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Abstract

We study the problem of transmission of a divisible resource (such as money) to agents via
a network of intermediaries. The planner has preferences over the different allocations of the
resource to the agents. Although the planner is not directly linked to the agents, it can connect
via a group of intermediaries. Intermediaries may differ in the types of agents they can reach,
as well as the quality in which they can reach agents.

The planner solicits bids from intermediaries to use their links and applies this information to
select which intermediaries to contract for the transmission of the resource. The intermediaries
choose the fees in order to maximize the amount paid by the planner. The planner picks the
allocation that maximizes his utility over the resource allocated to the agents. A game theory
model is constructed to analyze the strategic behavior of the planner and the intermediaries.
We present the necessary and sufficient conditions for the existence of a Subgame Perfect Nash
Equilibrium (SPNE) and Efficient SPNE, where the intermediaries used by the planner charge
zero cost. This equilibrium depends on the network configuration, the quality in which the
intermediaries reach the agents, and the preferences of the planner.

Multiplicity of SPNEs often occur. We also present a robustness of the SPNE, whereby
the intermediaries who are not used by the planner charge zero cost (Robust-SPNE). The
necessary and sufficient conditions for the uniqueness of an Efficient Robust-SPNE are provided.
Comparative statics, with respect to the addition of intermediaries, are given. Finally, when
the planner has the ability to change the quality in which the intermediaries connect to agents,
we characterize the large class of networks that induce an efficient SPNE.
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1 Introduction

There are many markets for which intermediaries play an essential role. The most common
markets for which intermediaries are critical include the transmission of goods and resources to
agents. For instance, the allocation of government resources (such as money) to agents often requires
the use of private for-profit companies, intermediaries, that are more closely connected to the agents
than the government agency. In this way, the government agency can more effectively target their
agents than without intermediaries. Additionally, this top-down structure of the network provides
opportunity for competition between intermediaries with the potential for added benefits. Such
benefits, however, are largely dependent on the way in which the intermediaries are connected to
the agents (including the individual connection, as well as the quality of the connections) and the
type of resource (i.e., divisible vs indivisible) that is distributed to the agents.

Although much attention has been paid to the case of intermediation for indivisible goods, few
studies focus on intermediation for divisible goods and resources. Herein, we describe a model where
a planner is interested in transmitting a divisible resource to agents (such as money). The planner
has preferences over the different allocations of the resource to the agents. Although the planner
is not directly linked to the agents, it can do so via a group of intermediaries. Intermediaries may
differ in the types of agents they can reach, as well as the quality in which they can reach the agents.
We focus in the case of exogenous quality of intermediaries. The quality, can be interpreted as the
effective transmission of the resource from the intermediaries to the agents. This is represented
by the total amount of the resource that an intermediary sends to the agents per unit of resource
received, as well as by the proportions in which every agent receives a resource relative to another
from a given intermediary. Thus, for instance, two intermediaries connected to the same group
of agents may be very different from the planner’s perspective, since the may transmit different
amounts to the agents, and even make different distributions between them.

We study the case of perfect information, where the planner and intermediaries are aware of the
preferences of the planner and the connections and quality of the intermediaries. The planner solicits
bids from intermediaries to use their links and applies this information to select which intermediaries
to contract for the transmission of the resource. We used a game theoretical approach to model
the behavior of the planner and intermediaries.

Specifically, in the first stage of our game, intermediaries independently and simultaneously
report their fees for providing the planner with access to the agents. In the second stage, the
planner then selects the appropriate intermediaries and amounts of the resource allocated to each
of them for transmission to agents. The intermediaries who are not selected do not get paid. The
ultimate goal of the intermediary is to be contracted and maximize the price paid by the planner.
The goal of the planner is to distribute as much resource to the agents in a way that maximizes
the planner’s preferences. We use a Subgame Perfect Nash Equilibrium (SPNE) to describe the
result of strategic behaviors between the planner and intermediaries. The biding equilibrium price
of intermediaries depends on the utility function of the planner, the structure of the network, as
well as the quality of the connection from the intermediaries to the agents.

An application of our game theoretical model is the transmission of advertising money in com-
panies. A company looking to promote their product can use different media (the intermediaries)
to reach the advertising target of their product; such intermediaries include TV channels, radio
stations, Internet websites and newspapers. The quality of the connections is relevant because,
within the media, there are different channels that target to specific demographics of agents and
may influence the planner’s objective differently. For instance, two local TV stations based in the
same city may be connected to all agents in the city, but the audience may be more biased based
on demographics or political preferences —e.g. Fox News and CNN reach the same audience, but
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they target their programming to attract more conservative or liberal viewers, respectively. Nowa-
days, the printed version of newspapers are read heavily by older people instead of younger people,
and the proportions of older to younger readers are typically available to potential purchasers of
advertisements. Therefore, it is in the interest of the planner to choose the media channel that best
align to his preferences.

Alternatively, consider the case of government contracting. For instance, the allocation of
government’s money to people in need via charities. The government may decide to send the
money via charities that will charge an indirect cost for the use of their services. The connections
of the charities as well as their quality are exogenous information that the planner cannot control,
and they are typically taken into account when making a decision on how to allocate the resources.
For instance, charities heavily funded by the government include UNICEF or the Red Cross. While
both charities overlap in some of the agents that they serve (e.g. children in need), they also have
large difference in their recipients.1 The quality of the connections of the charities is also important
when picking a charity. For instance, inefficiencies happen often in charities and universities, where
every dollar spent is often decreased due to indirect cost, which serves to pay for administration.2

Thus, the planner should care about how their money is distributed to the agents and aligned with
its preferences. Our model looks at the case of perfect information, which is also the case in this
example, as the priorities and activities of the charities are typically reported by them in advance.3

As such, the planner can make an informed decision on how its money will transmit by the charities
chosen.

Finally, the problem has applications to network flow problems. For instance, when there is
ground water that must be distributed to agents via private canals (intermediaries). The planner
can decide how to route the water to the canals, but once the water reaches the canal it is distributed
to the agents connected to these canals in some fixed proportions that may vary between canals.
Conveyance losses are typical in models, and may depend on how far the agents are from the source
(Jandoc, Juarez and Roumasset[22] study the optimal allocation of water networks in the presence
of these losses). The owners of the canals may charge the planner for the use of their canals, and
therefore the planner should consider the trade-offs between allocating goods to cheap canals as
opposed to more efficient but expensive canals.

While most of the analysis of the paper studies the case of exogenous quality of the interme-
diaries. The end of the paper will study the case where the planner can choose the quality of the
intermediaries.

1.1 Overview of the Results

To illustrate our main results, consider the example of a planner who is connected to three
intermediaries, who themselve are connected to two agents (see figure 1). The planner seeks to

1Thus, for instance, the Federal Emergency Management Agency may be more interested in allocating money to
the Red Cross, which distribute a large percentage of their resources to helping domestic citizens affected by disasters,
as opposed to UNICEF which helps children around the world.

2 This factor in the quality of the charities is so important that all charities in the US are required by law to
report the total percentage amount spent in their causes, as opposed to administration costs. For instance, the
current indirect costs for the Red Cross and UNICEF are 9.7% and 4.74%, respectively. Multiple online websites
exists that rank charities based on the indirect costs, among other metrics.

3The Red Cross publishes at the end of each year ‘its activities in the field and at the headquarters during the
coming year,’ which allow donors to make informed decision on where the money will go. Earmarking is typically
not allowed in such big charities, as ‘experience shows that the more restrictive the earmarking policy (whereby
donors require that their funds be allocated to a particular region, country, program, project or goods), the more
limited the ICRC’s operational flexibility, to the detriment of the people that the ICRC is trying to help.’ https:

//www.icrc.org/en/support-us/where-does-your-money-go
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Figure 1: A network with three intermediaries and two agents.

transfer I units of money and has preferences over the allocation of the resource to the agents
(y1, y2) given by a perfect complements utility function u(y1, y2) = min{y1, y2}. Moreover, assume
that intermediary C1 can only transmit the resource to agent 1 and intermediary C2 can only
transmit the resource to agent 2. On the other hand, Intermediary C3 can transmit the resource
to agents 1 and 2, but it can only do so in equal proportions (we refer to this as the quality of
intermediation of intermediary C3, or sharing-rates). The qualities of intermediaries C1 and C2 are
1.2 and 6

7 , respectively. Thus, every unit of money sent to intermediary C1 is increased by 20%,
whereas every unit sent to intermediary C2 is decreased by 1

7 .
In the absence of cost for using the intermediaries, the planner (P ) can efficiently transmit the

resource by using three potential groups. The planner P can use intermediaries C1 and C2, and
transmit 5I

12 and 7I
12 via intermediaries C1 and C2 respectively. The final allocation to the agents

is ( I2 ,
I
2). Alternatively, the planner P can allocate all the resource to intermediary C3, and the

agents will also get the same maximal allocation ( I2 ,
I
2). Moreover, the planner P can also use

intermediaries C1, C2 and C3 to transmit the resource efficiently by making a convex combination
of the above.

Now, assume that the planner elicits costs from the intermediaries for using their links, and
selects a group of intermediaries who are used at every vector of costs (c1, c2, c3), where ci is the
fixed-cost that intermediary Ci reports. There are two types of SPNEs. The first equilibrium is the
efficient-SPNE, where the cost profile is (0, 0, 0). In this equilibrium, the planner fully transmits the
resource to the agents without any cost paid to the intermediaries. This is an equilibrium because
if an intermediary who is used by the planner increases its cost above zero, then the planner will
not select it, as it can use another group of intermediaries to transmit the resource efficiently.

The second type of SPNE is the inefficient equilibrium, (c1, c2, c3), where c1 ≥ I, c2 ≥ I and
c3 = I. In this equilibrium, the planner pays intermediary C3 an amount equal to I and transmits
no resource to the agents. This is an equilibrium because neither intermediaries C1 or C2 can
decrease their cost to undercut intermediary C3. Intermediary C3 has no incentive to decrease its
cost because it is being selected.

Two results of the paper relate to the existence of an efficient-SPNE, where intermediaries
charge zero cost at equilibrium. Theorem 1 shows that an Efficient-SPNE exists if and only if
the intersection of the efficient groups (in our example above {C1, C2}, {C3} and {C1, C2, C3}) is
empty.

It is natural to also look for equilibrium where the group of agents who are not selected price
at zero.4 We call this equilibrium a Robust-SPNE. In our example, (0, 0, 0) is the unique Robust
equilibrium, since in the second type of SPNE intermediaries C1 and C2 charge a cost larger than
I. Theorem 2 shows that if the planner has strongly-monotonic and homothetic preferences, then

4One can imagine that if intermediaries are not selected, then they will undercut their price trying to get selected,
thus at the equilibrium it is natural to assume that the intermediaries who are not selected price at zero in equilibrium.
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there is a unique Robust-SPNE if and only if the intersection of the efficient groups is empty.
We further explore the conditions for the existence of SPNEs, even though they may not be

efficient. Theorem 3 provides three necessary and sufficient conditions for a cost c to be supported as
a SPNEs when preferences are strongly monotone. The first condition requires that no intermediary
should be in all the group-maximizing planner’s utility under the cost c. The second condition
requires that all the intermediary who belong to some utility maximizing group at cost c and
charge positive cost should belong to the same utility maximization group. The third condition
requires that the intermediaries who do not belong to any utility maximizing group at cost c should
not change the indirect utility of the planner when they lower their cost to zero.

We also show the existence of a Robust SPNE when the intersection of the efficient groups is
not empty. Proposition 1 shows conditions that guarantee the uniqueness of the robust SPNE.
Proposition 2 provides conditions for the existence of a SPNE and uniqueness of the Robust SPNE
from simple inequalities that depend on computable values from the utility function of the planner.

Comparative statics related to the addition of intermediaries are discussed in Corollaries 1 and
2. Corollary 1 shows that by replicating the intermediaries (to the points where there are at least
two intermediaries of every type), or by adding one intermediary with ‘high quality of links’ will
guarantee the existence of an efficient-SPNE and unique Robust-SPNE. Corollary 2 demonstrates
that under some condition, adding one arbitrary intermediary will not make the planner worse off.
In general, the effect of adding one intermediary is ambiguous due to the multiplicity of equilibria.

Finally, Theorem 4 studies the case when the planner may be able to determine the quality of
the intermediaries (i.e., the planner is able to reallocate the proportions in which every intermediary
distributes the resource to the agents). It shows that the necessary and sufficient conditions for
the existence of an efficient SPNE is that every agent is connected to at least two intermediaries.
At the same time, there are only two types of SPNE in which the intermediaries either charge the
planner cost 0 or total cost I for using their links.

This is the first result in the literature of intermediation that works for a wide variety of
preferences. In most of the results we only assume that the preferences of the planner are weakly-
monotonic and homothetic over the allocation of resource to the agents.5 All of the results in the
paper work for the three canonical preferences in the literature: Cobb-Douglass, perfect comple-
ments and perfect substitutes.

1.2 Related Literature

The allocation of divisible resources in networks (see, Jackson[21] for the most comprehensive
survey in networks) include Hougaard, et al.[15, 16, 17, 18, 19], Moulin[42], [43], Moulin et al.[44]
and Juarez et al.[28, 29, 27]. However, we study the problem of transmitting a divisible good in
networks with intermediaries, which not surprisingly, creates substantial differences in the equilibria,
strategies and difficulty of the model. The most closely related paper is Moulin and Velez[46], which
study the price of imperfect competition for the problem of spanning tree. The spanning tree model
is similar with the resource transmitting in network with intermediary in the case of flexible sharing-
rate (see Section 6). However, in our more general case, the problem of the planner depends on
the various networks (including connections and quality of connections) and utility function, which
result in more complex equilibriums than the ones discussed in Moulin and Velez[46].

There is also a large and growing literature in the transmission of indivisible goods and ser-
vices with intermediaries. Many researches have studied the role of intermediation in agriculture,
financial market and measure long supply chains. For instance, Li and Schurhoff[33] study net-
work of intermediation in financial market about execution speed and trading cost. Antras and

5Although, we do assume strong monotonicity in some of the statements.
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Costinot[2] and Antras and Chor[1] study trade with intermediation, they focus on the welfare
effect of integration on the markets and the optimal allocation of ownership rights in a long supply
chain.

At the same time, different trading mechanisms are discussed in the literature, including bilateral
bargaining, price posted and second price auction. Manea[34] study dynamic game on bilateral
bargaining in network with intermediation, Kotowski and Leister[30] study intermediary traders in
network with auction mechanism to set prices, and analyze the welfare implications of stable and
equilibrium networks. Blume et al.[5] and Gale and Kariv[14] study the effect intermediation in
the market with price posted. Gale and Kariv[14] study the market with intermediaries and find
the pricing behavior converges to competitive equilibrium in an experiment. Choi, Galeotti and
Goyal[9] study pricing in complex structures of intermediation.

Competition and pricing of agents in networks has also been studied. For instance, Bloch[4] give
a survey about targeting and pricing in social network. Bloch and Querou[3] study the monopoly
pricing in social networks with consumer externalities. Campbell[7] study monopoly targeting and
pricing with communication in the network of consumer. Our paper is related in a sense that we
study the competition behavior among the intermediaries in a targeting problem.

Chawla and Niu[8] study the price of anarchy in Bertrand games on network. The price com-
petition among the sellers resembles the price bidding of our mechanism. However, their model
focus on the decision of buyers. Here, we study the problem from the planner’s point of view. The
network and utility function of the planner determines the competition among the intermediaries,
rather than the standard Bertrand competition.

To our knowledge, this model is the first to consider the quality of intermediation, as well as to
consider a wide variety of preferences of the planner.

1.3 Roadmap

Section 2 introduces the game of resource transmission in network with intermediaries. Sec-
tion 3 studies the sufficient and necessary condition for efficient SPNE and uniqueness of robust
SPNE. Section 4 analyzes the sufficient and necessary condition for SPNE in general case, and
investigates the properties of robust SPNE. Section 5 presents the comparative statics results. Sec-
tion 6 discusses extensions, interpretations, and applications of the model and provides concluding
remarks.

2 The Model

Consider a planner who is interested in sending I units of a divisible resource to a group of M
agents. We denote the agents by 1, 2, . . . ,M and the total group of agents by A = {1, . . . ,M}. The
planner has preferences over the resource y = (y1, y2, . . . , yM ) sent to the agents. These preferences
are denoted by the utility function u : RM+ → R that is continuous and weakly-monotonic, see
Figure 2.6

We consider the case where the planner is not directly connected to the agents, but instead, it is
connected to a group of N intermediaries, denoted by C1, C2, . . . , CN , and let C = {C1, C2, . . . , CN}
be the subset of all intermediaries. We focus on the case where there are fixed links between the
intermediaries and the agents. Every intermediary is connected to a group of agents, which is

6We impose further restriction on the preferences, such as strong monotonicity and homotheticity, in some of the
results. All definitions about properties of the utility function are standard definitions from Mas-Colell, Whinston
and Green[39] Chapter 3.
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Figure 2: The model studied in this paper is very general and allows for basically any type of
planner’s preferences, including the three canonical cases: Cobb-Douglas, Perfect Complements
and Perfect Substitutes.

P

C1

C2

C3

CN

1

2

3

M

...

...

Figure 3: A generic graph for the model of intermediation.

denoted by the bipartite network g ∈MN×M , where gnm = 1 if there is a link between intermediary
n and agent m, and gnm = 0 if there is no link between them. Figure 3 shows a generic model of
intermediation.

Every intermediary can transmit resources to the agents that it is connected with some fixed
quality, this is denoted by the sharing-rate. Let snm be the sharing-rate of intermediary Cn con-
nected to agent m, where 0 ≤ snm for each intermediary Cn. The matrix of sharing-rates is
S = (s11, . . . , sNM )N×M . We assume that if there is no link between intermediary Cn and agent m,
that is if gnm = 0, then snm = 0. Thus, there is no transmission of resource between intermediary
Cn and agent m when there is no connection between them. The sharing-rate distinguishes the way
in which intermediaries transmit resources to agents per unit of money given.7 Two intermediaries
connected to the same group of agents might have different impacts in the agents, and thus one
might be better aligned than the other to the planner’s preferences.8

Let 4N (L) = {x ∈ RN+ |
∑N

i=1 xi = L} be the simplex in the space of intermediaries. Every

7When
∑M
m=1 snm < 1, we can interpret the intermediary as being inefficient. Such inefficiencies happen often

in charities and universities, where every dollar spent is often decreased due to indirect cost, which serves to pay for
administration. The case of

∑M
m=1 snm > 1 implies that a dollar spend in the intermediary expands, for instance

when charities or universities offers matching funds from donors. Previous results in the transmission of resource in
networks do not distinguish in the quality of the links, thus assume that the sharing-rate is equal or not fixed.

8For instance, as we will see below, the planner might prefer to select an intermediary who wastes more money
but is better aligned with his preferences than an intermediary who does not wastes money but is less aligned to his
preferences.
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vector x ∈ 4N (L) represents a feasible assignment from the planner to the intermediaries when
there are L units of resource available. Given a feasible assignment x, the final allocation ym(x)
transmitted to the agent m satisfies ym(x) =

∑N
n=1 snmxn.

Definition 1 (Money Transmission Game with Intermediaries)
We study a two-stage perfect information game, where at the first stage, intermediaries choose
simultaneously and independently a cost c for using their links. In the second stage and observing
the costs c charged by the agents, the planner chooses a group of intermediaries who are used and
a vector x ∈ RN+ representing the amount allocated to these intermediaries.

• The strategy of intermediary Cn is to set a fixed cost cn ≥ 0 that the planner has to pay
to use its links. Let c = (c1, ..., cN ) be the vector of strategies by the intermediaries. The
objective of each intermediary is to maximize the cost paid by the planner to use its links.

• The strategy of the planner is a function b : RN+ → {0, 1}N and x : RN+ → RN+ that
allocates resources to intermediaries at every vector of costs c such that

N∑
n=1

xn(c) = I −
N∑
n=1

bn(c)cn.

Note that the planner only pays for the links used, therefore the total cost paid by planner is∑N
n=1 bn(c)cn, and I −

∑N
n=1 bn(c)cn units of resource are transmitted to the agents. Thus,

x(c) ∈ 4N (I −
∑N

n=1 bn(c)cn). Furthermore, b(c) and x(c) are consistent in the sense that
xn > 0 only when bn = 1, and xn = 0 when bn = 0, which means that only paid intermediaries
can be used to transmit resource.

• The utility V n(c, b) of intermediary Cn is: V n(c, b) = cn if bn(c) = 1, and V n(c, b) = 0 if
bn(c) = 0. That is, only the intermediaries selected might get positive utility equal to their
proposed cost.

• The utility of the planner equals to u(y(x(c))), which represents the utility at the final
resource y(x(c)) transmitted to the agents.

Let b∗(c, I) be the vectors of intermediaries used to maximize utility and x∗(c, I) be the subset of
vectors of optimal allocations of the planner given his resource I and vector of cost c. The indirect
utility function of the planner is v(c, I) = u(y(x̄)) for some x̄ ∈ x∗(c, I). The indirect utility function
of the planner when not using the group of intermediaries P is denoted by v−P (c−P , I).

Definition 2 (Subgame Perfect Nash Equilibrium)
The strategies from intermediaries c ∈ RN+ and planner b(c) : RN+ → {0, 1}N , x(c) : RN+ → RN+ are
a Subgame Perfect Nash Equilibrium (SPNE) if

• V n(c, b) ≥ V n(c̃n, c−n, b) for any Cn ∈ C and c̃n ∈ R+.

• b(c) ∈ b∗(c, I), x(c) ∈ x∗(c, I) for any c.

The first best for the planner is to finding conditions under which there is no waste of resource
used to pay the intermediaries. We capture this in the definition of Efficient-SPNE, where the final
allocation chosen is as if the vector of zero costs is a SPNE.9

9Note that we focus in a utility function of the planner that cares only about the final resource transmitted to
the agents and disregards the benefits of the intermediaries. This is distinct from the Pareto efficient allocations of
other work in the literature that take into account the utility of the planner and the intermediaries.
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Definition 3 (Efficient-SPNE)
• Let z̄ = 0 be the vector of zero costs. An allocation of money to intermediaries x is efficient

if x ∈ x∗(z̄, I).

• We say that (c, b, x) is an Efficient-SPNE if (c, b, x) is a SPNE and x(c∗) is efficient.

Note that an efficient SPNE requires that the allocation of money to the intermediaries is
efficient, however not all intermediaries need to be pricing at zero cost. This will be seen in some
of the examples below.

Example 1 (Substitute Network)
Consider the case of N identical intermediaries C1, . . . , CN connected to agents in an arbitrary
network. Assume that the sharing-rates are equal among the intermediaries, that is, snm = sm.
The preferences of the planner are monotone. If there is only one intermediary who charges cost 0,
then it has incentive to increase the cost slightly below the second lowest cost to be chosen and get
higher utility. If no intermediary charges cost 0, every intermediary except the one with lowest cost
has incentive to undercut. Then, the cost allocation c in a SPNE has at least two intermediaries
who charge cost 0. It is easy to verify that every cost allocation such that ci = cj = 0, for some
Ci, Cj ∈ {C1, . . . , CN} and cn ≥ 0, ∀n 6= i, j is a SPNE. Moreover, there exists Efficient-SPNE in
this model independent of the preferences of planner.

Example 2 (Linear Utility Function)
Consider a planner with utility function u(y) =

∑M
m=1 αmym, where αm is the weight of the

final resource allocated to agent m. Also, consider an arbitrary network. Given the sharing-rates
{snm}{n∈N,m∈M}, the marginal utility of resource allocated to intermediary Cn is constant and

given by MUn =
∑M

m=1 αmsnm. This is independent of the allocation x(c). Without loss of
generality, we rename the intermediaries based in a non-increasing order of their marginal utility,
that is MU1 ≥MU2 ≥ · · · ≥MUN .

When MU1 = · · · = MUk > MUk+1 and k ≥ 2, the planner is indifferent between allocating
the resources to any of the intermediaries from {C1, . . . , Ck} when their cost is zero. If only one
intermediary from {C1, . . . , Ck} has cost zero, then he can raise the price to slightly below the second
highest intermediary and continue being chosen in a SPNE. If no intermediary from {C1, . . . , Ck}
has zero cost, then at most one of them will be chosen, and the ones who are not chosen have the
incentive to decrease their cost. Therefore, a SPNE requires that at least two intermediaries from
{C1, . . . , Ck} have cost zero. It is easy to verify that every cost allocation such that ci = cj = 0,
for some Ci, Cj ∈ {C1, . . . , Ck} and cn ≥ 0, ∀n 6= i, j is a SPNE. Thus, in this example there is an
Efficient-SPNE.

When MU1 > MU2, the intermediary C1 has some market power to price above zero and
continue being chosen. In a SPNE, c2 = 0 and c1 = I(1− MU2

MU1
), cn ≥ 0, ∀n ≥ 3 and intermediary

C1 is chosen to transmit I − c1 units of resource. The planner’s utility would be I ·MU2, which is
welfare equivalent to the utility given by allocating all resource to the intermediary with the second
highest marginal utility when he prices at 0. In particular, there is no efficient-SPNE.

Example 3 (Symmetric Network)
Consider the network in Figure 4. Assume utility function is u(y) = min{y1, y2, y3}, and the matrix

of sharing-rates S =

1
2 0 1

2
1
2

1
2 0

0 1
2

1
2

 .
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Figure 4: Network with three symmetric intermediaries

There is an equal-sharing between the intermediaries and the agents, every intermediary is
connected to two agents and would always send the resource equally to the agents connected. The
planner cares about the agent who is allocated the least resources. Note that, if the planner only uses
two intermediaries, the optimal allocation is to transmit half resource through each intermediary.
Thus, the agent connected to both intermediaries would get half of the resource and each of the
other two agents would get one-quarter of the resource transmitted. In this case, the resource
cannot be allocated equally to three agents and results in waste of resource and inefficiency. Thus,
the only way to achieve efficiency is to use all three intermediaries, the planner is able to transmit
the resource equally to the agents.

Every intermediary is necessary to be used to achieve the efficiency in transmitting certain
amount of resource, so it has some market power to charge positive cost in equilibrium. There
is a symmetric equilibrium where every intermediary charges I

6 , that is c = ( I6 ,
I
6 ,

I
6), the planner

would use all the intermediaries b(c) = (1, 1, 1) with allocation of resource x(c) = ( I6 ,
I
6 ,

I
6), and it

is indifferent with using any two intermediaries. If C1 increase its cost, it would results in lower
utility of using all intermediaries, while the utility of using the {C2, C3} remains the same, then
the planner would choose {C2, C3}, and C1 lose the payment. The intermediaries also have no
incentive to lower their cost, since they are already being selected. Thus, this cost allocation is an
equilibrium.

There is another equilibrium cost allocation, which results when every intermediary charges a
total resource I, that is c = (I, I, I), and the planner pays one of the intermediaries (say, interme-
diary C1, b(c) = (1, 0, 0)) all the resource without transmitting anything, which means x = (0, 0, 0).
In this equilibrium, there is no incentive for C1 to deviate, since it gets all the resource. For C2 or
C3, even if one decreases the cost, the planner cannot get positive utility because one intermediary
is not connected to all the agents and at least one agent would receive 0 resource. Thus paying
all resource to C1 is still the best strategy for planner. This very inefficient SPNE exists because
intermediaries C2 and C3 cannot cooperate by lowering their cost simultaneously.

3 Efficient-SPNE: Existence and Uniqueness

Definition 4 (Utility Maximization Group)
• Given the vector of costs c ∈ RN+ , we say that P ⊂ C is a utility maximization group if

there exists x̄ ∈ x∗(c, I) such that Cn ∈ P ⇔ x̄n > 0.

• An efficient group P e is a utility maximization group under cost c = 0. Let P e1 , . . . , P eJ be
the efficient groups.

One necessary condition for the existence of SPNE, is that the utility maximization group must
be chosen by the planner at any c. In order to find an Efficient-SPNE, one of the efficient groups

10
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Figure 5: Efficient groups for preferences �1 and �2

must be chosen.

Example 4 (Utility maximization groups for examples 1, 2 and 3.)
• In example 1, the efficient groups include all subset of {C1, . . . , CN}. For example, {C1},
{C2},. . . , {CN} are all efficient groups.

• In example 2, assume {C1, . . . , Ck} are the subset of intermediaries with marginal utility
MUn = MU1, ∀1 ≤ n ≤ k. The efficient groups include all subset of {C1, . . . , Ck}.

• In example 3, the only efficient group is {C1, C2, C3}.

Example 5 (Utility maximization groups for different preferences)
In this example we illustrate that the utility maximization group(s) are very dependent on the pref-
erences of the planner. We also illustrate the graphic computation of efficient groups for arbitrary
preferences. Consider the case in figure 5. There are 2 agents, and intermediaries {C1, . . . , C5}. The
dots in the graph labeled with the intermediaries’ name represent the final allocation of resource
transmitted to the agents if such intermediary is used to transmit I units of the resource. Every
point in the line between two intermediaries can be achieved by making a convex combination of the
resource to the intermediaries. Therefore, the ‘Pareto-frontier’ of the dots represent all potentially
efficient allocations.

If the preferences are given by �1, using C1 and C2 will achieve the allocation of maximal utility,
the efficient group is therefore {C1, C2}.

Alternatively, if the preferences are given by �2, the allocation that maximizes the utility can
be achieved with groups {C2, C3}, {C2, C4}, {C3, C5}, {C4, C5} (and their respective unions).

Example 6 (Efficient SPNE and group selection)
Consider the network in Figure 6. Assume that the utility function is u(y) = min{y1, y2, y3, y4}
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Figure 6: Network with Multiple Equilibria

and the matrix of sharing-rates is S =



1
6

1
3

1
6

1
3

1
6

1
3

1
6

1
3

1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

. The efficient groups include P e1 = {C3, C4},

P e1 = {C5, C6}. But there is an inefficient equilibrium c = (0, 0, c3, c4, c5, c6), c3, c4, c5, c6 ≥ I
3 ,

in which the planner chooses b(c) = (1, 0, 0, 0, 0, 0), x(c) = (I, 0, 0, 0, 0, 0) and provides a final
utility u(y) = I

6 . In this equilibrium, C1 and C2 compete and have no incentive to raise their
cost, C3, C4, C5, C6 will not be selected if they decrease their cost by themselves, thus they have no
incentive to lower their cost. At the same time, there is an efficient equilibrium c = (c1, c2, 0, 0, 0, 0),
c1, c2 ≥ 0, b(c) = (0, 0, 1, 1, 0, 0), x(c) = (0, 0, I2 ,

I
2 , 0, 0) that provides a final utility u(y) = I

4 .
From this example, we can see that in some SPNE, the planner can pay a zero cost for using

some intermediaries, but the result of resource allocation is not efficient, I6 <
I
4 . Therefore, in order

to find an Efficient SPNE, the efficient group must be pricing at zero cost.

Theorem 1 (Existence of efficient SPNE)
Assume the efficient groups are P e1 , P e2 , ..., P eJ . There is an Efficient SPNE if and only if

⋂J
j=1 P

e
j =

∅.

From this result, the existence of an efficient equilibrium implies that there is no coalition
of intermediaries who belong to all the efficient groups. The intuition is that, if a coalition of
intermediaries belong to this intersection, then these intermediaries will have sufficient market
power to price above zero, thus creating an inefficient equilibrium. The extreme case occurs in
the traditional Bertrand competition model, where symmetric producers compete for a price and
the only SPNE leads to zero cost when the marginal cost of production is 0, as in Example 1
above. However, when intermediaries have different marginal cost of production in the Bertrand
competition, a SPNE where intermediaries price above zero is possible.
Proof.
⇐) If

⋂J
j=1 P

e
j = ∅, ∀n, given c−n = 0, when Cn choose cn > 0, there exists group P ej with

Cn /∈ P ej , since the intermediaries in P ej charge cost 0. The maximal utility of planner by using a
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Figure 7: Network with Complements Intermediaries

group with Cn would not be higher than the efficient group P ej . Cn deviate from cn = 0 to cn > 0
would not increase its benefit. Thus, cn = 0, ∀n is SPNE.
⇒) If

⋂J
j=1 P

e
j 6= ∅, we show that cn = 0 ∀n is not SPNE. Indeed, pick Cn ∈

⋂J
j=1 P

e
j . Without

using intermediary Cn, given the cost of other intermediaries c−n, assume the maximal utility is
v−n(c−n, I). Since Cn is used in all efficient groups P ej , then v(c, I) > v−n(c−n, I). So, there exists
ε small enough such that Cn increases the cost cn to ε, c′n = ε, c′ = (c1, ..., cn−1, c

′
n, cn+1, ..., cN ), s.t

v(c, I) > v(c′, I) > v−n(c−n, I). Thus, Cn would deviate and get positive profit. Therefore, c = 0
is a SPNE only if

⋂J
j=1 P

e
j = ∅.

3.1 Multiplicity of SPNE

Example 7 (Multiple Equilibria)
Consider the network in Figure 7. Assume utility function is u(y) = min{y1, y2, y3, y4}, the matrix

of sharing-rates S =


1
4

1
4

1
4

1
4

1
6

1
3

1
6

1
3

1
2

1
2 0 0

0 0 1
2

1
2

. There are two efficient group P e1 = {C1}, P e2 = {C3, C4}.

But there is inefficient equilibrium c = ( I3 , 0, c3, c4), c3 ≥ I
3 , c4 ≥ I

3 , with planner choose b(c) =
(1, 0, 0, 0), x(c) = (2I

3 , 0, 0, 0), u(y) = I
6 which guarantees C1 has no incentive to decrease cost, and

C3, C4 have no benefit deviating to charge lower cost independently. At the same time, there is
efficient equilibrium c = (0, c2, 0, 0), c2 ≥ 0, b(c) = (1, 0, 1, 1), x(c) = ( I3 , 0,

I
3 ,

I
3), u(y) = I

4 .
From this example, we can see the effect of adding an intermediary on the SPNEs. When there

are only intermediaries {C1, C3, C4}, there is a SPNEs with c = (0, 0, 0), u(y) = I
4 and c = (I, c3, c4),

with c3, c4 ≥ I. In this case, the planner pays C1 all the resource I, b(c) = (1, 0, 0), and has utility
0. After adding C2, cost profiles c = (0, c2, 0, 0) and c = ( I3 , 0, c3, c4) are SPNEs. Both cases have
efficient-SPNEs, while the inefficient SPNEs change from c = (I, c3, c4) to c = ( I3 , 0, c3, c4), total
cost paid to intermediaries decrease after adding intermediary.

In section 5 we discuss more about the benefits of adding intermediaries.

Example 8 (Multiple Equilibria)
Consider the network in Figure 8, replicate the intermediaries {C1, C3, C4} with the same links and
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Figure 8: Network with Multiple Equilibria

sharing-rates to generate the network. The matrix of sharing-rates is S =



z 1−2z
2 z 1−2z

2
z 1−2z

2 z 1−2z
2

1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

.

Assume z ≤ 1
4 , utility function is u(y) = min{y1, y2, y3, y4}. There are efficient groups P e1 =

{C3, C4}, P e2 = {C5, C6}, P e3 = {C3, C6}, P e4 = {C4, C5}.
Using the same method to find the SPNEs of this problem. In SPNE, c = (0, 0, c3, c4, c5, c6)

with c3, c4, c5, c6 ≥ I−4zI, x(c) = ( I2 ,
I
2 , 0, 0, 0, 0), u(y) = zI or c = (c1, c2, 0, 0, 0, 0) with c1, c2 ≥ 0,

b(c) = (0, 0, 1, 1, 1, 1), x(c) = (0, 0, I4 ,
I
4 ,

I
4 ,

I
4), u(y) = I

4 .
Comparing to the case of intermediaries {C1, C3, C4}, the efficient group is P e1 = {C3, C4}. In

a SPNE, c = (I, I, I) with b(c) = (1, 0, 0), x(c) = (0, 0, 0), planner pays I to C1, u(y) = 0 or
c = (0, c2, c3), c2 + c3 = (1− 4z)I with b(c) = (0, 1, 1), x(c) = (0, 2zI, 2zI), u(y) = zI.

This example shows replicating some intermediaries might improve the planner’s utility in both
worst equilibrium from 0 to zI, and also the best equilibrium from zI to I

4 . When z → 0, the best
equilibrium improves from 0 to I

4 , and the worst equilibrium has little improvement. When z → 1
4 ,

the worst equilibrium improves from 0 to I
4 , and the best equilibrium improves little.

More general results about the existence of an efficient equilibrium in ‘replicated’ networks is
discussed in Corollary 2.

Example 9 (Price of Anarchy and Price of Stability)
Given the multiple SPNE in the game, two measures of efficiency have been used in the literature.
The Price of Anarchy (POA) is defined as the ratio of the worst equilibrium over the optimal
allocation, POA = Worst SPNE

Optimal . On the other hand, the Price of Stability (POS) is defined as the

ratio of the best equilibrium over the optimal allocation, POS = Best SPNE
Optimal .

In example 7, the planner’s utility of worst SPNE u = I
6 , utility of best SPNE ū = I

4 , utility of
optimal allocation uO = I

4 . POS = 1, and POA = 2
3 .

In example 8, the planner’s utility of worst SPNE u = zI, utility of best SPNE ū = I
4 , utility

of optimal allocation uO = I
4 . POS = 1, and POA = 4z. When z → 0, POA → 0, which is as if

the planner was not transmitting any resource to the agents.

14



In particular, from example 8, the POA can be as close as zero when the POS can be as close
at 1, and thus the efficiency varies a lot in different SPNE. Thus, in the extreme case, the SPNEs
can simultaneously reach an optimal equilibrium and a fully inefficient equilibrium. The inefficient
result is caused by the failure of coordination among group of intermediaries to lower their costs at
the same time.

3.2 Efficient Robust-SPNE

In examples above we saw that multiplicity of equilibria is possible. Moreover, in example
9 we saw that this multiplicity implies that the utility of the agents can vary greatly from the
optimal allocation at equilibrium (when POS = 1) to almost no utility for the planner (when
POA ≈ 0). However, we can argue that some of the equilibria might not be as likely to occur
because there are groups of intermediaries who are not used and offer their links at a positive cost.
These intermediaries who are not used always have the incentive to undercut their cost in hopes to
be chosen.

In this section we look at a robustness of SPNE, where intermediaries who are not being used
by the planner cannot jointly decrease their cost and affect the equilibrium. Formally, a SPNE is
a robust equilibria when the intermediaries who are not used by the planner charge cost zero.

Definition 5 (Robust Equilibrium)
The Subgame Perfect Nash Equilibrium (c, b(c), x(c)) is robust if intermediaries who are not used
by the planner charge zero cost. That is, the SPNE (c, b(c), x(c)) is robust whenever bi(c) = 0
implies ci = 0.

Example 10 (Robust SPNE)
In example 7, c = ( I3 , 0, c3, c4), c3 ≥ I

3 , c4 ≥ I
3 and the planner choosing b(c) = (1, 0, 0, 0),

x(c) = (2I
3 , 0, 0, 0) are SPNEs. Note C3, C4 are not used by planner while charging positive

cost, therefore these SPNE are not robust.
On the other hand, c = (0, c2, 0, 0), c2 ≥ 0, and the planner choosing b(c) = (1, 0, 1, 1), x(c) =

( I3 , 0,
I
3 ,

I
3) are SPNEs. In this case, C2 is not used by planner, thus when C2 charges 0 we get a

robust SPNE. So only c = (0, 0, 0, 0) is a cost allocation for a robust SPNE.
In example 8, SPNEs are c = (0, 0, c3, c4, c5, c6), c3, c4, c5, c6 ≥ I−4zI and the planner choosing

b(c) = (1, 0, 0, 0, 0, 0), x(c) = (I, 0, 0, 0, 0, 0) are SPNEs. C3, C4, C5, C6 are not used by planner
while charging positive cost, thus there are not robust SPNE.

c = (c1, c2, 0, 0, 0, 0) with c1, c2 ≥ 0 and planner choosing b(c) = (0, 0, 1, 1, 1, 1),x(c) = (0, 0, I4 ,
I
4 ,

I
4 ,

I
4)

are SPNEs. C1 and C2 will not be used by planner, thus they charge zero cost in a robust SPNE.
So only c = (0, 0, 0, 0, 0, 0) is a cost allocation for a robust SPNE.

Theorem 2 (Efficient Robust-SPNE)
1. If cn = 0 for all Cn ∈ C is a Robust-SPNE then

⋂J
j=1 P

e
j = ∅.

2. Assume that the planner has strongly-monotonic and homothetic preferences10. If
⋂J
j=1 P

e
j =

∅ then cn = 0 for all Cn ∈ C is the unique Robust-SPNE.

10Preferences are homothetic if and only if there exists a utility function such that u(λy) = λu(y) for any λ > 0
and y ∈ RN . Note than if preferences are homothetic and u(Q, I) is the maximal utility of planner using certain
group Q of intermediaries by allocating I resource, then u(Q, I) = I · u(Q, 1) is the maximal utility of distributing 1
unit of resource with group Q. Let u(Q) = u(Q, 1). If utility function u(y) = min{y1, . . . , yM}, and v(0, I) > 0, the
conclusion holds although it is not strongly monotonic.
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Figure 10: Network with multiple inefficient SPNE

This result is similar with Theorem 1. Under the condition of strongly monotonic and homo-
thetic preferences and when no group of intermediaries belong to all the efficient coalitions, there
exists a unique efficient robust equilibrium. The robust SPNE refines the SPNE, as it eliminates
the equilibria where intermediaries cannot coordinately lower the cost to be used by planner. This
simple robustness lead to a uniqueness of robust-SPNE under most preferences.
Proof. Part 1 is a trivial consequence of Theorem 1 because (0, 0, . . . , 0) is a Robust-SPNE.

In order to prove part 2, assume there is a robust SPNE with c 6= 0. From the definition of Ro-
bust SPNE, ∀cn > 0, intermediary Cn is used in the utility maximization group of intermediaries.
From part (2) of Theorem 3, there exists a utility maximization group P1, such that all the inter-
mediaries with positive cost are in P1, that is, ∀cn > 0, Cn ∈ P1. The maximal utility for planner
to use group P1 is (I −

∑
cn>0 cn)u(P1). The efficient groups are P e1 , . . . , P eJ , assume u = u(P e1 ).

Since
⋂J
j=1 P

e
j = ∅, for intermediary Ck with ck > 0, ∃P ej , Ck /∈ P ej . Then the maximal utility for

planner to use P ej is (I −
∑

Cn∈P ej
cn)u(P ej ) = (I −

∑
Cn∈P ej

cn)u. I −
∑

Cn∈P ej
cn > I −

∑
cn>0 cn,

and u ≥ u(P1), we have (I −
∑

cn>0 cn)u(P1) < (I −
∑

Cn∈P ej
cn)u, it means group P ej results in

strictly higher utility than P1, which contradicts that P1 is a maximal utility group. Thus, c = 0
is the unique robust SPNE.

4 Inefficient SPNE

From Theorem 1 we saw that an equilibrium with zero cost will happen if and only if
⋂J
j=1 P

e
j =

∅. We see below that whenever
⋂J
j=1 P

e
j 6= ∅ inefficient equilibria may exist. In aggregate, the inter-

mediaries in the intersection may make a positive profit in equilibrium (there may be intermediaries
in the intersection that will charge positive cost and will be selected), whereas the intermediaries
who do not belong to the intersection may or may not charge positive cost and make profit at
equilibrium.

Example 11 (Unique inefficient equilibrium)
Consider the network in Figure 9. Assume utility function is u(y) = min{y1, y2, y3}, and the
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matrix of sharing-rates S =

2
3

1
6

1
6

5
6

1
12

1
12

0 1
2

1
2

. The efficient group are P e1 = {C1, C3}, P e2 = {C2, C3},

P e3 = {C1, C2, C3}. Thus,
⋂3
j=1 P

e
j = {C3}. The intersection of efficient groups

⋂3
j=1 P

e
j is not

empty, C3 has market power to charge positive cost, while there is competition between C1 and C2.
If c > 0, then a group that includes both C1 and C2 cannot be a utility maximization group, since
the planner needs to pay c1 + c2 + c3 using P e3 , while only pay c1 + c3 using P e1 . So C1 or C2 would
be used. If C1 is used, then c1 < I, because when c1 = I, any c2 < I would be used by planner. If
P e1 = {C1, C3} is not utility maximization group, then it means C1 is chosen, C3 is not paid and has
incentive to deviate to I−c1

2 > c3 > 0 which guarantees I−c1
6 < I−c1−c3

3 and C3 would get c3, so P e1
is a utility maximization group. Then if C2 charges cost c2 < c1, P e2 becomes utility maximization
group, C2 will deviate and get higher utility. The case of C2 being used results in the same problem,
c > 0 is not cost allocation in SPNE, then c1 = 0 or c2 = 0. If c2 = 0, c1 > 0, the only possible
utility maximization groups are P e2 and C1, but either P e2 or C1 is chosen by planner, C1 or C3 has
incentive to lower its cost. If c1 = 0, c2 > 0, then the only possible utility maximization groups
are P e1 and C1, C1 is always being chosen thus it could get positive benefit increasing the cost.
From the analysis above, in SPNE, c1 = c2 = 0. It is not hard to find c = (0, 0, I2), b(c) = (1, 0, 1),
x(c) = ( I4 , 0,

I
4) is SPNE, the planner will transmit the resource with intermediary C1 and C3. This

is the unique cost c in a SPNE.

This example shows when there is one intermediary in the intersection, then there is equilibrium
it charges a positive cost such that the planner is indifferent between paying the cost and using
it and using other intermediaries. In other words, the intermediary could charge the cost equal
to its marginal contribution to the utility of planner, v(0, I − c1) = v−1(0, I), assume C1 is in the
intersection.

Example 12 (Multiple inefficient equilibria)
Consider the network in Figure 10. Assume utility function is u(y) = min{y1, y2, y3}, and the

matrix of sharing-rates S =

1
2

1
4

1
4

1
2

1
2 0

0 0 1

. The efficient group is P e1 = {C2, C3}.
⋂
P ej = {C2, C3}.

There are two types of SPNEs, both of them are inefficient. The first type is such that c = (0, c2, c3)
with c2+c3 = I

4 , b(c) = (0, 1, 1), x = (0, I2 ,
I
4) and the final utility of the planner equals to u = I

4 . The
second type of SPNE is c = (c1, c2, c3), with c1 = I, c2, c3 ≥ I and b(c) = (1, 0, 0), x(c) = (0, 0, 0),
in which case C1 gets the full resource and the planner does not transmit anything to the agents,
so the final utility of the planner is 0. In this case, intermediary C2 and C3 are complements, so
they cannot unilaterally deviate to the more efficient SPNE.

In this example, there are two intermediaries in the intersection, but they need to be used at
the same time. The complementarity between these two intermediaries result the sum of costs are
constant, which is equal to their marginal contribution in equilibria.

4.1 Properties of SPNE

Theorem 3 (Conditions for SPNE)
Consider a cost and allocation (c, b(c), x(c)) that is a SPNE. Assume that the utility maximization
groups at cost c are P1(c), ..., PK(c). Then,

1.
⋂K
k=1 Pk(c) = ∅.
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2. If the preferences are strongly monotone, then there exists a utility maximization group,
without loss of generality, assume it is P1(c), s.t. ∀Cn ∈

⋃K
k=1 Pk(c)\P1(c), cn = 0.11

3. ∀Cj ∈ C\
⋃K
k=1 Pk(c), it would not increase the planner’s utility even if its cost decreases to

0. That is, for c′j = 0 and c′ = (c−j , c
′
j), we have that v(c, I) = v(c′, I).

Conversely, if there exists a cost c that satisfies conditions 1-3, then it is SPNE.

Intuitively, condition 1 means that in a SPNE, the intermediaries chosen cannot increase the
cost to get a higher benefit. As a result, there will be at least two utility maximization groups for
any SPNE. Condition 2 means that in a SPNE, the intermediaries in some utility maximization
group with positive cost have no incentive to decrease their cost. Condition 3 means that the
intermediaries not used in the utility maximization group would not be used even if they decrease
the cost to 0.
Proof.

1. Suppose
⋂K
k=1 Pk(c) 6= ∅, there exists Cn ∈

⋂K
k=1 Pk(c). Without using intermediary n,

given the cost of other intermediaries c−n, consider the planner’s utility maximization problem,
maxx−nu(y), s.t

∑
x−n + b−nc−n ≤ I. Assume the maximal utility is v−n(c−n, I). Since Cn is

in every utility maximization group, the utility maximization group in C\Cn would achieve lower
utility given cost c−n, then, v−n(c−n, I) < v(c, I). The indirect utility function is continuous, ∃ε
small enough, such that intermediary n increases its cost by ε, c′n = cn + ε, c′ = (c−n, c

′
n), s.t

v(c, I) > v(c′, I) > v−n(c−n, I). Intermediary n would still be used by the planner after increasing
cost by ε, there is incentive for Cn to deviate, the c cannot be SPNE. So

⋂K
k=1 Pk(c) = ∅.

2. Assume we cannot find such a utility maximization group P (c) that includes all positive
cost intermediaries in

⋃K
k=1 Pk(c). Assume the planner choose group P1(c) to pay and allocate the

resource with intermediaries in P1(c). Then, there exists Cl ∈
⋃K
k=1 Pk(c)\P1(c) with cl > 0. Take

intermediary Cl and lower the cost by a small amount ε > 0, c′l = cl − ε > 0. Given the strongly
monotonicity of preferences, using a group Pk(c) that includes Cl would achieve strictly higher
utility for the planner, and the groups without Cl would give the same utility for the planner.
Thus, Cl would be used by the planner and have strictly higher profit cl − ε rather than 0, so Cl
has incentive to deviate, and cost c cannot be an equilibrium. Therefore, there exists a utility
maximization group P1(c) that contains all intermediaries charging positive cost in

⋃K
k=1 Pk(c).

If u(y) = min{y1, . . . , yM}, and v(c, I) > 0, it means the utility maximization group Pk(c) have
link to all the agents {1, . . . ,M}. When intermediary Cl lower the cost by small amount ε > 0, the
maximal utility will increase strictly. The proof works for this case, though the preferences are not
strongly monotone.

3. For Ci not to be in any utility maximization group Pk(c), it will not be used by the planner.
If it lowers its cost and improve the maximal utility achieved by the planner, it has incentive to
lower its cost and get paid. To make sure this case will not happen in a SPNE, it requires that
even when the cost decreases to 0, the maximal utility of the planner would not increase. Thus, if
c′j = 0, c′ = (c−j , c

′
j), then v(c, I) = v(c′, I).

From the proof above, if c is a SPNE cost allocation, then 1, 2, 3 hold. On the other hand, to
prove the converse, consider c satisfying conditions 1, 2, 3 and assume that the planner chooses the
group P1(c) in condition 2, paying all intermediaries in

⋃K
k=1 Pk(c) with positive cost. Since P1(c) is

a utility maximization group, the planner will achieve the maximal utility under c. For intermediary
Cj , if Cj ∈ C\

⋃K
k=1 Pk(c), from condition 3, it has no incentive to deviate. If Cj ∈

⋃K
k=1 Pk(c),

11Even if preferences are perfect complements, that is u(y) = min{y1, . . . , yM}, and v(c, I) > 0, this conclusion
holds.
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intermediary Cj has no incentive to increase its cost by condition 1, because the planner will use a
different efficient group of intermediaries if its cost is higher. At the same time, this intermediary
will not decrease its cost by condition 2, because the planner pays for its cost and lowering it will
give the intermediary smaller profit. Thus, any cost c satisfying conditions 1, 2, 3 could be a cost
allocation in SPNE.

Theorem above provides necessary and sufficient conditions for some cost c to be SPNE. How-
ever, in general there is no guarantee that such cost c will exist. We explore this in the next two
propositions.

4.2 Uniqueness of Robust SPNE

In this section we answer the questions of existence of robust SPNE in the case of
⋂J
j=1 P

e
j 6=

∅. In the following proposition, we will show that only the intermediaries in the intersection⋂J
j=1 P

e
j might charge positive cost in a robust SPNE. In order to do so, first we define the perfect

complementarity between the intermediaries in
⋂J
j=1 P

e
j .

Definition 6 (Perfect Complements in Efficient Group)
Consider the intermediaries in

⋂J
j=1 P

e
j = {C1, . . . , Ck}. We say that the agents in the group

C̄ ⊂ {C1, . . . , Ck} are perfect complements if v−n(0, I) = v−C̄(0, I), ∀n ∈ C̄.

Proposition 1 (Uniqueness of Robust SPNE)
Assume preferences are homothetic and strongly monotonic. The following conditions are satisfied:

1. At any Robust SPNE, only the intermediaries in the intersection P =
⋂J
j=1 P

e
j might charge

positive cost.

2. When |
⋂J
j=1 P

e
j | ≤ 1, there is unique Robust SPNE.

3. When
⋂J
j=1 P

e
j = {C1, C2}, there exists Robust SPNE. If 1

ū12
+ 1
ū ≥

1
ū1

+ 1
ū2

12, there is unique

Robust SPNE. If 1
ū12

+ 1
ū <

1
ū1

+ 1
ū2

, there are multiple Robust SPNEs.

4. If |
⋂J
j=1 P

e
j | ≥ 3 then a Robust SPNE might not exists. Moreover, even if it exists it might

not be unique.

The result implies that when the intersection of efficient groups is not empty, some intermediaries
have market power to charge a positive cost. When this intersection contain a single intermediary,
there is a unique robust SPNE. When there are two intermediaries in this intersection, the necessary
and sufficient conditions for the existence of a unique Robust SPNE are provided based on constants
coming from the utility function. Moreover, when three of more intermediaries exists, multiplicity of
Robust SPNE might also occur. Proposition 2 will provide sufficient conditions for the uniqueness
of Robust SPNE based on constants similar to part (3).
Proof. 1. Assume P = {C1, . . . , Ck}. We prove that cn = 0 ∀n ≥ k + 1. Indeed, assume this is
not the case, that is for some i ≥ k+ 1 we have that ci > 0. Then, there exists group P ej such that
Ci /∈ P ej . From (2) of Proposition 3, ∃P1(c), ∀cn > 0, Cn ∈ P1(c), and P1(c) is used by planner as
a utility maximization group. Assume the maximal utility of group P1(c) and P ej to distribute 1

12ū12 is the maximal utility of using any group of intermediaries to distribute 1 unit of resource. ū1, ū2 and ū
are the maximal utility without using C2, C1 and {C1, C2} to distribute 1 unit of resource respectively. That is,
ū12 = maxu(STx), s.t 1′x ≤ 1, 1 = (1, . . . , 1)N×1. ū1 = maxu(STx), s.t 1′x ≤ 1 and x2 = 0. ū1, ū are defined
similarly. We formalize the general case in the next section.
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Figure 11: Network with Two Perfect Complements Intermediaries

unit of resource are u1 and ue respectively. ue ≥ u1, I −
∑

Cn∈P ej
cn > I −

∑
n cn, since Ci /∈ P ej .

Then (I −
∑

Cn∈P ej
cn)ue > (I −

∑
n cn)u1, paying the cost and using group P ej achieve a strictly

higher utility, contradiction with P maximize the utility. So cn = 0, ∀n ≥ k + 1.
2. When |

⋂J
j=1 P

e
j | = 0, the unique robust SPNE c = 0 is proved in Proposition 2. Assume⋂J

j=1 P
e
j = C1, there is SPNE with c = (c1, 0, ..., 0), and c1 > 0 satisfies v(0, I − c1) = v−1(0, I).

Note: 0 of v(0, I − c1) is in RM , 0 of v−1(0, I) is in RM−1. In this case, the planner could achieve
utility v−1(0, I) = v(0, I|C\

⋂J
j=1 P

e
j ). Moreover, if the preferences are homothetic, there exists

utility function u(Q, I) = I · u(Q), this SPNE is the unique robust SPNE. The proof is similar
to the case

⋂J
j=1 P

e
j = ∅. Assume there exists intermediary Cn 6= C1 charges cn > 0, from (2) of

conditions for SPNE, ∃P1 which is a utility maximization group including all the intermediaries
with positive cost. Because

⋂J
j=1 P

e
j = C1, ∃P ek , s.t Cn /∈ P ek , the same way as Proposition to

show that using group P ek would achieve higher utility than group P1. Contradiction with the
assumption. Thus, c = (c1, 0, ..., 0) is the unique robust SPNE.

3. ū12 > ū1 and ū12 > ū2. From (1), we have cn = 0, ∀n ≥ 3 in a Robust SPNE, only c1 and c2

may be positive. If c1 > 0, c2 > 0, from condition (2) of Theorem 3, ∃ utility maximization group
P1(c) s.t {C1, C2} ⊆ P1(c). If c1 = 0, c2 > 0, ∃ utility maximization group P2(c) s.t {C2} ⊆ P2(c),
but (I − c2)ū12 > (I − c2)ū2, thus C1 ⊆ P2(c). So there always exists utility maximization group
P (c), s.t {C1, C2} ⊆ P (c). Assume P1, P2 and P12 are utility maximization groups without using
C2, C1 and {C1, C2} respectively. There are two cases in a robust SPNE: 1, P (c) and P12 are utility
maximization groups. (I − c1 − c2)ū12 = I · ū > (I − cn)ūn, n = 1, 2. When 1

ū12
+ 1

ū <
1
ū1

+ 1
ū2

,

c = (c1, c2, 0, . . . , 0), with c1 > (1− ū
ū1

)I, c2 > (1− ū
ū2

)I, c1 + c2 = (1− ū
ū12

)I > (2− ū
ū1
− ū

ū2
)I, the

planner use group P (c) to transmit resource are robust SPNEs. There are multiple equilibria. 2,
When 1

ū12
+ 1

ū ≥
1
ū1

+ 1
ū2

, P (c), P1 and P2 are utility maximization groups. c = (c1, c2, 0, . . . , 0),

c1 = ū1ū12−ū1ū2
ū12ū1+ū12ū2−ū1ū2

, c2 = ū2ū12−ū1ū2
ū12ū1+ū12ū2−ū1ū2

, the planner use group P (c) to transmit resource is
the unique robust SPNE.

When {C1, C2} are perfect complements in efficient group, which means ū1 = ū2 = ū, then
1
ū12

+ 1
ū <

1
ū1

+ 1
ū2

. So there are multiple robust SPNEs.

4. When |
⋂J
j=1 P

e
j | ≥ 3, there might not exist Robust SPNE. If there is robust SPNE, it might

not be unique like the example of perfect complements in efficient group of intermediaries in part
(3). Example 17 has 3 intermediaries in the intersection of efficient groups with multiple equilibria.
Moreover, the multiple robust SPNE give the planner different utility.

Example 13 (Multiple Robust SPNE: Perfect Complements)
Consider the network in Figure 11. Assume utility function is u(y) = min{y1, y2, y3}, the matrix
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Figure 12: Network with Two Intermediaries in Intersect of Efficient Group

of sharing-rates S =


2
3

1
6

1
6

5
6

1
12

1
12

0 1 0
0 0 1

. This example is similar to example 11, the only difference is

C3 in example 11 is replaced by C3 and C4. There are two efficient groups P e1 = {C1, C3, C4},
P e2 = {C2, C3, C4}. P =

⋂J
j=1 P

e
j = {C3, C4}. The utility of transmitting 1 unit of resource with

group {C1, C3, C4}, {C1, C3}, {C1, C4}, {C1} are ū34 = 1
3 , ū3 = ū4 = ū = 1

6 . C3 and C4 are perfect
complements intermediaries in efficient group, there are multiple robust SPNEs. In robust SPNE,
the cost c = (0, 0, c3, c4) s.t c3 + c4 = I

2 , group {C1, C3, C4} are used by planner, utility of planner
is u = I

6 . The robust SPNEs are equivalent to the robust SPNE in example 11 for the planner, in
which one intermediary replaces C3 and C4 with efficient sharing-rates.

Example 14 (Unique Robust SPNE)
Consider the network in Figure 12. Assume utility function is u(y) = min{y1, y2, y3}, the matrix

of sharing-rates S =


2
3

1
6

1
6

5
6

1
12

1
12

0 1
3

2
3

0 2
3

1
3

.

The network is similar to example 13 except {C3, C4} are not perfect complements in efficient
group here. There are two efficient groups P e1 = {C1, C3, C4}, P e2 = {C2, C3, C4}.

⋂J
j=1 P

e
j =

{C3, C4}.
The maximal utility of transmitting 1 unit of resource by group {C1, C3, C4}, {C1, C3}, {C1, C4},

C1 are ū34 = 1
3 , ū3 = 4

15 , ū4 = 4
15 , ū = 1

6 . Then 1
ū34

+ 1
ū = 9 > 1

ū3
+ 1

ū4
= 15

2 , so there is unique

robust SPNE. In robust SPNE, cost c = (0, 0, I6 ,
I
6). The utility for planner would be in 2I

9 , which
is larger than I

6 in example 13.

From the results of example 11, 13, 14, we find that when an intermediary in the intersect of
efficient groups is separated into two perfect complements intermediaries, it brings multiple robust
SPNEs, these SPNEs are welfare equivalent for the planner. When an intermediary in the intersect
of efficient groups is separated into two intermediaries who are not perfect complements, it might
bring competition between the intermediaries and result in an improvement for the planner.

For the case of |
⋂J
j=1 P

e
j | ≥ 3, the existence of SPNE becomes not clear, and there might be

multiple equilibria. The following example shows multiple robust SPNE in this case.

Example 15 (Multiple Robust SPNE)
Consider the network in Figure 13. Assume utility function is u(y) = min{y1, y2, y3, y4}, the
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Figure 13: Network with Multiple Robust SPNE

matrix of sharing-rates S =

2
3 0 1

6
1
6

0 2
3

1
6

1
6

1
3

1
3

1
6

1
6

. There is one efficient groups P e1 = {C1, C2, C3}. In

this example, C1 and C2 are perfect complements in efficient group, from (4) of Proposition 1,
there are multiple robust SPNEs. In robust SPNE, {C1, C2, C3}, {C1, C2}, {C3} are the utility
maximization groups, ū = 1

4 , ū12 = 1
6 , ū3 = 1

6 , the utility of planner using these groups is the same,

then we have I−c1−c2−c3
4 = I−c1−c2

6 = I−c3
6 . So any cost allocation (c1, c2, c3) in a robust SPNE

satisfies c1 + c2 = c3 = I
4 , and b(c) = (1, 1, 1), x(c) = ( I8 ,

I
8 ,

I
4).

As this example shows, the intersection of the efficient group includes 3 intermediaries. There
are multiple robust SPNEs, but two intermediaries are perfect complements in the efficient group,
and all robust SPNEs are welfare equivalent for planner.

4.3 Sufficient Conditions for Existence of SPNE

Assume the preferences are homothetic and monotonic. Denote P =
⋂J
j=1 P

e
j , and ūQ the

maximal utility that the planner could achieve by using group Q ⊂ P and any other intermediaries
in P c to distribute 1 unit of resource.13 When Q = P , the maximal utility is ūP . We denote by
ū−j = ūP\{j}, and ū = ū∅.

The following result extends Proposition 1(3), which provides the necessary and sufficient con-
ditions for the existence of a unique Robust SPNE in the case of |P | = 2. We show that these
conditions can be extended for an arbitrary size of P to guarantee the uniqueness of Robust SPNE.14

Proposition 2 (Existence of SPNE)
Suppose P =

⋂J
j=1 P

e
j = {C1, . . . , Ck}, preferences are homothetic and monotonic and there is a

vector (c1, . . . , ck, 0, . . . , 0) such that:

A1. (c1, . . . , ck) solves the equations (I −
∑k

n=1 cn)ūP = (I −
∑k

n=1,n 6=j cn)ū−j for any j ∈ P .

A2. (I −
∑k

n=1 cn)ūP ≥ (I −
∑

n∈Q cn)ūQ, ∀Q ⊂ P .

Then, (c1, . . . , ck, 0, . . . , 0) is a SPNE. Moreover, (c1, . . . , ck, 0, . . . , 0) is the unique Robust
SPNE.

13Formally, ūQ = maxu(STx) such that 1Tx ≤ 1 and xn = 0 for Cn ∈ P\Q. This is a constrained optimization
problem, and it can be easily solved

14We conjecture that these conditions are also necessary for the existence of a unique Robust SPNE (Proposition
1(3) for the case of |P | = 2 and all the examples in this paper support it).
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Condition (A1) helps to calculate the vector of costs (c1, . . . , ck). Since P is the intersection
of the efficient groups, then (I −

∑k
n=1 cn)ūP is the maximal utility that the planner can achieve

in the resource transmission problem after paying intermediaries in P . (I −
∑k

n=1,n 6=j cn)ū−j rep-
resent the maximal utility that the planner can achieve without using intermediary j after paying
intermediaries in P \ {j}. Therefore, condition (A1) requires that these two utilities equal to each
other. Intuitively, this means that no intermediary in P has sufficient market power, that is, after
removing any agent from P the same utility can be achieved by the planner.

Condition (A2) guarantees that the maximal utility (after paying intermediaries) can be achieved
by using group with P .

Note that ūQ for any Q ⊂ P are numbers that are simple to compute from the utility function
and the network. Therefore, unlike the conditions from the previous Theorems (such as Theorem
2), this result provides sufficient conditions for the existence of SPNE and Robust SPNE that can be
computed easily as a system of linear equations and linear inequalities. The explicit requirements
on the utility function imposed by condition A1 and A2 are provided in Corollary 1, which solves
the above system of equations for a general number of intermediaries in P .
Proof. To start, first note that if any intermediary Cn /∈ P increase cost from 0 to positive, then
it would not be used, since we can find an efficient group P ej , s.t Cn /∈ P ej .

Only the intermediaries C1, . . . , Ck are used by planner, thus none of them have the incentive
to decrease their costs. For Cn, 1 ≤ n ≤ k, the utility of efficient group is the same as a group
without Cn in condition (1), if it increases cost, Cn would not be used and lose all the payment
from planner.

Thus, no intermediary has incentive to deviate, (c1, . . . , ck, 0, . . . , 0) is SPNE.
To show the uniqueness of Robust SPNE, in condition (A1) of Proposition 1, Assume cost

c∗ = (c∗1, . . . , c
∗
k) solves the equations (I−

∑k
n=1 c

∗
n)ūP = (I−

∑k
n=1,n 6=j c

∗
n)ū−j . (c∗1, . . . , c

∗
k, 0, . . . , 0)

is SPNE. From Proposition 1 (1), for any other robust SPNE, c = (c1, . . . , cN ), there is cn =
0, ∀n ≥ k + 1. Then prove the utility maximization group P1(c), ∀cn > 0, Cn ∈ P1(c) is an
efficient group. If P1(c) is not an efficient group, assume planner’s maximal utility of transmit
1 unit of resource using group P1(c) is u1, compared to utility ūP of transmitting with efficient
group, u1 < ūP . Then there is (I −

∑
n cn)u1 < (I −

∑
n cn)ūP , contradiction with P1(c) is a

utility maximization group. Then ∃P ej , P1(c) = P ej . In robust SPNE, since P1(c) = P ej , we have

(I −
∑k

n=1 cn)ūP ≥ (I −
∑k

n=1,n6=j cn)ū−j , which is equivalent with cj ≤ (I −
∑k

n=1 cn)( ūPū−j − 1).

If
∑k

n=1 cn >
∑k

n=1 c
∗
n, ∃cj > c∗j , there is I −

∑k
n=1 c

∗
n > I −

∑k
n=1 cn, then cj > c∗j =

(I −
∑k

n=1 c
∗
n)( ūPū−j − 1) > (I −

∑k
n=1 cn)( ūPū−j − 1), contradiction.

If
∑k

n=1 cn =
∑k

n=1 c
∗
n, then cn = c∗n. Otherwise, ∃cj > c∗j , same with the case of

∑k
n=1 cn >∑k

n=1 c
∗
n, contradiction.

If
∑k

n=1 cn <
∑k

n=1 c
∗
n. In robust SPNE, (I −

∑k
n=1 cn)ūP ≥ (I −

∑k
n=1,n 6=j cn)ū−j , it is

equivalent with
cj

I−
∑k
n=1 cn

≤ ūP
ū−j
− 1, ∀j. The equality does not hold for all j, otherwise c = c∗.

∃j, (I −
∑k

n=1 cn)ūP > (I −
∑k

n=1,n6=j cn)ū−j , which means any group P2 with P2 ∩ P = P\{j}
is not a utility maximization group. From (1) of Proposition 3, we have

⋂
Pl(c) = ∅, so ∃Pi(c),

s.t Cj /∈ Pi(c), and Pi(c) ∩ P 6= P\{j}, assume Pi(c) ∩ P = Qi(c). Pi(c) is utility maximization

group, then (I −
∑k

n=1 cn)ūP = (I −
∑

Cn∈Qi(c) cn)ūQi(c), equivalent with

∑
Cn∈Qi(c)

cn

I−
∑k
n=1 cn

= ūP
ūQi(c)

−

1. From condition (A2), we have (I −
∑k

n=1 c
∗
n)ūP > (I −

∑
Cn∈Qi(c) c

∗
n)ūQi(c), equivalent with∑

Cn∈Qi(c)
c∗n

I−
∑k
n=1 c

∗
n

< ūP
ūQi(c)

− 1. Then there is

∑
Cn∈Qi(c)

c∗n

I−
∑k
n=1 c

∗
n

≤ ūP
ūQi(c)

− 1 =

∑
Cn∈Qi(c)

cn

I−
∑k
n=1 cn

. From condition

(A1),
c∗j

I−
∑k
n=1 c

∗
n

= ūP
ū−j
− 1, ∀j. Then

c∗j
I−

∑k
n=1 c

∗
n

= ūP
ū−j
− 1 > ūP

ūQi(c)
− 1 ≥ cj

I−
∑k
n=1 cn

, ∀j. Sum over
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Cj ∈ Qi(c), contradiction in the equality.
(c1, . . . , ck, 0, . . . , 0) satisfies condition (A1) is the unique robust SPNE.

Corollary 1 (Explicit conditions for uniqueness of Robust SPNE)
Let P = {C1, . . . , Ck}. Assume that preferences are homothetic and monotonic. If the following
conditions are satisfied, then a unique robust SPNE exists:

k = 3 a. 1
ū123

+ 1
ū3
≥ 1

ū23
+ 1

ū13
, along with symmetric conditions for intermediaries 1 and 2.

b. 2
ū123

+ 1
ū ≥

1
ū23

+ 1
ū13

+ 1
ū12

k = 4 a1. The other condition 2
ū1234

+ 1
ū4
≥ 1

ū234
+ 1

ū134
+ 1

ū124
along with the symmetric conditions

for 1, 2 and 3.

a2. 1
ū1234

+ 1
ū34
≥ 1

ū234
+ 1

ū134
, along with the symmetric conditions for any group of two

intermediaries in P .

b. 3
ū1234

+ 1
ū ≥

1
ū123

+ 1
ū234

+ 1
ū124

+ 1
ū134

.

k = K a. For any i ≥ 0: K−i−1
ū1...K

+ 1
ū(K−i+1)...K

≥ 1
ū−1

+ · · · + 1
ū−(K−i)

, along with the symmetric

conditions for any group of i intermediaries in P .

b. K−1
ū1...K

+ 1
ū ≥

1
ū−1

+ · · ·+ 1
ū−K

.

This corollary is important because it provides sufficient conditions, that are directly computable
from the utility function, which guarantee the uniqueness of the Robust SPNE.

The cases of K = 3 and K = 4 are provided for illustrative purposes only, but they are clearly
a particular case of general case k = K. In this case, conditions (a) can basically be implied
from condition (A2) above, when the deviating group is Q = {CK−i+1 . . . CK}. Also, note that
conditions (b) is very similar to condition (a), for the case of Q = ∅.
Proof.

Notice condition (A1) determines a unique set of costs c1, . . . ck, since that is a system of k
linearly independent equations with k unknowns. We show that if conditions (a) and (b) are
satisfied, then the costs c1, . . . ck satisfy condition (A2). We prove this claim based on induction
in the size of P . The base on induction, k = 2, is proved in Proposition 1(3). Suppose that the
statement hold for k ≤ K − 1. We will show it for k = K.

Case 1. Q such that ∅ 6= Q ⊂ P . In this case, the inequality (A2) is (I −
∑k

n=1 cn)ūP ≥
(I −

∑
n∈Q cn)ūQ.

Without loss of generality, assume Q = {CK−i, . . . , CK}. Then, (a) implies K−i−2
ū1...K

+ 1
ū(K−i)...K

≥
1
ū−1

+ 1
ū−2

+· · ·+ 1
ū−(K−i−1)

. And inequality in (A2) implies (I−
∑K

n=1 cn)ūP ≥ (I−
∑K

n=K−i cn)ū(K−i)...K .

Consider the case k = K − i, Q = {CK−i}. From induction, the inequality from (A2) (I −∑K−i
n=1 cn)ūP ≥ (I − cK−i)ūK−i is equivalent with inequality of (a) K−i−2

ū1...(K−i)
+ 1

ūK−i
≥ 1

ū−1
+ 1

ū−2
+

· · ·+ 1
ū−(K−i−1)

. Take the intermediaries Q = {CK−i, . . . , CK} in case k = K as a group, the inequal-

ities of (A2) and (a) corresponds to inequalities in the case of Q = {CK−i} and k = K−i. Since (I−∑K−i
n=1 cn)ūP ≥ (I−cK−i)ūK−i is equivalent with K−i−2

ū1...(K−i)
+ 1
ūK−i

≥ 1
ū−1

+ 1
ū−2

+ · · ·+ 1
ū−(K−i−1)

. Re-

place Q = {CK−i} with Q = {CK−i, . . . , CK}, there is (I−
∑K

n=1 cn)ūP ≥ (I−
∑K

n=K−i cn)ū(K−i)...K
(from (A2)) equivalent with K−i−2

ū1...K
+ 1

ū(K−i)...K
≥ 1

ū−1
+ 1

ū−2
+ · · ·+ 1

ū−(K−i−1)
(from (a)).

Case 2. Q = ∅, which implies that condition (A2) is (I −
∑k

n=1 cn)ūP ≥ ūI.
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Figure 14: Network with Cobb-Douglas Utility Function

From (A1), (I−
∑k

n=1 cn)ūP = (I−
∑k

n=1,n6=j cn)ū−j . This is equivalent to
cj

I−
∑k
n=1 cn

= ūP
ū−j
−1.

By summing over j, we have that
∑k

n=1 cn =
(
∑k
n=1

ūP
ū−n
−K)I

1−K+
∑k
n=1

ūP
ū−n

. Therefore, (A2) holds if and only

if (I −
∑K

n=1 cn)ūP ≥ ūI, if and only if, ūP
1−K+

∑k
n=1

ūP
ū−n

≥ ū. Since k = K, this is equivalent to

K−1
ūP

+ 1
ū ≥

∑K
n=1

1
ū−n

. Thus, ūP = ū1...K , and hence K−1
ū1...K

+ 1
ū ≥

1
ū−1

+ · · ·+ 1
ū−K

.

Example 16 (Cobb-Douglas Utility Function)
The proposition above gives sufficient conditions for the existence of SPNE, the network and utility
function in this example satisfy these conditions. There are 3 intermediaries in a symmetric network.
Consider the network in Figure 14. Assume planner has Cobb-Douglas utility function u(y) =

y
1
3
1 y

1
3
2 y

1
3
3 , and the matrix of sharing-rates is S =

1− 2α α α
α 1− 2α α
α α 1− 2α

. Assume 0 < α < 1
3 ,

the maximal utility by using all intermediaries is ū123 = 1
3I, the maximal utility of using two

intermediaries is ū12 = ū23 = ū13 = (1−α
2 )

2
3α

1
3 I, utility of using one intermediary is ū1 = ū2 = ū3 =

(1− 2α)
1
3α

2
3 I. Substitute the utility into the condition for the existence of SPNE discussed above:

1
ū123

+ 1
ū3
≥ 1

ū23
+ 1

ū13
. This condition becomes 3 + α−

2
3 (1 − 2α)−

1
3 ≥ 2

5
3α−

1
3 (1 − α)−

2
3 , which is

satisfied for all α ∈ (0, 1
3).

Example 17 (Multiple Robust SPNE with Different Utility)
Consider the case with 3 intermediaries in the intersection of efficient groups, assume P = {C1, C2, C3},
then ū123 and ūQ is defined in the beginning of section 4.3. In robust SPNE, only {C1, C2, C3}
might charge positive cost. There are three cases of robust SPNE, depending on the value of ū123,
ū1, ū2, ū3, ū12, ū23, ū13. The maximal utility groups could be in the following cases:

1. {C1, C2, C3}, {C1, C2}, {C1, C3}, {C2, C3}.

2. {C1, C2, C3}, {C1}, {C2, C3}.

3. {C1, C2, C3}, {C1}, {C2}.

In case 1, we could solve the cost allocation, and there is unique robust SPNE from Proposition 2. In
case 2, there are multiple robust SPNE, but c1 and c2 +c3 are fixed in all equilibria, which is similar
to the case with perfect complements in efficient group, and result in the same utility for planner.
In case 3, there is (I − c1 − c2 − c3)ū123 = (I − c1)ū1 = (I − c2)ū2, we get c = (c1, c2(c1), c3(c1)),
and c′2(c1) > 0, c′3(c1) < 0. The robust SPNE satisfies the utility higher than using group {C1, C2},
{C1, C3}, {C2, C3}, {C3}, which means (I−c1−c2−c3)ū123 ≥ (I−c1−c3)ū13, (I−c1−c2−c3)ū123 ≥
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(I − c2− c3)ū23, (I − c1− c2− c3)ū123 ≥ (I − c1− c2)ū12, (I − c1− c2− c3)ū123 ≥ (I − c3)ū3. These
inequalities are the conditions of c1 to be equilibrium. The robust SPNE in this case exists if there
is c1 satisfies all these inequalities. The results of calculation show the conditions for existence of
robust SPNE are 2

ū12
+ 1

ū3
≥ 1

ū1
+ 1

ū2
+ 1

ū123
, 1
ū12

+ 1
ū13
≥ 1

ū1
+ 1

ū123
, 1
ū23

+ 1
ū12
≥ 1

ū2
+ 1

ū123
. So when

ū1 = ū2 = 2, ū3 = 1, ū12 = 3, ū13 = ū23 = 2.5, ū123 = 5, there are different c1 in equilibria, and
the utility of planner equals (I − c1)ū1, thus the utility varies in the multiple robust equilibria.

5 Comparative Statics Analysis

In this section, we study the effect of network changes in the equilibria. The following corollary
provide conditions under which an efficient-SPNE and unique efficient robust SPNE will occur by
adding some intermediaries to the game.

Corollary 2 (Addition of intermediaries that guarantee efficient-SPNE)
Suppose that the planner has strongly monotonic and homothetic preferences.

1. In any network such that there are at least two intermediaries of every type, there exists an
efficient SPNE and a unique Efficient Robust SPNE.

2. If we replicate any problem,15 then an efficient SPNE will exists and a unique Efficient Robust
SPNE will exist.

3. If an intermediary CN+1 is added such that his sharing rate can be expressed at the linear
combination of the shares in the intersection of efficient groups P 16, then an efficient SPNE
and a unique Efficient Robust SPNE will occur.

This result implies that by replicating the existing intermediaries or by adding an intermediary
which efficiently transmit the resources as other efficient intermediaries, will result in efficient SPNE
and unique efficient robust SPNE. This generation of efficiency is independent on whether the initial
network had a very inefficient equilibrium. The reason behind this corollary is similar to Theorem
1: when every intermediary can be substituted by other group of intermediaries that are equally
efficient, there is equilibrium with perfect competition among the intermediaries.
Proof.

1. Assume there are N types of intermediaries {C1, C2, . . . , CN}, there are rn intermediaries
{Cn(1), Cn(2), . . . , Cn(rn)} for type n. The intermediaries of type n have the same sharing-rates sn =
(sn1, . . . , snM ), so transmitting resource of allocation (xn(1), . . . , xn(rn)) with type n intermediaries
is equivalent to transmitting

∑rn
j=1 xn(j) with any one type n intermediary, since in either case,

the resource allocated to the agents is (
∑rn

j=1 xn(j))sn. For any efficient group P e1 , assume x =
(xn(j))1≤n≤N,1≤j≤rn is an allocation that maximizes the planner’s utility with group P e1 . Let x′ be

another allocation satisfy x′n(1) =
∑rn

j=1 xn(j), and x′n(j) = 0 for j ≥ 2, then y = STx = STx′ = y′,

x′ also achieves the maximal utility for planner. Since x′n(j) = 0 for j ≥ 2, only a subset of

intermediaries {C1(1), C2(1), . . . , CN(1)} is used, assume P1 is the set of intermediaries with Cn(1) ∈
P1 if and only if x′n(1) > 0. P1 is an efficient group because x′ results in utility maximization

allocation. Construct x′′ to be efficient resource allocation similar to x′. Let x′′n(j) = 0 for j 6= 2,

x′′n(2) = x′n(1), then y′′ = STx′′ = STx = y. Similarly define P2, P2 ⊆ {C1(2), . . . , CN(2)} and

15That is, every intermediary is duplicated, including his connections and sharing rates.
16The linear combination means the sharing-rates of CN+1 is a linear combination of the sharing-rates vectors of

intermediaries in P , the weight is determined by an allocation x maximizing planner’s utility.
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Cn(2) ∈ P2 if and only if x′′n(2) > 0. P2 is also an efficient group. P1 ∩ P2 = ∅. So the intersection

of efficient groups
⋂K
k=1 Pk(c) = ∅. From Theorem 1 and Theorem 2, there is efficient-SPNE and

c = 0 is the unique efficient robust SPNE.
2. Assume the intermediaries are C = {C1, C2, . . . , CN}, and the replicated intermediaries are

Cr = {Cr1, Cr2, . . . , CrN}, Cn and Crn are intermediaries of the same type, so there are at least two
intermediaries of the same type. From part 1, an efficient SPNE will exists and a unique Efficient
Robust SPNE will exist.

3. Assume P =
⋂J
j=1 P

e
j = {C1, . . . , Ck} and x = (x1, . . . , xN ) is the resource allocation,

which maximizes planner’s utility, using efficient group P e1 . The sharing-rates of intermediary
Cn is sn = (sn1, . . . , snM ), the resource allocated via intermediaries {C1, . . . , Ck} is

∑k
n=1 xnsn =

(y1
1, . . . , y

1
M ) = y1. Assume the sharing-rates of intermediary CN+1 is sN+1 = (s(N+1)1, . . . , s(N+1)M ),

and let s(N+1)i =
y1
i∑M

m=1 y
1
m

, or equivalently sN+1 =
∑k
n=1 xnsn∑k
n=1 xn

, a linear combination of sharing-rates

vectors of intermediaries in P . The matrix of sharing-rates after adding CN+1 is S′. Construct a
new resource allocation x′, s.t x′n = 0 for n ≤ k, x′n = xn for k+1 ≤ n ≤ N , and x′N+1 =

∑M
m=1 y

1
m.

Then S′Tx′ = y′ = y = STx, which means the planner is able to achieve the prior efficient allocation
with the group P1 = CN+1 ∪ (P e1 \P ). Consider an allocation x1 = (x1

1, . . . , x
1
N+1) via intermedi-

aries {C1, . . . , CN+1}, we can find another allocation x2 with x2
n = ( xn∑k

i=1 xi
) · x1

N+1 + x1
n for n ≤ k,

x2
n = x2

n for k+1 ≤ n ≤ N , and x2
N+1 = 0. x1 and x2 result in the same resource allocation, and x2

only use intermediaries {C1, . . . , CN}, so the possible resource allocations to agents are the same
as before adding CN+1, and maximal utility of planner will not change. P ej and P ej are efficient
group and P1 ∩ P = ∅. From Theorem 1 and Theorem 2, there is efficient-SPNE and c = 0 is the
unique efficient robust SPNE.

In the following corollary, we consider the change in the planner’s utility of SPNE by adding
one intermediary.

Corollary 3 (Comparative statics on the addition of an intermediary)
Suppose that preferences are homothetic and monotonic. Consider an arbitrary problem with N
intermediaries and add the intermediary CN+1. Assume {P e0j}j and {P e1j}j are the efficient groups
before and after adding CN+1, respectively. Let P0 and P1 be the intersection of the efficient groups,
P0 =

⋂
j P

e
0j and P1 =

⋂
j P

e
1j , respectively.

1. If CN+1 does not belong to any new efficient group P e1j and condition (A1), (A2) satisfy, then
multiplicity of equilibria may occur in the extended problem. Every robust SPNE will not be
worse-off than the previous robust SPNE.

2. If CN+1 ∈ P e1j but CN+1 /∈ P1 and condition (A1), (A2) satisfy, then multiplicity of equilibria
may occur in the extended problem. Every robust SPNE will not be worse-off than the
previous robust SPNE.

3. If CN+1 ∈ P e1j , CN+1 /∈ P1 and the preferences are strictly convex, then the robust SPNE will
not change.

4. If P1 = {CN+1} and P0 6= ∅, then the planner is strictly better-off.

5. If CN+1 ∈ P1, then the planner is not necessarily better-off due to multiplicity of equilibria.

This result shows that under the condition that there is unique robust SPNE before adding a
new intermediary, the planner will not be worse off. But when there are multiple robust SPNE,
the planner may be worse off or better off based on the selection of equilibrium. When the new
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intermediary is the unique intermediary in the intersection of the efficient groups, this intermediary
has market power to charge positive cost and there is unique SPNE.
Proof.

1. If CN+1 does not belong to any new efficient group P e1j , the efficient groups are the same,
P0 = P1 = {C1, . . . , Ck}, then c′j = 0 for j ≥ k in a robust SPNE. The maximal utility ū of planner
will not change. Condition (A1), (A2) satisfy, there is unique robust SPNE, the cost allocation
satisfy (A1) (c1, . . . , ck) solves the equations (I −

∑k
n=1 cn)ū = (I −

∑k
n=1,n6=j cn)ū−j , thus cj =

(I−
∑k

n=1 cn)( ū
ū−j
−1). For j ≤ k, because the efficient group would be used in SPNE and its utility

will be no less than group without intermediary Cj , (I −
∑k

n=1 c
′
n)ū ≥ (I −

∑k
n=1,n 6=j c

′
n)ū′−j , thus

c′j ≤ (I−
∑k

n=1 c
′
n)( ū

ū′−j
−1). By definition, we will have ū′−j ≥ ū−j . If

∑k
n=1 c

′
n >

∑k
n=1 cn, ∃c′j > cj ,

there is I−
∑k

n=1 cn > I−
∑k

n=1 c
′
n, then c′j > cj = (I−

∑k
n=1 cn)( ū

ū−j
−1) > (I−

∑k
n=1 c

′
n)( ū

ū′−j
−1),

contradiction. So total cost
∑k

n=1 c
′
n ≤

∑k
n=1 cn, the robust SPNE will not be worse off than

previous robust SPNE.
2. If CN+1 ∈ P e1j , CN+1 /∈ P1. Assume the maximal utility of allocation given cost c = 0 is ū.

CN+1 /∈ P1, then the maximal utility after adding CN+1 is still ū, otherwise CN+1 will be in every
efficient group P e1j , thus the efficient group P e0j is still efficient group. After adding CN+1 /∈ P1,
P1 ⊆ P0, then c′j = 0 for j ≥ k in a robust SPNE. Before adding CN+1, there is unique robust
SPNE, the cost allocation satisfy (A1), the proof of part 1 follows.

3. When the preferences are strictly convex, there is unique allocation y maximize the utility of
planner with c = 0. The intermediaries in P1 will not be linear represented by other intermediaries.
CN+1 ∈ P e1j and CN+1 /∈ P1, so there is x1 and x2, such that y = STx1 = STx2, x1 use CN+1 and

x2 not use CN+1. Then the sharing-rates sN+1 of CN+1 is linear combination of sharing-rates of
some intermediaries in C\P . By definition of ūQ, it will not change after adding CN+1, ūQ = ū′Q.
The cost allocation in a robust SPNE only depends on the value of ū′Q, so the robust SPNE will
not change.

4. If P1 = {CN+1}, assume the maximal utility for planner transmitting I units of resource
without paying cost is ū, and maximal utility without using CN+1 is ū0. From part 2 of Proposition
1, cn = 0 for n ≤ N , and cN+1 satisfies (I − cN+1) · ū = ū0, planner’s utility is ū0. If P0 6= ∅, the
utility of planner would be lower than ū0, then the planner is strictly better off.

5. From example 17, there are multiple robust SPNE, which result in different utility for planner.
If CN+1 ∈ P1, the robust SPNE might be very different with the robust SPNE before adding CN+1.
Due to the multiplicity of equilibria, the planner is not necessarily better-off.

6 Flexible Sharing-Rates

In this section we extend the mechanism discussed above to the case where the planner might
select not only the intermediaries and allocation but also determine the sharing-rates.

Formally, in a Flexible Sharing-Rates model, a network of connections between the interme-
diaries and agents, and the vector of waste-rates (d1, . . . , dN ) of the intermediaries is given. The
intermediaries choose the cost c to charge the planner for using their links. The planner chooses
the intermediaries to be used, the matrix of sharing-rates S(c) = (s11, . . . , sNM )N×M such that∑N

m=1 snm = dn for any n ∈ 1, . . . ,M , and the allocation x(c) to the agents. This assumption is
natural when the planner has the flexibility to determine the sharing-rates, subject to the constraint
of paying the waste-rates of every intermediary. A similar model, without waste-rates, has been
studied in spanning trees, see Moulin and Velez[46].
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Figure 15: Network with Flexible Sharing-Rates

Example 18 (Multiple Equilibria)
Consider the network in Figure 15. The graph G =

1 0 1
1 1 0
0 1 1

. Assume the planner has Cobb-

Douglas utility function u(y) = y
1
3
1 y

1
3
2 y

1
3
3 . The utility of using one intermediary is 0, and the utility

of using 2 intermediaries to transmit L units of resource is L
3 . The planner would always choose

the group of two intermediaries who charge the lowest total cost. The intermediary who is not
selected by planner has the incentive to decrease its cost in order to get selected. This behavior of
Bertrand-undercutting always happens except in the case where lowering cost won’t bring the total
cost below the total level of resources. Thus, there are SPNEs with c = (0, 0, 0), and c = (I, I, I).
It is easy to verify that both of them can be cost allocations in SPNE.

Definition 7 (Waste Rates of Link to Agents)
Suppose that the waste rates of intermediaries are d = (d1, . . . , dN ). The rate of resource trans-
mitted to agent m ∈ {1, . . . ,M} with intermediary Cn is dngnm. Let d1(m) ≥ · · · ≥ dN (m) be the
rates of resource transmission from intermediaries to agent m, sorted from larger to smaller.

Theorem 4 (Necessary and sufficient conditions for the existence of an Efficient SPNE)
Suppose that the utility function of the planner has non-zero corners.17

1. If d1 = d2 = · · · = dN and there are at least 2 links to each agent,
∑N

n=1 gnm ≥ 2, ∀m, then
there is efficient SPNE with c = 0. Moreover, the SPNEs would be either (a) the interme-
diaries chosen by planner charge cost 0 (the efficient equilibrium); or (b) the intermediaries
chosen charge total cost no less than I, thus no resource is transmitted to the agents.

2. If d1 = d2 = · · · = dN and there is one agent served by a unique intermediary, then this
intermediary charges I at every SPNE and no resource is transmitted to the agents.

3. If the preferences are strongly monotone, there is an efficient SPNE if and only if d1(m) =
d2(m), ∀m.

This result implies that when the capacity of every link is equal and there are at least two links
to each agent — that is, every link could be substituted by another link, there is an equilibrium
with perfect competition among intermediaries. The cost asked by intermediaries would be either
the efficient cost (c = 0) or the fully inefficient equilibrium where intermediaries charge all the
resource. The assumption of zero corners is very relevant because when there is a monopoly in the
transmission of the resource to an agent —that is an intermediary is the unique connection to an
agent, this monopolist intermediary has the ability to charge all the resources of the planner.

17We say that the utility function has non-zero corners if for any vector y ∈ RM+ such that ∃ym = 0 then u(y) = 0;
and if y > 0, then u(y) > 0. u(y) = min{y1, . . . , yM} and Cobb-Douglas utility function u(y) =

∏M
m=1 y

αm
m are

examples that satisfy this condition.
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Proof.
1. First we show the existence of an efficient SPNE with c = 0. Since d1 = d2 = · · · = dN , any

group of intermediaries who collectively can link to all the agents is an efficient group. Assume
that the efficient groups are P e1 , . . . , P

e
J . Without loss of generality, intermediary C1 ⊆ P e1 with the

links to agents 1, . . . , k, which is g11 = · · · = g1k = 1. Since
∑N

n=1 gnm ≥ 2, there exists groups
of intermediaries Q1 = {C1, . . . , Ck} (the intermediaries may repeat) and Ci has link to agent i,
∀1 ≤ i ≤ k. Thus P2 = P e1 ∪ Q1\C1 is also an efficient group. Thus there is

⋂J
j=1 P

e
j = ∅. Given

c−n = 0, when Cn choose cn > 0, the planner will use an efficient without Cn, there is no incentive
for Cn to deviate cn = 0. Thus, c = 0 is a SPNE.

We now compute all SPNE. In the case of flexible sharing-rates
∑N

n=1 gnm ≥ 2 corresponds to

the condition P =
⋂J
j=1 P

e
j = ∅ in the case of fixed sharing-rates. The proof is similar to the proof

of Theorem 1.
Since the planner has a non-zero corners utility function, he has positive utility only if he has

access to transmit resource to all the agents. In order to prove the claims (a) and (b), we can just
prove that there is no SPNE such that the group of intermediaries chosen by the planner spans all
the agents and have sum of their cost in (0, I). We rank the group of intermediaries with links to all
the agents in non-decreasing order of the total cost of intermediaries in that group, say P e1 , . . . , P

e
J .

These are the efficient groups. Assume the total cost of group P ej is TCj(c) =
∑

Cn∈P ej
cn. Suppose

TC1(c) ∈ (0, I).
If TC1(c) < TC2(c), then the planner chooses group P e1 . Thus, intermediary Cn ∈ P e1 has the

incentive to increase cost cn to get higher payment from planner as long as group P e1 is still the
group with the lowest total cost. Thus, this cannot be a SPNE.

If TC1(c) = TC2(c) = · · · = TCk(c) < TCk+1(c), assume P ′ = ∩kj=1P
e
j . When P ′ 6= ∅, the

intermediary Cn ∈ P ′ has the incentive to increase the cost cn, as long as group P e1 is still the
group with lowest total cost, thus this cannot be a SPNE. Alternatively, when P ′ = ∅, assume
planner selects group P ej , then ∃ intermediary Ci ∈ P ej′ , Ci /∈ P ej and ci > 0, 1 ≤ j, j′ ≤ k. Since
TC1(c) ∈ (0, I), intermediary Ci has the incentive to lower its cost to be selected by the planner.
So there is no SPNE with TC1(c) ∈ (0, I).

Finally, note that there might be an inefficient equilibrium where the planner pays not less than
I. This happens when TC1(c) ≥ I, and no intermediary Ci can lower its cost to achieve a total
cost less than I, as shown in example 18.

2. Assume the g11 = 1, and gn1 = 0 ∀n ≥ 2. There is only one link to agent 1. Since the
planner has non-zero corners utility functions, utility is 0 if no resource is not transmitted to agent
1. When intermediary C1 charges c1 < I, the planner will pay the cost and transmit the rest of
resource to achieve positive utility. Thus the intermediary C1 charges I in equilibrium, and planner
transmits no resource to agents.

3. If there exists efficient SPNE, and ∃m with d1(m) > d2(m). From Theorem 1, then P = ∅.
Assume intermediary Cn with waste rate dn has d1(m) = dngnm. Since the utility function is non-
zero corners, the planner will use some intermediary to transmit resource to agent m. The planner
will choose the intermediaries Ck with d1(m′) = dkgkm′ , for m′ in efficient group of intermediaries.
Since Cn is the only most efficient intermediary linked to m, Cn is in every efficient group, which
means Cn ∈ P 6= ∅, thus there is efficient SPNE only if d1(m) = d2(m), ∀m.

If d1(m) = d2(m), ∀m, suppose P 6= ∅, and Cn ∈ P . Assume dngnm = d1(m) for m =
1, . . . , m̄. There exists intermediary Cn(m) rather than Cn with dn(m)gn(m)m = d2(m) = d1(m).
The group of intermediary C(m) = {Cn(1), . . . , Cn(m̄)}. Then pick an efficient group P ej , the group
of intermediaries P1 = P ej ∪ C(m)\Cn is an efficient group since it includes intermediaries with

waste rates equal to d1(m), ∀m. Cn /∈ P1, contradicts with Cn ∈ P . Thus, P = ∅, there is efficient
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SPNE.

Corollary 4 (Comparative statics on the addition of an intermediary)
Suppose the utility function of planner has non-zero corners. The intermediary CN+1 is added into
the network with waste rate dN+1, then

1. If ∀m, dN+1g(N+1)m ≤ d1(m)18, and condition (A1), (A2) satisfy, then multiplicity of equi-
libria might occur in the extended problem. Every robust SPNE will not be worse off than
the previous robust SPNE.

2. If ∃m, dN+1g(N+1)m > d1(m), then the planner is not necessarily better off due to multiplicity
of equilibria.

Proof.
1. When dN+1g(N+1)m < d1(m), ∀m, CN+1 does not belong to any new efficient group P e1j , the

efficient groups are the same, P0 = P1 = {C1, . . . , Ck}, then c′j = 0 for j ≥ k in a robust SPNE.
The maximal utility ū of planner will not change. Condition (A1), (A2) satisfy, there is unique
robust SPNE, the cost allocation satisfy (A1) (c1, . . . , ck) solves the equations (I −

∑k
n=1 cn)ū =

(I −
∑k

n=1,n6=j cn)ū−j , thus cj = (I −
∑k

n=1 cn)( ū
ū−j
− 1). For j ≤ k, because the efficient group

would be used in SPNE and its utility will be no less than group without intermediary Cj , (I −∑k
n=1 c

′
n)ū ≥ (I −

∑k
n=1,n 6=j c

′
n)ū′−j , thus c′j ≤ (I −

∑k
n=1 c

′
n)( ū

ū′−j
− 1). By definition, we will have

ū′−j ≥ ū−j . If
∑k

n=1 c
′
n >

∑k
n=1 cn, ∃c′j > cj , there is I −

∑k
n=1 cn > I −

∑k
n=1 c

′
n, then c′j > cj =

(I−
∑k

n=1 cn)( ū
ū−j
−1) > (I−

∑k
n=1 c

′
n)( ū

ū′−j
−1), contradiction. So total cost

∑k
n=1 c

′
n ≤

∑k
n=1 cn,

the robust SPNE will not be worse off than previous robust SPNE.
When dN+1g(N+1)m ≤ d1(m), ∀m and dN+1g(N+1)m = d1(m) for some m, then CN+1 ∈ P e1j ,

CN+1 /∈ P1. In this case, P1 ⊆ P0, then c′j = 0 for j ≥ k in a robust SPNE. The proof of the first
case follows. The proof is similar to part 1 and 2 of Corollary 3.

2. When ∃m, dN+1g(N+1)m > d1(m), it means CN+1 ∈ P1, the new intermediary would charge
positive cost. The robust SPNE may be very different with the robust SPNE before adding CN+1.
At the same time, multiple robust SPNE which result in different utility for planner may happen
in this case (this occur in example 17). Due to the multiplicity of equilibria, the planner is not
necessarily better-off.

7 Conclusion

This paper investigates how intermediation affects the resource transmission between a planner
and agents. We built a game theory model to study the market power of intermediaries to charge
planner cost for using their links to transmit resources to the agents. We discover and describe
the necessary and sufficient conditions for the efficient SPNE and uniqueness of an efficient ro-
bust SPNE. Properties of the SPNEs, including inefficient SPNE, are provided. Conditions for
uniqueness of robust SPNE are also discussed. For the comparative static analysis, we demonstrate
how to add intermediaries to achieve an efficient equilibrium, and study the effect of adding one
intermediary. Under some condition, adding one intermediary will result in higher utility for the
planner, but this result may fail due to the multiplicity of equilibria.

18d1(m) is the highest waste rate linked to agent m before adding intermediary CN+1, similar to d2(m). The rank
is among intermediaries {C1, . . . , CN}
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This paper is a start in the analysis of resource transmission from a planner to agents via
intermediaries. We anticipate that this paper will be complemented by follow-ups, including study-
ing the case of (competition between) multiple planners, variable-cost setting instead of fixed-cost
setting by the intermediaries, as well as the study of multiple layers of intermediation.
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