the message 1 with positive probability (because then q(1) = (1, 0)

and so ρ(1) = v(1) = 1 < 2). Thus both types only send message 2, and

we get an equilibrium if and only if ρ(2) = 2 ≥ ρ(1) (and, in the unique

truth-leaning equilibrium, (P0) implies ρ(1) = v(1) = 1), resulting in the

outcome π′ = (2, 2), which is not optimal: the optimal mechanism outcome

is π = (1, 0). ¤

Thus, the separation between the types—which is better for the principal—

can be obtained here only with commitment.

B.7 Agent’s Payoffs Depend on Type

Example 3 in the Introduction—which may be viewed also as a Crawford and

Sobel (1982) standard cheap-talk game—shows that the equivalence result

fails when the agent’s types do not all have the same preference.

B.8 Multiple Truth-Leaning Equilibria

All the truth-leaning equilibria (σ, ρ) coincide in their principal’s strategy

ρ (which is uniquely determined by the outcome π: Proposition 3 implies

that ρ(t) = min{v(t), πt} for all t), but they may differ in their agent’s

strategies σ. However, this can happen only when the agent is indifferent—in
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which case the principal is also indifferent—which makes the nonuniqueness

insignificant. As for optimal mechanisms, while there is a unique direct

mechanism with outcome π (namely, the reward policy is π itself, i.e., ρ(t) =

πt for all t), there may well be other optimal mechanisms (the reward for

a message t may be lowered when there is a message s 6= t in L(t) with

πs = πt).

An example with multiple truth-leaning equilibria is as follows.

Example 11 Let T = {0, 1, 3, 4} with the uniform distribution: pt = 1/4

for all t ∈ T ; the principal’s payoff functions are ht(x) = −(x − t)2 (and so

v(t) = t) for all t, and L(0) = {0, 1, 3, 4}, L(1) = {1, 3, 4}, L(3) = {3, 4},
and L(4) = {4} (i.e., a higher t goes with less evidence). The unique optimal

mechanism outcome is πt = v(T ) = 2 for all t, and (σ, ρ) is a truth-leaning

Nash equilibrium whenever ρ(0) = 0, ρ(1) = 1, ρ(3) = ρ(4) = 2, σ(·|0) =

(0, 0, α, 1−α), σ(·|1) = (0, 0, 1− 2α, 2α), σ(3|3) = 1, and σ(4|4) = 1, for any

α ∈ [0, 1/3]. ¤

B.9 Mixed Truth-Leaning Equilibria

We show here that we cannot restrict attention to pure equilibria: the agent’s

strategy may well have to be mixed (Example 8 above is another such case).

Example 12 The type space is T = {0, 2, 3} with the uniform distribution:

pt = 1/3 for all t. The principal’s payoff function is ht(x) = −(x − t)2,

and so v(t) = t. Types 2 and 3 both have less evidence than type 0, i.e.,

L(0) = {0, 2, 3}, L(2) = {2}, and L(3) = {3}.
Let (σ, ρ) be a truth-leaning equilibrium. Only the choice of type 0 needs

to be determined. Since ρ(0) = 0 whereas ρ(2) ≥ 1 = v({0, 2}) and ρ(3) ≥
v({0, 3}) = 3/2, type 0 never chooses 0. Moreover, type 0 must put positive

probability on message 2 (otherwise ρ(2) = 2 > 3/2 = v({0, 3}) = ρ(3)), and

also on message 3 (otherwise ρ(3) = 3 > 1 = v({0, 2}) = ρ(2)). Therefore

ρ(2) = ρ(3) (since both are best replies for 0), and then α := σ(2|0) must

solve 2/(1 + α) = 3/(2−α), and hence α = 1/5. This is therefore the unique

truth-leaning equilibrium; its outcome is π = (5/3, 5/3, 5/3). ¤
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C Appendix: Comments and Extensions

C.1 Introduction (Section 1)

(a) Example 1. In every sequential equilibrium the salary of a professor pro-

viding positive evidence must be 90 (because the positive-evidence type is

the only one who can provide such evidence), and similarly the salary of a

professor providing negative evidence must be 30. This shows that the unin-

formative equilibrium—where the professor, regardless of his type, provides

no evidence, and the dean ignores any evidence that might be provided and

sets the salary to the average value of 60—is not a sequential equilibrium

here. Finally, we note that truth-leaning equilibria are always sequential

equilibria.

(b) Interaction timeline. Interestingly, what distinguishes between “signal-

ing” and “screening” (see Section 1.2 for references) is precisely the two dif-

ferent timelines of interaction that we consider: in signaling the agent moves

first and the principal responds, in screening the principal moves first and

the agent responds.

C.2 Payoffs and Single-Peakedness (Section 2.1)

(a) Averages of single-peaked functions. To get (SP) it does not suffice that

the functions ht for t ∈ T be all single-peaked, since averages of single-peaked

functions need not be single-peaked (this is true, however, if the functions

ht are strictly concave). For example, let ϕ(x) be a function that is strictly

increasing for x < −2, strictly decreasing for x > 2, has a single peak at

x = 2, and takes the values 0, 3, 4, 7, 8 at x = −2,−1, 0, 1, 2, respectively; in

between these points interpolate linearly. Take h1(x) = ϕ(x) and h2(x) =

ϕ(−x). Then h1 and h2 are single-peaked (with peaks at x = 2 and x = −2,

respectively), but (1/2)h1 + (1/2)h2, which takes the values 4, 5, 4, 5, 4 at

x = −2,−1, 0, 1, 2, respectively, has two peaks (at x = −1 and x = 1).

Smoothing out the kinks and making ϕ differentiable (by slightly changing

its values in small neighborhoods of x = −2,−1, 0, 1, 2) does not affect the
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example.

(b) Non-concavity. The single-peakedness condition (SP) goes beyond con-

cavity. Take for example h1(x) = −(x3−1)2 and h2(x) = −x6; then h1 is not

concave (for instance, h1(1/2) = −49/64 < −1/2 = (1/2)h1(0)+(1/2)h1(1)),

but, for every 0 ≤ α ≤ 1, the function hα has a single peak, at 3
√

α (because

h′
α(x) = −6x2(x3 − α) vanishes only at x = 0, which is an inflection point,

and at x = 3
√

α, which is a maximum).35

(c) Strict in-betweenness. The differentiability of the functions ht is not

needed to get in-betweenness (1). Differentiability yields a stronger property,

strict in-betweenness : both inequalities in (1) are strict when the v(qi) are not

all identical. Indeed, if v(qj) < v(qk), then the derivative h′
q(x) =

∑

i λih
′
qi
(x)

is positive at x = y0 := mini v(qi) (because y0 < v(qk) and so h′
qk

(y0) > 0),

and is negative at x = y1 := maxi v(qi) (because y1 > v(qj) and so h′
qj

(y1) <

0); therefore v(q) ∈ (y0, y1). Example 13 in Appendix C.9 shows that without

differentianbility these strict inequalities need not hold.

Strict in-betweenness is used (implicitly) only in the final argument in

the Proof of Proposition 1 (ii) in Appendix A: if q is the average of q′ and

q′′, and v(q′′) = v(q), then necessarily v(q′) = v(q).

C.3 Evidence and Truth Structure (Section 2.2)

(a) Partial order on types. A general approach to the truth and evidence

structure starts from a weak partial order36 “ ֌ ” on the set of types T, with

“ t ֌ s ” being interpreted as type t having (weakly) more evidence than

type s; we will say that “s is a partial truth at t” (or “s is less informative

35Alternatively, (SP) holds for the strictly concave ĥ1(y) = −(y − 1)2 and ĥ2(y) = −y2;
applying the strictly increasing transformation y = x3, which preserves (SP), yields the
given h1 and h2.

36A weak partial order is a binary relation that is reflexive (i.e., t ֌ t for all t) and
transitive (i.e., t ֌ s ֌ r implies t ֌ r for all r, s, t). However, it need not be complete
(i.e., there may be t, s for which neither t ֌ s nor s ֌ t holds). While for our results we
do not need to assume that ֌ is asymmetric, in most applications it is; moreover, we can
always make it asymmetric by identifying any t 6= t′ with t ֌ t′ and t′ ֌ t (and then for
any s and t, if s ∈ L(t) then t /∈ L(s)).
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than t”). The set of possible messages of the agent when the type is t, which

we denote by L(t), consists of all types that have less evidence than t, i.e.,

L(t) := {s ∈ T : t ֌ s}. Thus, L(t) is the set of all possible “partial truth”

revelations at t, i.e., all types s that t can pretend to be. The reflexivity and

transitivity of the partial order ֌ are immediately seen to be equivalent37

to conditions (L1) and (L2).

Some natural models for the relation ֌ are as follows.

(i) Pieces of evidence: As in Section 2.2, let E be the set of possible pieces

of evidence, and identify each type t with a subset Et of E; thus, T ⊆ 2E

(where 2E denotes the set of subsets of E). Put t ֌ s if and only if t ⊇ s;

that is, t has every piece of evidence that s has. It is immediate that ֌ is a

weak partial order, i.e., reflexive and transitive.

(ii) Partitions: Let Ω be a set of states of nature, and let Λ1, Λ2, ..., Λn

be an increasing sequence of finite partitions of Ω (i.e., Λi+1 is a refinement

of Λi for every i = 1, 2, ..., n − 1). The type space T is the collection of all

blocks (also known as “kens”) of all partitions. Then t ֌ s if and only

if t ⊆ s; thus more states ω are possible at s than at t, and so s is less

informative than t. For example, take Ω = {1, 2, 3, 4} with the partitions

Λ1 = (1234), Λ2 = (12)(34), and Λ3 = (1)(2)(3)(4). There are thus seven

types: {1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4} (the first one from Λ1, the

next two from Λ2, and the last four from Λ3). Thus type t = {1, 2, 3, 4} (who

knows nothing) is less informative than type s = {1, 2} (who knows that the

state of nature is either 1 or 2), who in turn is less informative than type

r = {2} (who knows that the state of nature is 2); the only thing type t can

say is t, whereas type s can say either s or t, and type r can say either r, s, or

t. The probability p on T is naturally generated by a probability distribution

µ on Ω together with a probability distribution λ on the set of partitions: if

t is a ken in the partition Λi then pt = λ(Λi) · µ(t).

(iii) Signals: Let Z1, Z2, ..., Zn be random variables on a probability space

Ω, where each Zi takes finitely many values. A type t corresponds to some

knowledge about the values of the Zi-s (formally, t is an event in the field

37Given L that satisfies (L1) and (L2), putting t ֌ s iff s ∈ L(t) yields a weak partial
order.
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generated by the Zi-s), with the straightforward “less informative” order:

s is less informative than t if and only if t ⊆ s. For example, the type

s = [Z1 = 7, 1 ≤ Z3 ≤ 4] is less informative than the type t = [Z1 = 7, Z3 =

2, Z5 ∈ {1, 3}]. (It is easy to see that (i) and (ii) are special cases of (iii).)

(b) General state space. We indicate how a general states-of-the-world setup

reduces to our model.

Let ω ∈ Ω be the state of the world, chosen according to a probability

distribution P on Ω (formally, we are given a probability space38 (Ω,F , P)).

Each state ω ∈ Ω determines the type t = τ(ω) ∈ T and the utilities UA(x; ω)

and UP (x; ω) of the agent and the principal, respectively, for any action

(reward) x ∈ R. The principal has no information, and the agent is informed

of the type t = τ(w). Since neither player has any information beyond the

type, we can reduce everything to the set of types T ; namely, pt = P [τ(ω) = t]

and U i(x; t) = E [U i(x; ω)|τ(ω) = t] for i = A,P.

For a simple example, assume that the state space is Ω = [0, 1] with the

uniform distribution, UA(x; ω) = x, and UP (x; ω) = −(x − ω)2 (i.e., the

“value” in state ω is ω itself). With probability 1/2 the agent is told nothing

about the state (which we call type t0), and with probability 1/2 he is told

whether ω is in [0, 1/2] or in (1/2, 1] (types t1 and t2, respectively). Thus

T = {t0, t1, t2}, with probabilities pt = 1/2, 1/4, 1/4 and expected values

v(t) = 1/2, 1/4, 3/4, respectively. This example illustrates the setup where

the agent’s information is generated by an increasing sequence of partitions

(cf. (ii) in the note above), which is useful in many applications (such as the

voluntary disclosure setup).

(c) Additional messages. The equivalence result continues to hold if we allow

additional messages beyond the set of types T (for instance, messages such

as “t1 or t2” with t1 /∈ L(t2) and t2 /∈ L(t1)).

Let M ⊇ T be the set of possible messages and let L(t) ⊆ M for each

t ∈ T satisfy (L1) and (L2) (the latter is now “s ∈ L(t) and m ∈ L(s) imply

m ∈ L(t),” or, equivalently, “s ∈ L(t) implies L(t) ⊇ L(s)”).

38All sets and functions below are assumed measurable (and integrable when needed).
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Proposition 7 Assume that the set M of possible messages contains the

set of types T and that the mapping L satisfies (L1) and (L2). Then the

Equivalence Theorem holds; moreover, replacing L(t) with L′(t) := L(t) ∩ T

for every t ∈ T does not change the truth-leaning and optimal mechanism

outcome.

Proof. Consider first optimal mechanisms. The Revelation Principle still

applies (because the (IC) constraints are the same πt ≥ πs for all types

s, t ∈ T with s ∈ L(t); or, see Theorem 2 in Green and Laffont 1986). But

direct mechanisms use only the set of types T as messages, and so M\T is

not relevant and being an optimal mechanism outcome for L and for L′ is

the same.

Consider next truth-leaning equilibria (note that truth-leaning makes no

requirement on ρ(m) for messages m /∈ T that are not used). We claim

that none of the messages m /∈ T are used in a truth-leaning equilibrium

(σ, ρ), i.e., σ̄(m) = 0 for all m /∈ T. Indeed, let m /∈ T ; for every type t ∈ T

that uses m, i.e., σ(m|t) > 0, we get πt = ρ(m) > ρ(t) = v(t) (by (A),

(A0), and (P0)). Therefore ρ(m) > v(q(m)) by in-betweenness (1), which

contradicts (P). Finally, every truth-leaning equilibrium for L′ is clearly also

a truth-leaning equilibrium for L.

(d) Normal evidence. Bull and Watson (2007) consider the notion of “normal

evidence,” which allows the set of messages M to be arbitrary, and requires

that for every type t in T there be a message mt in L(t) such that for every

type s, if mt ∈ L(s) then L(s) ⊇ L(t). Assuming that one can choose mt 6= ms

for39 all t 6= s, we identify each mt with t, which leads to the case M ⊇ T

discussed in the previous note (with normality yielding (L2)). Thus, again,

the Equivalence Theorem applies here too.

C.4 Truth-Leaning Equilibria (Section 2.3.1)

(a) Small perturbations. It is easy to check that truth-leaning would not be

affected if we were to require that all choices have positive probabilities in

39In Bull and Watson (2007) the messages are taken from M × T, and so if mt = ms

one uses instead (mt, t) and (ms, s), which are different for t 6= s.
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Γε, namely, σ(s|t) ≥ εs|t > 0 for every s, t with s ∈ L(t), provided that εs|t

for s 6= t is much smaller than εt|t, i.e., εs|t/εt|t → 0.

(b) Refinements. Truth-leaning is consistent with all standard refinements in

the literature. Indeed, they all amount to certain conditions on the principal’s

belief (which determines the reward) after an out-of-equilibrium message.

Now the information structure of evidence games implies that in any equilib-

rium the payoff of a type s is minimal among all the types t that can send the

message s (i.e., πs ≤ πt for every t with s ∈ L(t)). Therefore, if message s

is not used in equilibrium (i.e., σ̄(s) = 0), then the out-of-equilibrium belief

at s that it was type s itself that deviated is allowed by all the standard

refinements, specifically, the intuitive criterion, the D1 condition, univer-

sal divinity, and the never-weak-best-reply criterion (Kohlberg and Mertens

1986, Banks and Sobel 1987, Cho and Kreps 1987). However, these refine-

ments may not eliminate equilibria such as the uninformative equilibrium

of Example 2 in Section 1.1 (see also Example 8 in Appendix B.4); only

truth-leaning does.40 The no-incentive-to-separate (NITS) condition (Chen,

Kartik, and Sobel 2008), which requires the payoff of the lowest type to be

no less than its value (which is what the principal would pay if he knew the

type), is satisfied in our setup by all equilibria (because πs ≥ mint∈T v(t) for

every s; see the last sentence in Section 2.1).

(c) Voluntary disclosure. In most of the voluntary disclosure literature the

equilibrium is unique; when it is not, e.g., Shin (2003), the selected equi-

librium (“sanitizing equilibrium”) turns out to yield the same outcome as

the truth-leaning equilibria (we will show this below). As a consequence of

our Equivalence Theorem, the resulting outcome is thus also the optimal

mechanism outcome, and so the separation that is obtained in the voluntary

disclosure literature is the optimal separation.

The setup of Shin (2003) can be summarized as follows. The principal

40Interestingly, if we consider the perturbed game where the agent’s payoff is increased
by εt > 0 when type t reveals the type, but the strategy is not required to satisfy σ(t|t) > 0,
the refinements D1, universal divinity, and the never-weak-best-reply criterion (but not
the intuitive criterion) yield in the limit the (P0) condition, and thus truth-leaning (we
thank Phil Reny for this observation).
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minimizes the quadratic loss (and so we are in the basic setup); a type is

t = (s, f) where s and f are nonnegative integers with s+f ≤ N (for a fixed

N); the value v(s, f) of type (s, f) is decreasing in f, and the expected value

v̄(s) of the set Ts := {(s, f) : 0 ≤ f ≤ N − s} is increasing in s; finally, the

partial truth mapping is (s′, f ′) ∈ L(s, f) if and only if s′ ≤ s and f ′ ≤ f.

The “sanitizing” equilibrium which Shin (2003) has chosen to study is

given by: each type (s, f) sends the message (s, 0), and the rewards are

ρ(s, 0) = v̄(s) and ρ(s, f) = v(s,N − s) for f > 0 (thus the equilibrium

is supported by the not very reasonable belief that any out-of-equilibrium

message (s, f) with f > 0 is sent by the type with the lowest value (s,N−s)).

This is in general not a truth-leaning equilibrium (because, for instance,

v(s, 1) may well be higher than v̄(s), and then (P0) cannot hold). However,

there is always a truth-leaning equilibrium with the same outcome π∗, namely,

π∗
s,f = v̄(s) for every (s, f), defined as follows. For every s let k ≡ ks be such

that v(s, k) ≥ v̄(s) > v(s, k + 1), then each type (s, f) with f ≤ k sends the

message (s, f) (i.e., reveals the type), whereas each type v(s, f) with f ≥ k+1

sends the message (s, j) for j = 0, 1, ..., k with probability λj = p(s,j)(v(s, j)−
v̄(s))/

∑k
i=0 p(s,i)(v(s, i) − v̄(s)). The rewards are ρ(s, f) = v̄(s) for f ≤ k

and ρ(s, f) = v(s, f) for f ≥ k + 1. Thus for every s the messages used in

equilibrium are (s, f) for all f ≤ k, and they all yield the same reward v̄(s). It

is straightforward to verify that this constitutes a truth-leaning equilibrium

(for (P), use
∑k

i=0 p(s,i)(v(s, i)− v̄(s)) =
∑N−s

i=k+1 p(s,i)(v̄(s)− v(s, i)), because

v̄(s) is the mean of the v(s, f)), and the outcome is π∗. We have thus shown:

Proposition 8 In the voluntary disclosure model of Shin (2003), the “sani-

tizing” equilibrium outcome is the unique truth-leaning outcome, and so also

the unique optimal mechanism outcome.

See Appendix C.8 for an alternative proof.

C.5 Mechanisms and Optimal Mechanisms (Section 2.4)

(a) Green and Laffont. Green and Laffont (1986) show that, given (L1),

condition (L2) is necessary and sufficient for the Revelation Principle to
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apply to any payoff functions of the agent. We need only the sufficiency

part, which can be easily seen directly. Let ρ be a reward function; when

the type is t the agents’s payoff is πt := maxr∈L(t) ρ(r), and the principal’s

payoff is41 ht(πt). If t can pretend to be s, i.e., s ∈ L(t), then L(t) ⊇ L(s) by

transitivity (L2), and thus πt ≥ πs, which yields the incentive-compatibility

constraints (IC). Conversely, any π ∈ RT satisfying (IC) can be implemented

by (L1) with a direct mechanism, namely, ρ(t) = πt for every t.

(b) Truth-leaning mechanisms. Truth-leaning does not affect optimal mecha-

nisms, because a direct mechanism where the agent always reveals his type is

clearly truth-leaning (moreover, in the limit-of-perturbations approach, it is

not difficult to show that incentive-compatible mechanisms with and without

truth-leaning yield payoffs that are the same in the limit).

(c) Existence and uniqueness of optimal mechanisms. It is immediate to see

that an optimal mechanism exists, because the function H is continuous and

the rewards πt can be restricted to a compact interval X (see Section 2.1).

Uniqueness of the optimal mechanism outcome is not, however, straightfor-

ward (unless the principal’s payoff functions ht, and thus H, are all strictly

concave—which we do not assume).

C.6 Proof: Preliminaries (Section 4.1)

(a) Pretending and values. Corollary 4 (see the Remark following it) im-

plies that truth-leaning equilibria are not affected when replacing L(t) with

L′(t) := {s ∈ L(t) : v(s) > v(t)} ∪ {t} for all t (i.e., dropping from each

L(t) all s 6= t that do not have a higher value than t). Together with our

Equivalence Theorem, it follows that the same applies to optimal mecha-

nisms. We provide here a direct proof of this statement that deals directly

with mechanisms, and has the further advantage that instead of (SP), it uses

only the weaker assumption that all the functions ht are single-peaked (and

not necessarily differentiable).

41Therefore in our setup the payoffs are not affected by how the agent breaks ties (an
issue that arises in general mechanism setups).
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Let (IC’) denote the incentive constraints given by L′ (i.e., πt ≥ πs for

all s, t with s ∈ L′(t)).

Proposition 9 Assume that all the functions ht are single-peaked (and not

necessarily differentiable). Then π∗ maximizes H(π) subject to the (IC’)

constraints if and only if π∗ maximizes H(π) subject to the (IC) constraints.

Proof. Since (IC’) is a subset of the (IC) constraints, it suffices to show that

if π∗ maximizes H(π) subject to (IC’) then π∗ satisfies all (IC) constraints.

Assume by way of contradiction that there are s, t such that s ∈ L(t)

but π∗
t < π∗

s; because π∗ satisfies (IC’), we must have v(s) ≤ v(t). Among

all pairs s, t as above, choose one where the difference v(t) − v(s) (which is

nonnegative) is minimal. Fix s and t. We have:

(i) All the (IC’) constraints of the form πu ≥ πt for some u are not binding

at π∗; i.e., π∗
u > π∗

t for every u with t ∈ L′(u).

Proof. If πu ≥ πt is an (IC’) constraint then t ∈ L(u) and v(t) > v(u),

and so s ∈ L(u) by transitivity. If π∗
u = π∗

t then π∗
s > π∗

t = π∗
u and so

πu ≥ πs cannot be an (IC’) constraint; thus s /∈ L′(u), and so v(s) ≤ v(u).

Hence 0 ≤ v(u) − v(s) < v(t) − v(s), which contradicts the minimality of

v(t) − v(s).

(ii) π∗
t ≥ v(t).

Proof. If π∗
t < v(t) then π∗

t lies in the region where ht strictly increases,

and so slightly increasing π∗
t (which can be done by (i)) increases the objective

function H; this contradicts the optimality of π∗.

(iii) All the (IC’) constraints of the form πs ≥ πr for some r are not

binding at π∗; i.e., π∗
s > π∗

r for every r ∈ L′(s).

Proof. If πs ≥ πr is an (IC’) constraint then r ∈ L(s) and v(r) > v(s),

and so r ∈ L(t) by transitivity. If π∗
s = π∗

r then π∗
t < π∗

s = π∗
r and so πt ≥ πr

cannot be an (IC’) constraint; thus r /∈ L′(t), and so v(r) ≤ v(t). Hence

0 ≤ v(t)−v(r) < v(t)−v(s), which contradicts the minimality of v(t)−v(s).

(iv) π∗
s ≤ v(s).

Proof. If π∗
s > v(s) then π∗

s lies in the region where hs strictly decreases,

and so slightly decreasing π∗
s (which can be done by (iii)) increases the ob-

jective function H; this contradicts the optimality of π∗.
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From (ii) and (iv) we get v(t) ≤ π∗
t < π∗

s ≤ v(s), contradicting v(s) ≤
v(t)).

C.7 From Equilibrium to Mechanism (Section 4.2)

(a) Generalizing Propositions 5 and 6. The strict inequalities v(t) < v(T ) for

every t 6= s are used in the Proof of Proposition 5 to get, by in-betweenness

(1), v(R) ≥ v(T ) for any R that contains s; for their other use, to imply

that ht(x) for t 6= s is strictly decreasing for x ≥ v(T ), the weak inequalities

v(t) ≤ v(T ) suffice. We thus get the following variant of Proposition 5:

Proposition 10 Assume that there is a type s ∈ T such that s ∈ L(t) for

every t. If42

(i) v(t) ≤ v(T ) for every t 6= s; and

(ii) v(R) ≥ v(T ) for every R that contains s (i.e., s ∈ R),

then the outcome π∗ with π∗
t = v(T ) for all t ∈ T is the unique optimal

mechanism outcome.43

This yields the following generalization of Proposition 6:

Proposition 11 Let (σ, ρ) be a Nash equilibrium that satisfies, for every

message s that is used (i.e., σ̄(s) > 0),

(i) v(t) ≤ v(q(s)) for every t 6= s that plays s (i.e., σ(s|t) > 0); and

(ii) v(q(s)|R) ≥ v(q(s)) for every R that contains s (i.e., s ∈ R).

Then the outcome π∗ of (σ, ρ) is the unique optimal mechanism outcome.

Proof. As in the Proof of Proposition 6, use the decomposition induced by

(7) and then, for each s with σ̄(s) > 0, apply Proposition 10 to Ts := {t :

σ(s|t) > 0} with prior q(s).

42(i) is equivalent to “v(Q) ≤ v(T ) for every Q not containing s” (because v(Q) ≤
maxt∈Q v(t) by in-betweenness (1)). Also, (i) and (ii) may be elegantly rewritten as
maxQ:s/∈Q v(Q) ≤ minR:s∈R v(R) (because by in-betweenness we have v(T\R) ≤ v(T ) ≤
v(R) for every R that contains s, and so v(T ) = minR:s∈R v(R)).

43When L(s) = {s} and L(t) = {t, s} for every t 6= s, conditions (i) and (ii) are also
necessary for π∗ to be an optimal mechanism outcome—i.e., for “no separation” to be
optimal. Indeed, if v(t) > v(T ) for some t 6= s then put πt = v(t) > v(T ) = π∗

t , and if
v(R) < v(T ) for some R containing s then put πr = v(R) < v(T ) = π∗

r for all r ∈ R; in
each case the new π satisfies all the constraints and H(π) > H(π∗).
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These results are useful in the non-differentiable case (see Appendix C.9).

C.8 The Optimal Outcome

We provide here results on the structure of optimal mechanisms and their

outcomes, which is useful when dealing with specific models.

A partition of T consists of disjoint sets T1, T2, ..., Tm whose union is T.

We will say that the ordered partition (T1, T2, ..., Tm) is consistent with L

(more precisely, consistent with the “having more evidence” order on types

induced by L; see Appendix C.3) if s ∈ L(t) for t ∈ Ti and s ∈ Tj implies

i ≥ j. Thus, types in T1 have the least evidence, and those in Tm, the most;

and, for any t ∈ Ti, we have L(t) ⊆ ∪j≤iTj: type t can only pretend to be a

type s in the same set or lower.

Proposition 12 Let π be an optimal mechanism outcome. Then there exists

an ordered partition (T1, T2, ..., Tm) of T that is consistent with (the order

induced by) L such that v(T1) < v(T2) < ... < v(Tm) and πt = v(Ti) for every

t ∈ Ti.

Proof. Let α1 < α2 < ... < αm be the distinct values of the coordinates of

π, and put Ti := {t ∈ T : πt = αi}. This yields a partition that is consistent

with L because s ∈ L(t) implies πt ≥ πs, and so t ∈ Ti and s ∈ Tj imply

i ≥ j. Changing the common value of πt for all t ∈ Ti to any other α′
i

close enough to αi so that all (IC) inequalities are preserved (specifically,

αi−1 ≤ α′
i ≤ αi+1) implies by the optimality of π that αi must maximize

∑

t∈Ti
ptht(x) = p(Ti)hTi

(x), and so αi = v(Ti).

Remark. To find the optimal mechanism outcome, one thus needs to check

only finitely many outcomes (each one determined by some partition of T ).

A converse to Proposition 12 is as follows.

Proposition 13 Let (T1, T2, ..., Tm) be an ordered partition of T that is con-

sistent with (the order induced by) L such that v(T1) ≤ v(T2) ≤ ... ≤ v(Tm)

and for every i = 1, 2, ...,m, the unique optimal mechanism of the problem
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restricted to Ti is constant (i.e., πt = πt′ for all t, t′ ∈ Ti). Then the unique

optimal mechanism outcome is π∗ with π∗
t = v(Ti) for every t ∈ Ti and

i = 1, 2, ...,m.

Proof. Let (IC’) be the set of (IC) constraints πt ≥ πs with s, t in the same

Ti. The outcome π∗ satisfies all (IC’) constraints as equalities; moreover, it

satisfies the (IC) constraints (because s ∈ L(t) with t ∈ Ti and s ∈ Tj implies

i ≥ j and so π∗
t = v(Ti) ≥ v(Tj) = π∗

s). Therefore once we show that π∗ is

the unique maximizer of H(π) subject to (IC’), then it is also the unique

maximizer subject to (IC).

Now (IC’) allows to consider each Ti separately, and so if π is optimal

then πt = αi for all t ∈ Ti, and so we must have αi = v(Ti) (otherwise αi can

be slightly modified such that H increases), which implies that π = π∗.

To use Proposition 13 one instances where the optimal mechanism out-

come is unique. One such instance, where there is a type with minimal

amount of evidence, is given by Proposition 5 in Section 4.2 (see also its

generalization Proposition 10 in Appendix C.7). Another instance, where

the value decreases as one has more evidence, is given below.

Proposition 14 If L(t) = {s : v(s) ≥ v(t)} for all t then the outcome π∗

with π∗
t = v(T ) for all t is the unique truth-leaning equilibrium outcome and

optimal mechanism outcome.

Proof. Without loss of generality assume that T = {1, 2, ..., n} and v is

monotonic: if t ≤ s then v(t) ≤ v(s). Because L(t) ⊇ {t, t + 1, ..., n} by

the assumption on L, (IC) implies that π1 ≥ π2 ≥ ... ≥ πn. Let π be an

optimal mechanism outcome. If π is constant (i.e., π1 = ... = πn), then

optimality implies that π = π∗. If π is not constant, let 1 ≤ r < n be such

that α := π1 = ... = πr > πr+1 ≥ .. ≥ πn. Because we can slightly modify the

common value α of π1, ..., πr without affecting (IC), optimality implies that

α = v({1, ..., r}), and so α ≤ v(r) by in-betweenness. Therefore for every

t ≥ r + 1 we have πt < α ≤ v(r) ≤ v(t), and so ht(πt) < ht(α) (the function
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ht strictly increases before its peak v(t)), implying that

H(π) =
r

∑

t=1

ptht(α) +
n

∑

t=r+1

ptht(πt) <

r
∑

t=1

ptht(α) +
n

∑

t=r+1

ptht(α) = H(π(α))

where π(α) := (α, ..., α), contradicting the optimality of π.

As an application, combining Propositions 14 and 13 provides an alterna-

tive proof that the outcome of the sanitizing equilibrium of Shin (2003) is the

optimal mechanism outcome (cf. Appendix C.4 (c)); the ordered partition is

(T0, T1, ..., TN ) with Ts = {(s, f) : 0 ≤ f ≤ N − s}).

C.9 Equivalence without Differentiability

Assuming that the functions ht are differentiable enabled us to work with the

simpler conditions (A0) and (P0) rather than with the limit-of-perturbations

approach. However, this was just for convenience: we will show here that

the equivalence result holds also in the nondifferentiable case.

We start with a simple example where one of the functions ht is not

differentiable and there is no equilibrium satisfying (A0) and (P0).

Example 13 The type space is T = {1, 2} with the uniform distribution,

pt = 1/2 for t = 1, 2. The principal’s payoff functions are h1(x) = −(x − 2)2

for x ≤ 1 and h1(x) = −x2 for x ≥ 1 (and so h1 is nondifferentiable at its

single peak v(1) = 1), and h2(x) = −(x− 2)2 (and so h2 has a single peak at

v(2) = 2). Both functions are strictly concave, and so hq has a single peak:

v(q) = 1 when q1 ≥ q2 and v(q) = 2q2 when q1 ≤ q2 (and thus44 v(T ) = 1).

Type 1 has more evidence than type 2, i.e., L(1) = {1, 2} and L(2) = {2}.
Let (σ, ρ) be a Nash equilibrium that satisfies (A0) and (P0). If type 1

sends message 1 then ρ(1) = v(1) = 1 and ρ(2) = v(2) = 2 (both by (P)),

contradicting (A): message 1 is not a best reply for type 1. If type 1 sends

message 2 then ρ(1) = v(1) = 1 (by (P0)) and ρ(2) = v(T ) = 1 (by (P)),

44The strict in-betweenness of Appendix C.2 does not hold here: the peak of h1 is
strictly less than the peak of h2, and the peak of their average equals the peak of h1.
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contradicting (A0): message 1 is a best reply for type 1 but he does not use

it. Thus there is no truth-leaning equilibrium. ¤

It may be easily checked that in this example (σ, ρ) is a Nash equilibrium

if and only if σ(2|1) = 1 and ρ(2) = 1 ≥ ρ(1), and so the outcome is

π = (1, 1), the same as the optimal mechanism outcome; truth-leaning yields

that ρ(1) = v(1) = 1 (by (P0)).

In all our proofs, the differentiability of the functions ht was used in only

one place: to get (A0) in the last step of the Proof of Proposition 1 (ii)

in Appendix A. All other proofs throughout the paper use only the non-

differentiable version of single-peakedness, namely,

(SP0) Continuous Single-Peakedness. For every q ∈ ∆(T ) the principal’s

utility hq(x) is a continuous single-peaked function of the reward x.

Thus all the functions ht are continuous (rather than differentiable), and for

every q ∈ ∆(T ) there is v(q) such that the function hq(x) is strictly increasing

for x ≤ v(q) and strictly decreasing for x ≥ v(q).

Equivalence holds also under (SP0):

Proposition 15 Assume that the principal’s payoff function (ht)t∈T satis-

fies the continuous single-peakedness condition (SP0). Then there is a unique

truth-leaning equilibrium outcome, a unique optimal mechanism outcome,

and these two outcomes coincide.

Proof. We will use Proposition 11 in Appendix C.7 (which generalizes

Proposition 6 in Section 4.2). We thus need to show that every truth-leaning

limit equilibrium (σ, ρ) satisfies conditions (i) and (ii) of this Proposition.

We proceed as in the Proof of Proposition 1 (ii). Let εn
t →n 0+, εn

t|t → 0+,

and (σn, ρn) →n (σ, ρ) be such that (σn, ρn) is a Nash equilibrium in Γε
n

for

every n. If σ(s|t) > 0 for t 6= s, then, as in the arguments leading to (8)

and (9), v(qn(s)) = ρn(s) ≥ ρn(t) + εn
t > ρn(t) = v(t) for all large enough n.

For every R ⊆ T that contains s the posterior qn(s) is a weighted average of

qn(s)|R, the conditional of qn(s) on R, and 1t for all t /∈ R with σn(s|t) > 0,

for all of which v(qn(s)) > v(t), as we have just seen; therefore in-betweenness
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(1) implies that v(qn(s)) ≤ v(qn(s)|R). Thus v(t) < v(qn(s)) ≤ v(qn(s)|R)

for all large enough n; the continuity of v together with qn(s) → q(s) and

qn(s)|R → q(s)|R (because, by (8) and s ∈ R, the limit denominators are

bounded away from zero by psσ(s|s) = ps > 0) yield conditions (i) and (ii)

in the limit, as claimed.

Remark. As shown in the Proof of Proposition 1 (ii), every truth-leaning

equilibrium (σ, ρ) satisfies (P0) and, assuming differentiability, can be mod-

ified without changing the outcome so as to satisfy also (A0). Without dif-

ferentiability the latter is no longer true (as Example 13 shows); however, we

can obtain, again without changing the outcome, a weaker version of (A0):

if ρ(t) = max
r∈L(t)

ρ(r) and σ̄(t) > 0 then σ(t|t) = 1; (10)

here t is required to choose t for sure when it is a best reply for t only

provided that message t is used at all). To get (10): if σ(t|t) = 0 then

σ̄(t) = 0 by (8) and no change is needed; and if 0 < σ(t|t) < 1 then put

σ′(t|t) := 0 and σ′(s|t) := σ(s|t) + σ(t|t) for some s 6= t that is played

by t, i.e., σ(s|t) > 0 (because both t and s are played by t it follows that

v(t) = ρ(t) = πt = ρ(s) = v(q(s)), and so v(q′(s)) = πt by in-betweenness

(1), as q′(s) is a weighted average of q(s) and 1t).
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D Appendix: Randomized Rewards

Consider the case where the principal may choose randomized (or mixed) re-

wards; i.e., the reward ρ(s) to each message s is a probability distribution ξ on

R rather than a pure x ∈ R. The utility functions of the two players are now

von Neumann–Morgenstern utilities on R, and so the utility of a randomiza-

tion ξ equals its expected utility: E [ξ] for the agent and ht(ξ) := Ex∼ξ [ht(x)]

for the principal, for each type45 t ∈ T. While we no longer assume single-

peakedness, we do assume that all the functions ht are continuous, and that

only a compact interval X = [x0, x1] ⊂ R of rewards matters (for instance,

let all the functions ht(x) increase for x < x0 and decrease for x > x1 for all

t ∈ T ).

The following example shows that the equivalence result may not hold

for randomized rewards, even when single-peakedness holds.

Example 14 The type space is T = {0, 2} with the uniform distribution,

i.e., pt = 1/2 for t = 0, 2. The principal’s payoff functions h0 and h2 are both

strictly increasing for x < 0, strictly decreasing for x > 2, and piecewise

linear46 in the interval [0, 2] with values at x = 0, 1, 2 as follows: 12, 2, 0 for h0,

and −30, 2, 6 for h2 (note that (SP) holds: the function hq = q0h0+(1−q0)h2

is single-peaked for every q0 ∈ [0, 1], because x = 1 is never the worst reward:

for q0 ≤ 3/4 we have hq(0) < 2 = hq(1) and for q0 ≥ 3/4 we have hq(2) < 2 =

hq(1)). Assume that type 2 has less evidence than type 0, i.e., L(0) = {0, 2}
and L(2) = {2}.

Consider first only pure rewards. We claim that every Nash equilibrium

(σ, ρ), whether truth-leaning or not, yields the outcome π = (2, 2). Indeed,

type 2 can send only message 2, and so the posterior q(2) after message 2 must

put at least as much weight on type 2 as on type 0 (i.e., q2(2) ≥ 1/2 ≥ q0(2);

recall that the prior is p0 = p2 = 1/2). Therefore the principal’s best reply to

message 2 is always 2 (because hq(2)(0) ≤ 0, hq(2)(1) = 2, and hq(2)(2) ≥ 3).

45We have assumed that x is that pure reward that yields utility x to the agent. For
the principal, we extend the functions ht to mixed rewards.

46The example is not affected if the two functions h0, h2 are made differentiable (by
smoothing out the kinks at x = 0, 1, and 2).
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Therefore type 0 will never send the message 0 with positive probability

(because then q(0) = (1, 0) and so ρ(0) = v(0) = 0 < 2). Thus both types

send only message 2, and we get an equilibrium if and only if ρ(2) = 2 ≥ ρ(0)

(and, in the unique truth-leaning equilibrium, ρ(0) = v(0) = 0 by (P0)),

resulting in the outcome π = (2, 2).

The optimal mechanism (with pure rewards) cannot separate between the

types (because, again, that would require the principal to reward message

0 strictly more than message 2, which is not optimal; cf. Proposition 5);

therefore the best for him is to set π0 = π2 = 2, yielding an expected utility

of (1/2) · 0 + (1/2) · 6 = 3.

Now allow randomized rewards. The Nash equilibria do not change (be-

cause for every posterior belief q(s) after signal s the principal has a unique

best reply, which is pure: the single peak of hq(s)). However, there is now a

better optimal mechanism: signal 0 is rewarded with the half-half mixture

between 0 and 2, signal 2 with the pure reward 1, and the agent reveals

the whole truth (i.e., type 0 sends 0 and type 2 sends 2). The outcome is

π′ = (1, 1) (and so incentive compatibility (IC) is satisfied), and the princi-

pal’s expected utility is now (1/2) · ((1/2) · 12 + (1/2) · 0) + (1/2) · 2 = 4,

higher than 3, which was the most that he could get when the rewards were

pure. ¤

This example shows that with randomized rewards the principal can sep-

arate between agent’s types while giving them the same expected rewards

(and so incentive compatibility holds).47 This yields a better outcome for

the principal, but requires commitment: in the example, after seeing that

the type is 0 the principal prefers to change the reward to 0.

We are again looking for conditions under which commitment yields no

advantage, and so we must rule out such situations. Formally, we introduce

the following condition:

(PUB) Principal’s Uniform Best . For every utility level of the agent x ∈ X

47As shown by Chakraborti and Harbaugh (2010), cheap talk may yield separation for
an agent (the sender) with type-independent utility: the agent is indifferent, whereas the
principal (the receiver) is not.
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there is a mixed reward ξx such that E [ξx] = x and ht(ξx) ≥ ht(ξ
′) for

all types t ∈ T and every mixed reward ξ′ with E [ξ′] = x.

Thus, for every utility level for the agent x in X there is a mixed reward ξx

that yields utility x to the agent and is preferred by the principal, for every

type t, to any other mixed reward that yields the same utility x to the agent

(“uniform” refers here to “for every t”).

A condition that is equivalent to (PUB) (and is more practical) uses the

concept of ”concavification.” The concavification cavf of a function f : X →
R is the smallest concave function that is everywhere no less than f ; i.e.,

cavf : X → R is a concave function, f(x) ≤ (cavf)(x) for every x ∈ X,

and (cavf)(x) ≤ g(x) for any concave function g that satisfies f(x) ≤ g(x)

for all x. Equivalently, the hypograph48 of cavf equals the convex hull of the

hypograph of f ; or,

(cavf)(x) = max{E [f(ξ)] : E [ξ] = x} (11)

= max{λf(y1) + (1 − λ)f(y2) : λy1 + (1 − λ)y2 = x, λ ∈ [0, 1]}

for every x. Consider the following condition:

(CAV) (cav(
∑

t∈T qtht))(x) =
∑

t∈T qt(cavht)(x) for all x ∈ X and all q ∈
∆(T )

What (CAV) says is that the concavification of each average of the functions

ht equals the average of the concavifications.

Remark. Some cases where (CAV) holds are:

(i) all the functions ht are concave (and then cavht = ht),

(ii) all the functions ht are convex (and then all concavifications use only

the two extreme rewards x0 and x1; i.e., (cavht)(λx0 +(1−λ)x1) = λht(x0)+

(1 − λ)ht(x1) for every t and λ ∈ [0, 1]).

(iii) X is split into a number of intervals and all the functions ht are

concave in some intervals, convex in the rest, and the slopes decrease from

one interval to the next.
48The hypograph of a real function F : X → R consists of all points below the graph,

i.e., {(x, α) ∈ X × R : α ≤ F (x)}.
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Proposition 16 Conditions (PUB) and (CAV) are equivalent.

Proof. (PUB) implies (CAV). For every q ∈ ∆(T ) we have (cav
∑

t∈T qtht)(x) =

max{∑t∈T qtht(ξ) : E [ξ] = x} =
∑

t∈T qtht(ξx) by (11) and then (PUB); tak-

ing in particular q = 1t yields (cavht)(x) = ht(ξx) for every t, and so we have

(CAV).

(CAV) implies (PUB). Take q ∈ ∆(T ) such that qt > 0 for all t (for

instance, q = p), and let ξx be such that cav(
∑

t∈T qtht)(x) is attained at

ξx (see (11)), i.e., E [ξx] = x and cav(
∑

t∈T qtht)(x) =
∑

t∈T qtht(ξx). The

right-hand side is ≤ ∑

t∈T qt cavht(x) (by (11)); because (CAV) says that we

have equality, and all the qt are positive, it follows that ht(ξx) = cavht(x)

for every t, and hence ht(ξx) ≥ ht(ξ
′) for every ξ′ with E [ξ′] = x (again by

(11)).

Remarks. (a) The proof above shows that we can replace (CAV) with the

weaker condition that there is some q in ∆(T ) with strictly positive coordi-

nates (i.e., qt > 0 for all t) such that (cav(
∑

t∈T qtht))(x) =
∑

t∈T qt(cavht)(x)

for all x ∈ X.

(b) Call a mixed reward ξ undominated if there is no other mixed reward

ξ′ with the same expectation, i.e., E [ξ′] = E [ξ] , such that ht(ξ
′) ≥ ht(ξ) for

all types t ∈ T, with strict inequality for at least one t. Then it can be shown

that (PUB) is equivalent to (cf. (SP)):

(SP-M) Single-Peakedness for Mixed Rewards. For every probability dis-

tribution q ∈ ∆(T ) on the set of types T, the expected utility of the

principal is a single-peaked function of the agent’s utility on the class of

undominated mixed rewards; i.e., there exists a weakly49 single-peaked

function gq : X→ R such that hq(ξ) = gq(E [ξ]) for every undominated

ξ.

If (SP-M) holds then, in particular, for undominated mixed rewards the

utility of the principal is a function of the agent’s utility: E [ξ] = E [ξ′]

49A real function ϕ is weakly single-peaked if there exist a ≤ b such that ϕ increases for
x < a, is constant for a ≤ x ≤ b, and decreases for x > b (thus the interval [a, b] is now the
single flat top of ϕ; note that concave functions are weakly single-peaked). This weakening
is needed since we want to allow piecewise linear functions, as we will see below.
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implies50 hq(ξ) = hq(ξ
′). Moreover, gq(x) = cavhq(x) by (11) (because the

maximum there is always attained at some undominated ξ), and so weak

single-peakedness follows because the functions gq are concave. Thus (SP-

M) is in fact equivalent to the simpler condition:

(SP-M1) For every type t ∈ T there exists a function gt : X → R such that

ht(ξ) = gt(E [ξ]) for every undominated mixed reward ξ.

(It is enough to require this for every t, because hq =
∑

qtht gives gq =
∑

qtgt.)

These conditions are equivalent because they all amount to the require-

ment that for each utility level x of the agent, the set of feasible vector payoffs

of the principal {(ht(ξ))t∈T : E [ξ] = x}, which is a convex subset of RT , has

a unique Pareto point (namely, (ht(ξx))t∈T = (cavht(x))t∈T ); in this case,

“undominated” and “dominating everything else” are equivalent.

Because we no longer have single-peakedness (concavity yields a single flat

plateau rather than a single peak), optimal mechanisms and truth-leaning

equilibria need no longer yield a unique outcome. The simplest example

has only one type t, with ht(x) concave and having a single flat for, say,

x ∈ [0, 1]; then every πt ∈ [0, 1] is an optimal mechanism outcome, as well as

a truth-leaning equilibrium outcome. However, the truth-leaning equilibrium

outcomes are still optimal mechanism outcomes:

Theorem 17 Assume that the payoff functions ht satisfy the Principal-Uniform-

Best condition (PUB). Then truth-leaning limit-equilibria exist, and their

outcomes are optimal mechanism outcomes.

Proof. Using for every utility level x for the agent the mixed reward ξx

given by (PUB) is equivalent to replacing the principal’s payoff functions ht

with their concavifications gt = cavht. The functions gt are concave, and so

the result follows from Proposition 18 of the next section.

50If we were to require this for all mixed rewards it would follow that hq(x) are all linear
(more precisely, affine) functions of x—which is much too restrictive a condition.
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D.1 Weakly Single-Peaked Payoffs

In this section we prove the following generalization of our result, in the

case of pure rewards. A real function f is weakly-single-peaked if there exist

x0 ≤ x1 such that f is strictly increasing for x ≤ x0, constant for x0 ≤ x ≤ x1,

and strictly decreasing for x ≥ x1 (i.e., x < x′ ≤ x0 implies f(x) < f(x′);

x0 ≤ x < x′ ≤ x1 implies f(x) = f(x′); and x1 ≤ x < x′ implies f(x) >

f(x′)). Single-peakedness (SP) is now weakened to

(WSP) Weak Single-Peakedness. For every q ∈ ∆(T ) the principal’s utility

hq(x) is a continuous weakly single-peaked function of the reward x.

(WSP) holds in particular when all the ht functions are concave (because

then hq is concave, and so weakly single-peaked).

Proposition 18 Assume (WSP). Then truth-leaning equilibria exist, and

their outcomes are optimal mechanism outcomes.

Proof. For every q ∈ ∆(T ) let V (q) ≡ [v0(q), v1(q)] be the interval where

hq is maximal; then X := [mint v0(t), maxt v1(t)] is a compact interval that

contains all the V (q).

First, we claim that each Γε with 0 < ε < 1 has a Nash equilibrium.

Indeed, the correspondence that assigns to each pair of strategies (σ, ρ) all

(σ′, ρ′) with σ′ a best reply to ρ and ρ′ a best reply to σ (with values in X)

is upper hemicontinuous and has closed and convex values, and so satisfies

all the conditions of Kakutani’s fixed-point theorem. Second, because (σ, ρ)

belongs to ∆(T )T × XT , which is compact, limit points as ε → 0+ exist.

Let (σ, ρ) be a truth-leaning limit equilibrium: (σn, ρn) is a Nash equi-

librium of Γεn with εn → 0+ and (σn, ρn) → (σ, ρ). Let t 6= s be such that

σ(s|t) > 0; then σn(t|s) > 0 for all large enough n. Then ρn(t) ∈ V (t) and

ρn(s) ∈ V (q(s)), and ρn(s) ≥ ρn(t)+εn > ρn(t), and thus ρn(s) > v0(t) for ev-

ery t 6= s. Therefore, for every R that contains s we get ρn(s) ≤ v1(qn(s)|R);

indeed, hqn(s)(x), which is maximal at ρn(s), is the average of hqn(s)|R(x)

and ht(x) for all t /∈ R with σn(s|t) > 0, all of which are nonincreas-

ing at ρn(s) (because, as we have seen, ρn(s) > v0(t)), and so hqn(s)|R(x)
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cannot be strictly decreasing there—hence the desired inequality. Because

qn(s) → q(s) and qn(s)|R → q(s)|R (the denominators of these posteri-

ors are bounded away from 0 by psσ
n(s|s) = ps > 0) we get in the limit

v0(t) ≤ ρ(s) ≤ lim supn v1(qn(s)|R) ≤ v1(q(s)|R) (the last inequality because

a limit of maximizers is a maximizer in the limit).

Now apply Proposition 20 below.

The following example shows that not all optimal mechanism outcomes

are obtained as truth-leaning equilibrium outcomes.

Example 15 T = {0, 2}, p = (1/2, 1/2), h0(x) = −|x|, h2(x) = −|x − 2|
(the functions ht are concave, and therefore (WSP) holds; however, hp(x) = 1

for x ∈ [0, 2] and = −|x− 1| otherwise, and so hp is not single-peaked: it has

a plateau between 0 and 2). Let L(0) = {0, 2} and L(2) = {2}.
The optimal mechanism outcomes are all π = (α, α) for α ∈ [0, 2].

Only π∗ = (2, 2) is a truth-leaning equilibrium outcome: if (σ, ρ) is a Nash

equilibrium of Γε then the posterior q(2) after message 2 satisfies q2(2) > 1/2

(because σ(2|2) = 1 > 1 − ε0|0 = σ(0|2) and p0 = p2), and so hq(x) has a

single peak at 2, which yields ρ(2) = 2 (and ρ(0) = 0 because only 0 can

send 0), and the limit outcome is indeed π∗ = (2, 2). ¤

To prove Proposition 20 we start with a simpler case (cf. Proposition 5

in Section E).

Proposition 19 Assume (WSP). If there is a type s ∈ T such that s ∈ L(t)

for every t, and51

max
t6=s

v0(t) ≤ min
R:s∈R

v1(R) (12)

then for every z ∈ V (T ) the outcome π(z) with π
(z)
t = z for all t ∈ T is an

optimal mechanism outcome.

Proof. Any constant outcome, such as π(z), satisfies all (IC) constraints (as

equalities).

51Condition (12) is easily seen to be equivalent to maxQ:s/∈Q v0(Q) ≤ minR:s∈R v1(R).
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Let π be an optimal mechanism outcome for which mint∈T πt is maximal;

i.e., π maximizes H(π) subject to (IC), and every other maximizer π′ satisfies

mint π
′
t ≤ mint πt. Put α := mint πt and R := {t ∈ T : πt = α}; then s ∈ R

(since πs ≤ πt for every t by (IC)). Because one may change the common

value of πr for all r ∈ R to any α′ close enough to α so that all (IC) inequal-

ities continue to hold (specifically, α′ ≤ β where β := mint/∈R πt > α), the

optimality of π implies that α must maximize
∑

t∈R ptht(x) = p(R)hR(x),

and so α ∈ v(R); moreover, the choice of π so that α = mint πt is maximal

implies that in fact α = v1(R). Assumption (12) implies that α ≥ v0(t)

for every t /∈ R (because then t 6= s), and so ht(πt) ≤ ht(α) (because

πt > α ≥ v0(t) and the function ht is nonincreasing for x ≥ v0(t)). There-

fore H(π) =
∑

t ptht(πt) =
∑

t∈R ptht(α) +
∑

t/∈R ptht(πt) ≤ ∑

t ptht(α) =

hT (α) ≤ hT (z) = H(π(z)) for every z ∈ V (T ); again, the optimality of π

implies that we have equality, and so π(z) is an optimal mechanism outcome.

This yields the following generalization of Proposition 11:

Proposition 20 Assume (WSP). Let (σ, ρ) be a Nash equilibrium that sat-

isfies, for every message s that is used (i.e., σ̄(s) > 0),

(i) v0(t) ≤ ρ(s) for every t 6= s that plays s (i.e., σ(s|t) > 0); and

(ii) v1(q(s)|R) ≥ ρ(s) for every R containing s (i.e., s ∈ R).

Then the outcome π∗ of (σ, ρ) is an optimal mechanism outcome.

Proof. Use the decomposition (7) of H given by σ, and for each s with

σ̄(s) > 0 apply Proposition 19 with T = Ts and p = q(s).

D.2 The Glazer–Rubinstein Setup

As stated in the Introduction, the work that is conceptually closest to the

present paper is Glazer and Rubinstein (2004, 2006), or GR for short. The

GR setup is more general than ours in the communication structure—having

arbitrary messages rather than our truth structure (where messages are types

and the mapping L satisfies (L1) and (L2))—and less general in the payoff

structure—having only two pure rewards rather than single-peaked payoffs.
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The first difference implies that in the GR setup truth and truth-leaning

are not defined. Thus only one direction of the result holds: optimal mech-

anisms are always obtained by equilibria, but the converse is not true.52

As for the second difference, GR showed that their result cannot be ex-

tended in general to more than two pure rewards (the example at the end of

Section 6 in Glazer and Rubinstein 200653); Sher (2011) later showed that it

does hold when the principal’s payoff functions are concave.

The discussion on single-peakedness (SP-M) (and its equivalent condition

(PUB)) in the previous sections of this Appendix D helps clarify this.54 First,

take the GR setup with only two pure rewards, say, 0 and 1. For every

x ∈ [0, 1] there is a unique mixed reward yielding utility x to the agent,

namely, getting 1 with probability x and 0 otherwise; therefore ht(x) =

(1 − x)ht(0) + xht(1) is an affine function of x, and so is hq(x) for every

q ∈ ∆(T ), which implies that (SP-M) (or, equivalently, (PUB)) always holds

in this case of only two pure rewards. Next, take the GR setup with more

than two pure rewards. As Example 14 above showed, single-peakedness

(SP-M) now becomes a restrictive condition that no longer holds in general.

The Remark before Proposition 16 shows that it holds when all the functions

ht are concave—the assumption of Sher (2011)—as well as in other cases (for

instance, when all the functions ht are convex).

Finally, if one were to add to the GR setup the truth structure with con-

ditions (L1) and (L2), then, under the (SP-M) or (PUB) condition, Theorem

17 would imply that truth-leaning equilibria yield optimal mechanisms.

52See the examples in Appendices B.1 and B.2.
53While the discussion there considers only pure rewards, it can be checked that the

same holds for mixed rewards as well.
54It turns out to apply also to the case where there are finitely many rewards and

randomizations are not allowed: it can be shown that (SP-M) is equivalent to the concavity
of the functions ht after a suitable increasing transformation is applied to the rewards.
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E Appendix: From Mechanism to Equilib-

rium

We provide here a complete proof that every optimal mechanism yields a

truth-leaning equilibrium with the same outcome.

Proposition 21 Let π∗ ∈ RT be the outcome of an optimal mechanism; then

there exists a truth-leaning equilibrium yielding the outcome π∗.

To illustrate the idea of the proof, consider first the special case where the

optimal mechanism outcome π∗ ∈ RT gives the same reward, call it α, to all

types: π∗
t = α for all t ∈ T. Recalling Proposition 3, we define the strategy

ρ of the principal by ρ(t) = min{v(t), π∗
t} = min{v(t), α} for all t ∈ T. As

for the agent, let S := {t ∈ T : v(t) ≥ α}; the elements of S will be precisely

the messages used in equilibrium, and we put σ(t|t) = 1 for all t ∈ S and

σ(t|t) = 0 for t /∈ S. The question is how to define σ(·|t) for t /∈ S.

If S consists of a single element s, then we put σ(s|t) = 1 for every t (and

it is easy to verify that (ρ, σ) is then indeed a truth-leaning equilibrium).

In general, however, S is not a singleton, and then we need carefully to

assign to each type t those messages s ∈ L(t) ∩ S that t plays (we will see

that the optimality of π∗ implies that every t has some message to use, i.e.,

L(t) ∩ S 6= ∅; see Claim 1 in the Proof of Proposition 21 below).

Consider a simple case (such as Example 11 in the Appendix) where

T = {t, s, s′}, S = {s, s′}, L(t) = T, and the principal’s payoff is quadratic

(the value v(R) of a set R is thus the expected value of its elements). How

does type t choose between s and s′ ? First, we have v(t) < α ≤ v(s), v(s′) by

the definition of S. Second, again using the optimality of π∗, we get v(T ) = α

(otherwise, moving α toward v(T ) would increase the principal’s payoff H(π);

see Claim 2 in the proof). Third, v({t, s}) ≤ α (because v({t, s, s′}) ≡ v(T ) =

α and v(s′) ≥ α), and similarly v({t, s′}) ≤ α (see Claims 3 and 4 in the

proof; the argument in the general case is more complicated, and also relies

on the optimality of π∗). Thus v({t, s}) ≤ α ≤ v(s′), and so there is some

fraction λ ∈ [0, 1] such that v({λ ∗ t, s}) = α, where λ ∗ t denotes the λ-

fraction of t (i.e., the value of the set containing s and the fraction λ of t is
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exactly55 α). Therefore v({(1 − λ) ∗ t, s′}) = α too (because v(T ) = α), and

we define σ(s|t) = λ and σ(s′|t) = 1 − λ.

When S contains more than two elements we get sets Rs for all s ∈ S

whose union is T, such that the value of each Rs, as well as the value of

each union of them, is always ≤ α (i.e., v(∪s∈QRs) ≤ α for every Q ⊂ S; in

the three-type example above Rs = {t, s} and Rs′ = {t, s′}). Using a simple

extension of the classical Marriage Theorem of Hall (1935) to continuous

measures due to Hart and Kohlberg (1974) (see Section E.1 below)56 yields

a partition of the set of types T into disjoint “fractional” sets Fs such that

each Fs is a subset of Rs with value exactly α, i.e., v(Fs) = α. This fractional

partition gives the strategy σ, as above.

When we go beyond the quadratic case and the value v is not an ex-

pectation (and thus corresponds to an additive measure), we use the strict

in-betweenness property instead (see Appendix C.2 (c)). Formally, we find it

easier to replace conditions such as v(R) ≤ α with their derivative counter-

parts h′
R(α) ≤ 0 (since being after the peak means being in the region where

the function decreases), or, equivalently,
∑

t∈R pt h
′
t(α) ≤ 0. These derivative

conditions add up over disjoint sets R, and they yield an additive measure

to which the Marriage Theorem can be applied.57

Finally, the general case (where π∗
t is not the same for all t) is handled by

partitioning T into disjoint “layers” Tα := {t ∈ T : π∗
t = α} corresponding

to the distinct values α of the coordinates of π∗, and then treating each

Tα separately as in the special case above. One may verify that there is no

55Formally, (λptv(t) + ps1
v(s1))/(λpt + ps1

) is a continuous function of λ, which is ≥ α
at λ = 0 and ≤ α at λ = 1.

56Hall’s (1935) result is the following. There are n boys and n girls, each girl knows a
certain set of boys, and we are looking for a one-to-one matching between boys and girls
such that each girl is matched with a boy that she knows. Clearly, for such a matching to
exist it is necessary that any k girls know together at least k different boys; Hall’s result
is that this condition is also sufficient.

Glazer and Rubinstein (2006) used a different line of proof (the “bridges problem”)
for a parallel result: construct an equilibrium (but without the additional requirement of
getting it to be truth-leaning) from an optimal mechanism. We find that the very short
inductive proof of Halmos and Vaughan (1950), as used in Hart and Kohlberg (1974),
provides a simple procedure for constructing the agent’s strategy; see below.

57One may instead directly apply continuity arguments to the v function, as in Hart
and Kohlberg (1974).
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interaction between the different layers (because T is finite there is a minimal

positive gap δ0 > 0 between distinct values, and then we take the “slight”

changes in the arguments above to be less than δ0). Moreover, one advantage

of the translation to conditions on derivatives, which are additive over sets,

is that it allows us to carry out the arguments globally, without having to

refer explicitly to the separate layers.

Proof of Proposition 21. Given π∗, define the strategy ρ of the principal

by ρ(t) = min{π∗
t , v(t)} for all t ∈ T. It remains to construct the strategy σ

of the agent so that (σ, ρ) is a truth-leaning equilibrium.

Let S := {t ∈ T : π∗
t ≤ v(t)} = {t ∈ T : ρ(t) = π∗

t}; in view of

Proposition 3, S contains those messages that will be used in equilibrium

(i.e., σ will satisfy σ̄(t) > 0 if and only if t ∈ S). For each s ∈ S put

Ts := {t ∈ T : s ∈ L(t) and π∗
t = π∗

s} and Rs := Ts ∩ (T\S) ∪ {s} ⊆ Ts. The

set Rs contains all the types that may potentially choose the message s in

equilibrium: type s itself, together with all types t /∈ S such that s ∈ L(t)

and π∗
t = π∗

s = ρ(s) (thus σ will satisfy σ(s|t) > 0 only if t ∈ Rs). The reason

that we use the set Rs rather than Ts is that we want not only to obtain a

Nash equilibrium, but also to satisfy the truth-leaning condition (A0), which

will require every s ∈ S to choose only s itself (the difference between Ts and

Rs is that Ts may contain other s′ ∈ S in addition to s).

The strategy σ will correspond to a partition of the set of types T into

disjoint subsets Fs (which consists of those types t that will choose s according

to σ) such that for every s ∈ S we have Fs ⊆ Rs, and also v(Fs) = π∗
s

(this is the principal’s equilibrium condition (P’)). As seen in the discussion

preceding the proof, these sets may well be fractional sets, and then Fs ⊆ Rs

becomes “if σ(s|t) > 0 then t ∈ Rs, ” and v(Fs) = π∗
s becomes v(q(s)) = π∗

s

(recall that q(s) is the posterior given the message s, i.e., the “composition”

of Fs). The existence of a fractional partition is obtained using an appropriate

“marriage theorem”; the conditions needed to apply this result are provided

in the following claims.

The first claim shows that for every type t there is a message in S that

he may use to get his reward (i.e., π∗
t = π∗

s = ρ(s) for some s ∈ L(t) ∩ S).
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Let δ0 > 0 be such that the gap between any two distinct values of π∗ is at

least δ0; i.e., δ0 := min{|π∗
t − π∗

t′| : π∗
t 6= π∗

t′}.

Claim 1 Every t ∈ T belongs to some Rs; i.e., ∪s∈SRs = T.

Proof. Since s ∈ Rs for every s ∈ S, we need to show that for every t /∈ S

there is s ∈ L(t) such that π∗
s = π∗

t and s ∈ S. Let K(t) := {s ∈ L(t) : π∗
s =

π∗
t}; the set K(t) is nonempty since t ∈ K(t). Assume by way of contradiction

that K(t) ∩ S = ∅, and so π∗
s > v(s) for every s ∈ K(t). For 0 ≤ δ ≤ δ0

let πδ
s := π∗

s − δ if s ∈ K(t) and πδ
s := π∗

s if s /∈ K(t). Then πδ satisfies all

the (IC) constraints. Indeed, take such a constraint πs ≥ πr for r ∈ L(s).

If π∗ satisfied it as a strict inequality, then πδ satisfies it because δ ≤ δ0

(which is the minimal gap); and if π∗ satisfied it as an equality, πδ satisfies

it because π∗
s decreases by δ only when s ∈ K(t), and then r ∈ K(t) too

(since r ∈ L(t) by (L2) and π∗
t = π∗

s = π∗
r), and so π∗

r too decreases by δ. But

π∗
s > v(s) for all s ∈ K(t), and so, for δ > 0 small enough (so that πδ

s ≥ v(s)

for all s ∈ K(t)), we get H(πδ) − H(π∗) =
∑

s∈K(t) ps

(

hs(π
δ
s) − hs(π

∗
s)

)

> 0

(because πδ
s is closer to v(s) than π∗

s for all s ∈ K(t)). This contradicts the

optimality of π∗.

The second claim corresponds to v(T ) = α in the discussion at the be-

ginning of the section.

Claim 2
∑

t∈T pt h
′
t(π

∗
t ) = 0.

Proof. For every δ (positive, zero, and negative) let πδ
s := π∗

s + δ for all

s ∈ T ; then clearly πδ satisfies all the (IC) constraints (since π∗ does). The

optimality of π∗ = π0 implies that H(πδ) ≤ H(π0) for every δ, and so

H(πδ) =
∑

t∈T pt ht(π
∗
t + δ) is maximized at δ = 0. Therefore its derivative

with respect to δ vanishes at δ = 0, i.e.,
∑

t∈T pt h
′
t(π

∗
t ) = 0.

The next two claims correspond to the inequalities v(∪s∈QRs) ≤ α for all

Q ⊆ S (again, see the discussion at the beginning of the section). We prove

this first for the sets Ts in Claim58 3, and then for the sets Rs in Claim 4.

For every nonempty subset Q ⊆ S put TQ := ∪s∈QTs and RQ := ∪s∈QRs.

58To get a Nash equilibrium that is not necessarily truth-leaning one works with the
sets Ts instead of Rs, and then Claim 3 suffices.

67



Claim 3
∑

t∈TQ
pt h

′
t(π

∗
t ) ≤ 0 for every Q ⊆ S.

Proof. For every 0 ≤ δ ≤ δ0 let πδ
t := π∗

t + δ if t ∈ TQ and πδ
t := π∗

t if

t /∈ TQ. Similarly to the argument in the proof of Claim 1, πδ satisfies every

(IC) constraint πδ
t′ ≥ πδ

t (for t ∈ L(t′)). If π∗ satisfied it as a strict inequality,

because δ ≤ δ0; if π∗ satisfied it as an equality, then if the right-hand side

increased by δ then so did the left-hand side: t ∈ TQ implies59 t′ ∈ TQ

(indeed: t ∈ TQ implies t ∈ Ts for some s ∈ Q, and hence s ∈ L(t) and

π∗
t = π∗

s; together with t ∈ L(t′) and π∗
t′ = π∗

t , as π∗ satisfied this constraint

as an equality, it follows that s ∈ L(t′) and π∗
t′ = π∗

s, which means that

t′ ∈ Ts ⊆ TQ).

Now
∑

t∈TQ
pt (ht(π

∗
t + δ) − ht(π

∗
t )) = H(πδ) − H(π∗) ≤ 0 for every 0 ≤

δ ≤ δ0 (by the optimality of π∗), and so the derivative at δ = 0 is ≤ 0, which

proves the claim.

Claim 4
∑

t∈RQ
pt h

′
t(π

∗
t ) ≤ 0 for every Q ⊆ S.

Proof. We have
∑

t∈RQ
pt h

′
t(π

∗
t ) =

∑

t∈TQ
pt h

′
t(π

∗
t ) − ∑

t∈TQ\RQ
pt h

′
t(π

∗
t )

(because RQ ⊆ TQ). Now t ∈ TQ\RQ implies t ∈ S\Q ⊆ S, and so h′
t(π

∗
t ) ≥ 0

(because π∗
t ≤ v(t)), which, together with Claim 3, completes the proof.

We can now conclude the proof of Proposition 21.

Proof of Proposition 21 (continued). First, Claim 1 implies that

every t /∈ S belongs to Rs for some s ∈ S; together with s ∈ Rs we get

RS = ∪s∈SRs = T. Let γt := −pt h
′
t(π

∗
t ); the collection of sets (Rs)s∈S satisfies

∑

t∈RQ
γt ≥ 0 for every Q ⊆ S (by Claim 4), with equality for Q = S (by

Claim 2 since RS = T ). Applying Corollary 25 in Appendix E.1 to the

collection (Rs)s∈S together with αs = 0 for every s ∈ S yields σ : T → ∆(S)

such that, first,

σ(s|t) > 0 implies t ∈ Rs. (13)

And second, h′
q(s)(x) = (1/σ̄(s))

∑

t∈T pt σ(s|t) h′
t(x) vanishes at the point x =

π∗
s = π∗

t for all t ∈ Ts, because
∑

t∈Ts
pt σ(s|t) h′

t(π
∗
t ) = −∑

t∈T σ(s|t) γt = 0.

59The reason that, unlike in Claim 2, we cannot take δ < 0 is that there may be (IC)
constraints for which we have equality π∗

t′ = π∗
t , but t′ ∈ TQ and t /∈ TQ.
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The single-peakedness condition (SP) then implies that π∗
s is the single peak

of hq(s), i.e.,

π∗
s = v(q(s)). (14)

To conclude we verify that (σ, ρ) is indeed a truth-leaning equilibrium

with outcome π∗. Recall that ρ(s) = π∗
s ≤ v(s) iff s ∈ S and ρ(t) = v(t) < π∗

t

iff t /∈ S. Then π∗
t = maxr∈L(t) π∗

r ≥ maxr∈L(t) ρ(r) by (IC), and Claim 1

implies that there is equality; thus the outcome is π∗. The agent’s equilibrium

condition (A) holds by (13): σ(s|t) > 0 implies s ∈ S and t ∈ Rs, and so

s ∈ L(t) and π∗
t = π∗

s = ρ(s). The truth-leaning condition (A0) holds because

ρ(s) = π∗
s iff s ∈ S, and then, since the only Rs′ that contains s is Rs, we

have σ(s|s) = 1 by (13). The principal’s equilibrium condition (P) holds

because σ̄(s) > 0 iff s ∈ S by (13) and (A0), and then ρ(s) = π∗
s = v(q(s))

by (14). Finally, the truth-leaning condition (P0) holds because σ̄(t) = 0 iff

t /∈ S, and then ρ(t) = v(t).

Remarks. (a) For every value α of π∗, let Sα := {s ∈ S : π∗
s = α} be the set

of messages that yield outcome α. For Q = Sα we get = 0 (instead of ≤ 0)

in Claims 3 and 4, because in the Proof of Claim 3 we can take also negative

δ (with |δ| ≤ δ0), and RSα = TSα = {t : π∗
t = α} by Claim 1. Therefore the

construction of σ can be carried out for each layer α separately.

(b) The short inductive proof of Lemma 4 in Hart and Kohlberg (1974)

yields the following simple procedure for constructing the strategy σ. If

there is a nonempty Q0 & S for which we have equality in Claim 3, then

solve separately the two smaller problems (Rs)s∈Q0
and (Rs\RQ0

)s∈S\Q0
. If

there is strict inequality in Claim 3 for every Q 6= S, ∅, then take some s0 ∈ S

and replace Rs0
with R′

s0
such that Rs0

\RS\{s0} ⊆ R′
s0

⊆ Rs0
and there is

equality in Claim 4 for at least one Q 6= S, ∅.
Combining this with Remark (a) above implies that one can carry out

this construction separately for each value α of π∗.
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E.1 Hall’s Marriage Theorem and Extensions

This appendix deals with the famous “Marriage Theorem” of Hall (1935)

and its extensions that are used in our proofs.

Hall’s result is as follows. A necessary and sufficient condition to be able

to choose a distinct element from each one of a finite collection of finite sets

is that the union of any k of these sets contains at least k distinct elements,

for any k. Thus let (Wm)m∈M be a finite collection of finite sets, and let

W := ∪m∈MWm be their union. Then there exists a collection (wm)m∈M of

distinct elements of W (i.e., wm 6= wm′ for m 6= m′) such that wm ∈ Wm

for all m ∈ M if and only if60 | ∪m∈M Wm| = |M | and | ∪m∈K Wm| ≥ |K|
for every K ⊆ M. For the connection to “marriage,” let Wm be the set of

women that man m knows; then Hall’s Theorem tells us exactly when every

man can be matched to a distinct woman whom he knows. To prepare for

our extension, we state this formally as follows.61

Theorem 22 (Hall 1935) Let M be a finite set, and (Wm)m∈M a finite

collection of finite sets; put W := ∪m∈MWm. Let µ be the counting measure

on M and ν the counting measure on W. If

ν(∪m∈MWm) = µ(M), and (15)

ν(∪m∈KWm) ≥ µ(K) for every K ⊆ M, (16)

then there exists a partition of62 W into disjoint sets (Vm)m∈M satisfying

Vm ⊆ Wm for every m ∈ M, and (17)

ν(Vm) = µ({m}) for every m ∈ M. (18)

Can one extend this result to arbitrary measures (a measure λ on a finite

set N is given by weights λn ≡ λ({n}) for n ∈ N, i.e., λ(I) =
∑

n∈I λn

60For a finite set A, we write |A| for the cardinality of A, i.e., the number of elements
of A. We refer to this as the counting measure of A.

61We state only the nontrivial direction that the conditions are sufficient; see the Remark
following Proposition 23.

62I.e., the sets Vm are disjoint and their union is W.

70



for I ⊆ N)? Consider the following example: M = {1, 2}; W1 = {a, b}
and W2 = {b, c}; µ and ν are the uniform probability measures on M and

W = {a, b, c}, respectively (i.e., µ({m}) = 1/2 for m = 1, 2 and ν(w) = 1/3

for w = a, b, c). Conditions (15) and (16) clearly hold, but we cannot partition

W = {a, b, c} into two disjoint sets V1 ⊆ W1 and V2 ⊆ W2 with probability

1/2 each, as that would require us to “split” the element b half-half between

V1 and V2.

We will show that the extension is indeed possible when such splitting is

not needed (namely, when the measure ν is continuous and has no atoms),

or when it is allowed (in the form of “fractional” sets).

We start with the nonatomic case where the set W is infinite and the

measure ν has no atoms (the finiteness of M is kept throughout).

Proposition 23 (Hart–Kohlberg 1974) Let M be a finite set and (Wm)m∈M

a finite collection of sets; put W := ∪m∈MWm. Let µ be a measure on M and

ν a nonatomic finite measure on63 W. If (15) and (16) hold, then there exists

a partition of W into disjoint sets (Vm)m∈M satisfying (17) and (18).

Proof. This is the lemma in Section 4 of Hart and Kohlberg (1974),64

with two minor improvements: first, the measure µ is not required to be

nonnegative (a condition that appears in the Hart–Kohlberg statement but

is not used in the proof there); and second, the sets Vm that are obtained

satisfy in addition ∪m∈MVm = W = ∪m∈MWm (which is easily seen to hold

by the inductive construction in the proof there).

Remark. The converse (i.e., a partition of W exists only if (15) and (16)

hold) is no longer true (it is when ν is a nonnegative measure, since then

(17) implies ν(∪m∈KVm) ≤ ν(∪m∈KWm)).

When the measure ν has atoms (as is the case when W is a finite set),

we introduce the possibility of splitting atoms between sets. Formally, we

63Formally, ν is defined on a σ-field F of subsets of W , which contains all the relevant
sets. The measure ν is nonatomic if for every S with ν(S) 6= 0 there is S1 ⊂ S such that
ν(S1) 6= 0 and ν(S\S1) 6= 0. All subsets of W and all functions on W that we use are
taken to be measurable.

64Whose simple proof is inspired by the simple inductive proof of Halmos and Vaughan
(1950) of Hall (1935)’s Marriage Theorem.
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identify a subset V of W with its characteristic function V : W → {0, 1}
(where w ∈ V if and only if V (w) = 1), and we define a fractional subset V of

W as a function V : W → [0, 1], where V (w) is understood as the fraction of

w that belongs to V. A partition of W into disjoint fractional sets65 (Vm)m∈M

requires that each element w ∈ W belong in certain proportions to the various

sets Vm, and these proportions add up to unity; that is, Vm : W → [0, 1] for

each m ∈ M and
∑

m∈M Vm(w) = 1 for each w ∈ W . For fractional sets

Vm, the inclusion Vm ⊆ Wm says that if Vm(w) > 0 then66 w ∈ Wm, and the

measure v(Vm) is given by67
∫

W
Vm dν. We have:68

Corollary 24 Let M be a finite set and (Wm)m∈M a finite collection of sets;

put W := ∪m∈MWm. Let µ be a measure on M and ν a finite measure on

W. If (15) and (16) hold, then there exists a partition of W into disjoint

fractional sets (Vm)m∈M satisfying (17) and (18).

Proof. Replace each atom w of the measure ν with a nonatomic continuum

Cw with the same measure and apply Proposition 23; Vm(w) in the original

space is then the proportion of Cw that belongs to Vm in the nonatomic space.

The partition (Vm)m∈M of W into fractional sets may equivalently be

described by a function σ that assigns to each element w in W a probability

distribution on M that gives the fractions of w in the various69 Vm; that is,

σ : W → ∆(M) with70 σ(m|w) := Vm(w) for each m ∈ M and w ∈ W. When

W is a finite set and the measures µ and ν are given by the weights (µm)m∈M

and (νn)w∈W , Corollary 24 may be restated as follows.

65Known also as a “partition of unity”; fractional sets are also referred to as “fuzzy sets”
and “ideal sets.”

66Viewing Wm as Wm : W → {0, 1} allows us to write this condition as Vm ≤ Wm (i.e.,
Vm(w) ≤ Wm(w) for every w ∈ W ).

67When W is a finite set, ν(Vm) =
∑

w∈W Vm(w) ν({w}).
68The extension of Hall’s Theorem to fractional sets may thus be called “Hall’s Hull,”

short for “The Convex Hull of Hall’s Theorem.”
69Referred to as a “Markov kernel.”
70We write σ(m|w) for the m-th coordinate of the probability distribution σ(w) ∈ ∆(M).
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Corollary 25 Let M be a finite set and (Wm)m∈N a finite collection of finite

sets; put W := ∪m∈MWm. Let µm for each m ∈ M and νw for each w ∈ W

be real numbers such that

∑

w∈W

νw =
∑

m∈M

µm and

∑

w∈∪m∈KWm

νw ≥
∑

m∈K

µm for every K ⊆ M.

Then there exists a function σ : W → ∆(M) such that for every m ∈ M

σ(m|w) > 0 implies w ∈ Wm, and
∑

w∈W

σ(m|w) γw = µm .

For an application, consider a school where each student registers in one

or more clubs (the chess club, the singing club, the writing club, and so on).

Assume that the average grade of all the students in the school equals ḡ,

and that the average grade of all the students registered in each club, as well

as in each collection of clubs, is at least71 ḡ (for a collection of clubs K, we

take all the students that registered in at least one of the clubs in K and

average their grades). Corollary 25 implies that there is a way to divide each

student’s time among the clubs in which he registered, in such a way that

the average grade in each club is exactly ḡ (the average is now a weighted

average, with each student’s weight being his relative time in the club).72

71This is consistent with the tendency of high-grade students to register in more clubs
than low-grade ones.

72Let M be the set of clubs, Wm the set of students in club m, and W := ∪m∈MWm

the set of all students. Let gw be the grade of student w; then ḡ =
∑

w∈W gw/|W | is the
average grade. Finally, let the measure ν on W be given by the weights νw = gw − ḡ, and
let µ = 0 be the measure on M .
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E.2 An Alternative Proof of the Glazer–Rubinstein–

Sher Result

In the Glazer–Rubinstein–Sher setup, where the sets are arbitrary subsets of

a message space M (and so neither (L1) nor (L2) can be assumed), we have

the following:

Proposition 26 In the setup with a general message space: if all the func-

tions ht are concave, then every optimal mechanism outcome is also a Nash

equilibrium outcome.

Proof. We claim that it suffices to prove the result when the functions ht

are strictly concave and differentiable.

Indeed, as in the Proof of Theorem 17 in Section D.1, we first replace

the functions ht with their concavifications gt = cavht. Next, let π∗ be an

optimal mechanism outcome for g, i.e., π∗ ∈ OM(g). For every ε > 0, put

gε
t (x) := gt(x) − ε(x − π∗

t )
2; then π∗ is an optimal mechanism outcome for

gε; because the functions gε
t are strictly concave, it is the unique element

there, i.e., {π∗} = OM(gε). Next smooth out gε: for each δ > 0 put

gε,δ(x) := (2δ)−1
∫ δ

−δ
gε

t (x + y)dy; then the function gε,δ
t is strictly concave

and differentiable; let πε,δ be the unique optimal mechanism outcome for

gε,δ, i.e., {πε,δ} = OM(gε,δ). Assuming that we have shown the result for

strictly concave and differentiable functions, it follows that πε,δ ∈ EQ(gε,δ).

Letting δ → 0+ while keeping ε fixed yields gε,δ →δ gε, and so, by the upper

hemicontinuity of OM, πε,δ →δ π∗ (which is the unique element of OM(gε).

Now use the upper hemicontinuity of EQ: first, πε,δ →δ π∗ and gε,δ →δ gε

imply π∗ ∈ EQ(gε); and second, gε →ε g implies π∗ ∈ EQ(g).

We thus assume that all the functions ht are strictly concave and differ-

entiable.

Let π be the unique optimal mechanism outcome, and let ρ be the reward

scheme. For every m ∈ M let Tm := {t ∈ T : m ∈ L(t) and ρ(m) = πt} be

the set of types for which message m is optimal for the payment scheme ρ.

For every set of messages Q ⊂ M, let TQ := ∪m∈QTm be the set of types for

which some message in Q is optimal.
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Claim 1.
∑

t∈T pt h
′
t(πt) = 0.

Proof. For every δ let ρδ(m) := ρ(m) + δ for all m ∈ M ; then πδ
t :=

maxm∈L(t) ρδ(t) = πt + δ for every t ∈ T. The optimality of ρ as a solution

of MD implies that
∑

t∈T pt ht(πt) ≥
∑

t∈T pt ht(π
δ
t ) =

∑

t∈T pt ht(πt + δ) for

every δ, and so this expression is maximized at δ = 0. Therefore its derivative

with respect to δ vanishes at δ = 0, i.e.,
∑

t∈T pt h
′
t(πt) = 0. ¤

Claim 2.
∑

t∈TQ
pt h

′
t(πt) ≤ 0 for every Q ⊆ M.

Proof. Let δ0 > 0 be such that the gap between any two distinct values

of ρ is at least δ0 (i.e., δ0 := min{|ρ(m) − ρ(m′)| : ρ(m) 6= ρ(m′)}; recall

that M is finite). For every δ ≥ 0 such that δ < δ0, let ρδ(m) := ρ(m) + δ

if m ∈ Q and ρδ(m) := ρ(m) if m /∈ Q; put πδ
t := maxm∈L(t) ρδ(t) for every

t ∈ T. Then πδ
t = πt + δ for t ∈ TQ and πδ

t = πt for t /∈ TQ, since the

maximal payoff increases by δ for those types for which some message in Q

was optimal under ρ (because δ < δ0, the maximal payoff for all other types

is unchanged). The optimality of ρ as a solution of MD implies that

0 ≤
∑

t∈T

pt ht(πt) −
∑

t∈T

pt ht(π
δ
t )

=
∑

t∈TQ

pt ht(πt) − ht(πt + δ))

for every 0 ≤ δ < δ0. Therefore the derivative at δ = 0 is ≤ 0, which gives

our result. ¤

Let γt := −pt h
′
t(πt); the collection of sets (Tm)m∈M satisfies

∑

t∈TQ
γt ≥ 0

for every Q ⊆ M (by Claim 2), with equality for Q = M (by Claim 1). There-

fore, by Proposition 25 in Appendix E.1 (with αm = 0 for all m ∈ M) there

exists a strategy σ : T → ∆(M) such that, first, σ(m|t) > 0 only if t ∈ Tm,

and so σ(·|t) gives positive probability only to messages that are optimal for

t under ρ. Second, the derivative of hq(m)(x) = (1/σ̄(m))
∑

t∈T pt σ(m|t) ht(x)

at x = ρ(m) (= πt for all t ∈ Tm) equals zero since
∑

t∈Tm
pt δ(m|t) h′

t(πt) =

−∑

t∈T σ(m|t) γt = 0, and thus hq(m)(x) is maximized at x = ρ(m).
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