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Abstract

We study von Neumann Morgenstern stable sets for one-to-one matching problems

under the assumption of coalitional sovereignty, meaning that a deviating coalition

of players does not have the power to arrange the matches of agents outside the

coalition. We study both the case of pairwise and coalitional deviations. We argue

further that dominance has to be replaced by path dominance along the lines of van

Deemen (1991) and Page and Wooders (2009). This results in the pairwise myopic

vNM set and the myopic vNM set, respectively. We obtain a unique prediction for

both types of stable sets: the set of matchings that belong to the core. We also show

that the pairwise and coalitional analogues of the level-1 farsighted set yield the core

as the unique prediction.
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1 Introduction

In the one-to-one matching model known as the marriage problem, there are two disjoint

sets of agents, say men and women. The problem is to match agents from one side of

the market with agents from the other side, whereas each agent also has the possibility of

remaining single. We refer to Roth and Sotomayor (1990) for a comprehensive overview

on two-sided matching problems.

For marriage problems, stability is considered to be a central property. A matching is

stable if each agent on one side is matched with an acceptable agent on the other side and

no two agents of different sides would prefer to be matched to each other rather than to

stick to their current situation. For marriage markets, this stability notion is known to be

equivalent to core stability.

A matching is in the core if there is no subset of agents who, by forming only part-

nerships among themselves, can all obtain a strictly preferred outcome. Gale and Shapley

(1962) have shown that the core of a marriage problem is non-empty. Although elements of

the core have the property that they are stable once reached, it depends on the underlying

environment whether it is possible to reach some core element from any initial situation.

Stable sets as defined in von Neumann and Morgenstern (1944) address this concern.

A stable set is a set of outcomes that satisfies internal and external stability. As argued

by von Neumann and Morgenstern (1944), p. 41, a stable set describes the “established

order of society” or “accepted standard of behavior.” Internal stability “expresses the fact

that the standard of behavior is free from inner contradictions”. External stability “can

be used to discredit any non-conforming procedure”.

vNM stable sets are crucially dependent on the concept of dominance. Under the

standard definition, a matching is dominated by another matching if there is a coalition

such that all its members prefer the latter matching to the former and no coalition member

has a partner outside the coalition. A set of matchings is a vNM stable set if it satisfies

the conditions of internal and external stability with respect to this dominance relation.

Internal stability requires that no matching inside the set is dominated by a matching

belonging to the set. External stability imposes that any matching outside the set is

dominated by some matching belonging to the set. Ehlers (2007) has shown that for one-

to-one matching problems, the set of matchings in the core is a subset of any vNM stable

set and a vNM stable set can contain matchings outside the core. The vNM stable set may

not be unique.

The standard dominance relation used to define vNM stable sets violates the assumption

of coalitional sovereignty, the property that an objecting coalition cannot enforce matches

between members outside the coalition. Recently, Ray and Vohra (2015) have criticized

the standard definition of the vNM stable set for non-transferable utility games because it
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denies coalitional sovereignty of players outside the objecting coalition. Exactly the same

criticism applies to one-to-one matching problems.

A further criticism of the standard definition of the vNM stable set is that it does not

take into account that a deviation by a coalition can be followed by further deviations.

This corresponds to the well-known critique by Harsanyi (1974) to the vNM stable set. We

will follow the approach by van Deemen (1991) and Page and Wooders (2009), which takes

into account that if a matching is blocked by some coalition and the resulting matching is

not in the stable set itself, then further deviations will take place. This observation leads

Van Deemen (1991) to define the generalized stable set for abstract systems and Page and

Wooders (2009) to define the stable set with respect to path dominance. We show by

means of a simple example that not allowing for path dominance in one-to-one matching

problems leads to highly undesirable conclusions. External and internal stability as defined

by path dominance also corresponds to the myopic blocking dynamics as introduced by

Roth and Vande Vate (1990) for marriage markets and by Jackson and Watts (2002) for

network formation problems.

For one-to-one matching problems, the dominance relation satisfying coalitional sovereignty

is defined in a straightforward way. If a coalition deviates, then it is free to form any match

between its members, it cannot affect existing matches between members outside the coali-

tion, and previous matches between coalition and non-coalition members are destroyed.

Using the path dominance relation to define internal and external stability, now referred

to as myopic internal stability and myopic external stability, leads to the concept of the

myopic vNM set. Since in matching theory it is also often assumed that only pairwise

deviations are feasible, we also define the concept of the pairwise myopic vNM set in an

analogous way.

Since the myopic and the pairwise myopic vNM sets are based on paths of deviations

resulting from the direct dominance relation, we use the adjective myopic. An alternative

would be a farsighted approach based on the indirect dominance relation as introduced in

Harsanyi (1974) and further developed in Chwe (1994). The von Neumann-Morgenstern

farsighted stable sets have been characterized in Mauleon, Vannetelbosch, and Vergote

(2011) as the singleton core elements.

We show that there is a unique myopic vNM and a unique pairwise myopic vNM set and

that both sets coincide with the core. Although, as shown by Ehlers (2007), the core may

not be a vNM stable set under the standard definition of the direct dominance relation,1

it turns out to be the unique prediction when coalitional sovereignty and path dominance

is taken into account.

1There are not so many classes of games where the core is the unique vNM stable set of the game. One

example of such a class is the class of convex games, see Shapley (1971).
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An alternative to myopic vNM sets consists of an adaptation of the level-1 farsighted set

of Herings, Mauleon and Vannelbosch (2014) to one-to-one matchings problems. Herings,

Mauleon, and Vannetelbosch (2014) define this notion for network formation problems

and also allow for higher levels of farsightedness. The definition of the level-1 farsighted

set requires level-1 external stability as well as level-1 deterrence of external deviations,

and considers a minimal set of matchings satisfying these two properties. Level-1 external

stability is equivalent to pairwise myopic external stability. Level-1 deterrence of external

deviations requires that there is no pairwise myopic improvement from a matching inside

the level-1 farsighted set to a matching outside the set. The minimality requirement can

also be viewed as a requirement of internal stability, see also Myerson and Weibull (2015)

on this point of view.

Contrary to vNM stable sets, level-1 farsighted sets can be shown to exist under quite

general assumptions. For one-to-one matching problems, they again yield the core as the

unique prediction. The same prediction follows if the level-1 farsighted set is based on

general coalitional deviations rather than pairwise deviations.

The paper is organized as follows. Section 2 introduces one-to-one matching problems

and standard notions of stability. Section 3 defines and characterizes both the myopic

and the pairwise myopic vNM set. Section 4 studies the level-1 farsighted set. Section 5

concludes.

2 One-to-One Matching Problems

A one-to-one matching problem consists of a finite set of individuals N, partitioned into a

set of men M and a set of women W . The set of non-empty subsets of N is denoted by N .

Each individual i ∈ N has a complete and transitive preference ordering �iover the agents

on the other side of the market and the prospect of being alone. Preferences are assumed

to be strict. Let �= ((�m)m∈M , (�w)w∈W ) be a preference profile. We write m �w m′ if

woman w strictly prefers m to m′. Similarly, we write w �m w′ if man m strictly prefers

w to w′. A one-to-one matching problem is a triple (M,W,�).

A matching is a function µ : N → N satisfying the following properties:

(i) For every m ∈M , µ(m) ∈ W ∪ {m}.

(ii) For every w ∈ W , µ(w) ∈M ∪ {w}.

(iii) For every i ∈ N , µ(µ(i)) = i.

The set of all matchings is denoted by M. Given a matching µ, individual i ∈ N is

said to be unmatched or single if µ(i) = i. A matching µ is individually rational if each
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agent is acceptable to his or her mate, so for every i ∈ N it holds that µ(i) �i i or µ(i) = i.

A matching µ that is not individually rational can be blocked by an individual with an

unacceptable partner. For a given matching µ, a pair {m,w} is said to form a blocking

pair if w and m are not matched to one another but prefer one another to their mates at

µ, i.e. w �m µ(m) and m �w µ(w). A matching µ is stable if it is not blocked by any

individual or any pair of agents.

For every i ∈ N, we extend the preference �i over the agent’s potential partners to

the set of matchings in the following way. We say that agent i prefers the matching µ′ to

the matching µ if µ′(i) �i µ(i) and we write µ′ �i µ. A coalition S ∈N is said to block

a matching µ ∈ M if there exists a matching µ′ ∈ M such that µ′(S) = S and µ′ �S µ,

where µ′ �S µ is defined as µ′(i) �i µ(i) for every i ∈ S. Such a matching µ′ is said to

dominate the matching µ via S. The set of all such matchings is denoted by fS(µ), so

fS(µ) = {µ′ ∈M | µ′(S) = S and µ′ �S µ}.

We say that the matching µ′ dominates the matching µ if there is a coalition S ∈ N such

that µ′ dominates the matching µ via S and we denote the set of all such matchings by

f(µ), so

f(µ) = ∪S∈NfS(µ).

The core C of the matching problem (M,W,�) consists of all matchings that are not

blocked by any coalition, so

C = {µ ∈M | f(µ) = ∅}.

It has been shown by Gale and Shapley (1962) that the core of a matching problem is

non-empty. Also, a matching is stable if and only if it is not blocked by a coalition of size

one or two and if and only if it belongs to the core, see Theorem 3.3 in Roth and Sotomayor

(1990).

We next present the standard definition of a von Neumann Morgenstern (vNM) stable

set as introduced in von Neumann and Morgenstern (1944) when applied to matching

problems.

Definition 1. A set of matchings V ⊂M is a vNM stable set if it satisfies:

(i) Internal stability: For every µ, µ′ ∈ V , it holds that µ′ /∈ f(µ).

(ii) External stability: For every µ ∈M \ V , it holds that f(µ) ∩ V 6= ∅.
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A set of matchings is a vNM stable set if it satisfies internal and external stability.

Internal stability requires that no matching inside the vNM stable set is dominated by a

matching belonging to the vNM stable set. External stability states that any matching

outside the vNM stable set is dominated by some matching that belongs to the vNM stable

set.

As for the definition of the core, there is no loss of generality to restrict attention to

coalitions of size one and two when formulating internal and external stability or to restrict

attention to pairwise deviations. It is immediate that the core is contained in any vNM

stable set. However, since the core may not satisfy external stability, it may not be a vNM

stable set itself.

Given two matchings µ, µ′ ∈M, let µ ∨ µ′ : N → N be the function defined by

(µ ∨ µ′)(m) = max�m{µ(m), µ′(m)}, m ∈M,

(µ ∨ µ′)(w) = min�w{µ(w), µ′(w)}, w ∈ W.

Similarly, we define µ ∧ µ′ : N → N as

(µ ∧ µ′)(m) = min�m{µ(m), µ′(m)}, m ∈M,

(µ ∧ µ′)(w) = max�w{µ(w), µ′(w)}, w ∈ W.

In general, the functions µ ∨ µ′ and µ ∧ µ′ need not be matchings.

A set X ⊂M of matchings is a lattice if for every µ, µ′ ∈ X it holds that µ∨µ′ ∈ X and

µ ∧ µ′ ∈ X. The set X is a distributive lattice if X is a lattice and for every µ, µ′, µ′′ ∈ X
it holds that

µ ∨ (µ′ ∧ µ′′) = (µ ∨ µ′) ∧ (µ ∨ µ′′),
µ ∧ (µ′ ∨ µ′′) = (µ ∧ µ′) ∨ (µ ∧ µ′′).

Knuth (1976) has shown that the core C of a matching problem is a distributive lattice.

Ehlers (2007) has shown that V is a vNM stable set only if V is a maximal set satisfying

C ⊂ V , V is a distributive lattice, and the set of single agents is the same for every element

of V . Moreover, V is a vNM stable set if V is the unique maximal set satisfying C ⊂ V ,

V is a distributive lattice, and the set of single agents is the same for every element of V .

Thus, a vNM stable set V contains the core but can also contain matchings outside the

core.

3 Myopic vNM Sets

Ray and Vohra (2015) express the following criticism towards the vNM stable set for non-

transferable utility games: the enforceability condition embedded in the definition of the

dominance relation of vNM stable sets denies the coalitional sovereignty of players outside
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the objecting coalition. When adapted to matchings, their objection is as follows. Since in

the formulation of the vNM stable set using the dominance relation f, a coalition S ∈ N
can impose any matching as long as its restriction to S is feasible for S, the objecting

coalition is given implicitly the power to arrange the matchings of players outside the

coalition, which is clearly undesirable.

In the following, we adapt the dominance relation in such a way that coalitional

sovereignty of players outside the objecting coalition is respected. Contrary to the dom-

inance relation f, it may now matter whether the size of the objecting coalition is un-

restricted or takes place by individuals and blocking pairs. We therefore formulate two

dominance relations.

Assume first that we do not restrict the size of the objecting coalition. In order to

respect the coalitional sovereignty property, the blocking of a matching µ ∈ M by a

coalition S ∈ N should result in a matching µ′ such that the players i ∈ µ(S) \ S become

single, whereas the players in N \(S∪µ(S)) are not affected by this blocking.2 We therefore

restrict attention to matchings µ′ with this feature and define the set of matchings that

dominate µ via S as follows:

gS(µ) = {µ′ ∈M | µ′(S) = S,

for every i ∈ µ(S) \ S, µ′(i) = i,

for every i ∈ N \ (S ∪ µ(S)), µ′(i) = µ(i),

µ′ �S µ}.

It clearly holds that gS(µ) ⊂ fS(µ). The set of matchings that dominate µ is now defined

as follows:

g(µ) = ∪S∈N gS(µ).

We refer to an element of g(µ) as a myopic improvement.

In matching theory it is typical to restrict blocking to individuals and blocking pairs.

Let some matching µ ∈M be given. An individual i ∈ N can destroy his match with player

µ(i) whenever µ(i) 6= i. The players in N \ {i, µ(i)} are not affected by the destruction of

this match, so remain matched to the same partner. The resulting matching is denoted by

µ′ = µ− (i, µ(i)).

A blocking pair (m,w) can destroy their existing matches, if any, and form a match

between them. The players in N \ {m,w, µ(m), µ(w)} are not affected by the formation

of such a match, so keep their existing partners. The resulting matching is denoted by

µ′ = µ+ (m,w).

2Notice that this enforceability condition is similar to the enforceability condition defined in Roth and

Sotomayor (1990).
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Let some matching µ ∈ M and some coalition S ∈ N with S = {i} for some i ∈ N
or S = {m,w} with m ∈ M and w ∈ W be given. We define the set of matchings that

dominate µ via S as follows:

hS(µ) =

{
{µ′ ∈M | µ′ = µ− (i, µ(i)) and i �i µ(i)}, S = {i},
{µ′ ∈M | µ′ = µ+ (m,w), w �m µ(m), and m �w µ(w)}, S = {m,w}.

Observe that for singleton coalitions S it holds that hS(µ) = gS(µ) and for coalitions S

consisting of a man and a woman we have hS(µ) ⊂ gS(µ). In the latter case, inequality

may result because under hS it is not allowed that m and w destroy their current match

without forming a new one together. Notice that in all cases, hS(µ) is either the empty set

or a singleton. We define the set of matchings that dominate µ as follows:

h(µ) =
(
∪i∈Nh{i}(µ)

)
∪
(
∪(m,w)∈M×Wh{m,w}(µ)

)
.

We refer to an element of h(µ) as a pairwise myopic improvement.

Although it might be tempting to define the vNM stable set by replacing f(µ) by either

g(µ) or h(µ) in Definition 1, the following example shows this to be problematic.

Example 1. Consider a matching problem (M,W,�), where M = {m1,m2}, W =

{w1, w2}, and the preferences of the individuals are as follows.

m1 m2

w1 w1

w2 w2

m1 m2

w1 w2

m1 m2

m2 m1

w1 w2

We represent a matching µ by the set of (m,w) pairs that are matched in µ. There is a

single stable matching µ∗ = {(m1, w1),(m2, w2)}. The core has µ∗ as its unique element.

For every µ ∈M such that µ 6= µ∗ we have that µ∗ ∈ f(µ). It now follows easily that there

is a unique vNM stable set Vf and that this set is equal to the core, Vf = C = {µ∗}.
However, according to the dominance relation g, the matching µ∗ does not dominate

the matching µ′ = {(m1, w2), (m2, w1)}. Indeed, only the grand coalition N can enforce the

matching µ∗ from µ′ under g. Since µ′ �m2 µ
∗, m2 would block the deviation by the grand

coalition from µ′ to µ∗.

Let Vg be a vNM stable set based on the dominance relation g. Since g(µ∗) = ∅, external

stability requires µ∗ ∈ Vg. For every matching µ ∈ M \ {µ∗, µ′, {(m2, w1)}}, it holds that

µ∗ ∈ g(µ), so in order not to violate internal stability, µ /∈ Vg. Since g(µ′) = {{(m1, w1)}}
and {(m1, w1)} /∈ Vg, it holds that µ′ ∈ Vg by external stability. Since µ′ ∈ g({(m2, w1)}),
it follows that Vg = {µ∗, µ′}.
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The fact that µ′ belongs to Vg is problematic. The only myopic improvement from µ′

is given by the matching {(m1, w1)}. Since {(m1, w1)} does not belong to Vg, one needs µ′

to be part of Vg in order to satisfy external stability. However, starting from the matching

{(m1, w1)}, there is only one further myopic improvement, i.e. to µ∗, and from µ∗ there

are no further myopic improvements. Given a matching µ′, one would therefore expect to

end up in µ∗, which is part of Vg, and µ′ should not be regarded as stable.

When using the dominance relation h in Definition 1, the sets {µ∗} and {µ∗, µ′} would

not qualify as stable sets. Denoting the matching where every individual is unmatched by

µ∅, we have that µ∗ /∈ h(µ∅) and µ′ /∈ h(µ∅), so external stability would be violated.

Let Vh be a vNM stable set based on the dominance relation h. Since h(µ∗) = ∅, external

stability requires µ∗ ∈ Vh. Since µ∗ ∈ h({(m1, w1)}) and µ∗ ∈ h({(m2, w2)}), it follows

from internal stability that {(m1, w1)} /∈ Vh and {(m2, w2)} /∈ Vh.

Since h(µ′) = {{(m1, w1)}} and {(m1, w1)} /∈ Vh, it follows from external stability that

µ′ ∈ Vh.

Since h(µ∅) = {{(m1, w1)}, {(m2, w2)}} and {(m1, w1)}, {(m2, w2)} /∈ Vh, external sta-

bility requires that µ∅ ∈ Vh.

Finally, since µ′ ∈ h({(m1, w2)}) and µ′ ∈ h({(m2, w1)}), it follows from internal sta-

bility that {(m1, w2)} /∈ Vh and {(m2, w1)} /∈ Vh.

We reach the conclusion that Vh = {µ∗, µ′, µ∅} is the unique vNM stable set based on

the dominance relation h. Since µ∅ is the worst matching for all individuals, this is a highly

undesirable conclusion. 2

Example 1 shows that the assumption of coalitional sovereignty affects the vNM stable

set. Also, under coalitional sovereignty, it matters whether blocking coalitions can be of

any size or is blocking is restricted to pairwise deviations. The reason for this difference is

that external stability requires each matching not in the stable set to be directly dominated

by an element in the stable set. If a matching µ is dominated by another matching µ′ via

a coalition S of cardinality greater than two, then it may not be the case that µ′ can be

enforced from µ by an individual or a pair.

Rather than requiring direct domination, it should be sufficient for external stability

that there is a sequence of matchings, each matching in the sequence dominating the

previous one, that ultimately reaches a matching in the stable set. Indeed, if a matching

that is not in the stable set is blocked by some coalition and the resulting matching is not

stable itself, then further improvements will take place. We make a similar requirement

for testing internal stability. That is, if a matching belongs to the stable set, then there

should be no sequence of matchings, each matching in the sequence being dominated by

the next one that ultimately reaches another matching in the stable set.
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Let some µ ∈M be given. The set

h2(µ) = h(h(µ)) = {µ′′ ∈M | ∃µ′ ∈ h(µ) such that µ′′ ∈ h(µ′)}

consists of those matchings that can be reached by a composition of two pairwise myopic

improvements starting at µ. We extend this definition and, for k ∈ N, we define hk(µ)

as those matchings that can be reached from µ by a composition of k pairwise myopic

improvements. Since the set M is finite, it follows that for some k′ ∈ N, for every k ≥ k′,

for every µ ∈ M, hk(µ) = hk
′
(µ). The resulting relation is called the transitive closure of

h and is denoted by h∞.

Definition 2. A set of matchings V ⊂M is a pairwise myopic vNM set if it satisfies:

(i) Pairwise myopic internal stability: For every µ, µ′ ∈ V , it holds that µ′ 6∈ h∞(µ).

(ii) Pairwise myopic external stability: For every µ ∈M\V , it holds that h∞(µ)∩V 6= ∅.

Condition (i) of Definition 2 corresponds to pairwise myopic internal stability. For any

two matchings µ and µ′ in the pairwise myopic vNM set V it does not hold that there is

a sequence of myopic improvements from one to the other. Condition (ii) of Definition 2

expresses pairwise myopic external stability. For every matching µ outside the pairwise

myopic vNM set V it holds that there is µ′ ∈ V and a sequence of matchings µ0, . . . , µk′

with µ0 = µ and µk′ = µ′ such that, for every k ∈ {0, . . . , k′ − 1}, µk+1 ∈ h(µk).

The definition of a pairwise myopic vNM set is equivalent to the definition of a general-

ized stable set for abstract systems as introduced in van Deemen (1991), when we consider

the abstract system (M, h). It corresponds to the stable set with respect to path dominance

in Page and Wooders (2009) when h is taken to be the direct dominance relation.

Theorem 1. A set of matchings is a pairwise myopic vNM set if and only if it is equal to

the core.

Proof. We start with the “if” part of the proof and show that the core C is a pairwise

myopic vNM set.

Let some µ ∈ C be given. It holds by definition of the core that f(µ) = ∅. Since

h(µ) ⊂ f(µ), it follows that h(µ) = ∅. Pairwise myopic internal stability follows.

Let some µ ∈ M \ C be given. We have to show that h∞(µ) ∩ C 6= ∅. It follows from

Theorem in Roth and Vande Vate (1990) that h∞(µ) contains a stable matching. Since

a stable matching belongs to C by Theorem 3.3 in Roth and Sotomayor (1990), pairwise

myopic external stability follows.

We continue with the “only if” part of the proof and show that C is the only pairwise

myopic vNM set. Let V be a pairwise myopic vNM set. For every µ ∈ C it holds that
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h(µ) ⊂ f(µ) = ∅. Since V satisfies pairwise myopic external stability, it follows that

C ⊂ V .

Suppose V \C 6= ∅. Let some µ′ ∈ V \C be given. Combining again Theorem in Roth

and Vande Vate (1990) and Theorem 3.3 in Roth and Sotomayor (1990), it follows that

h∞(µ′) ∩ C 6= ∅, so therefore h∞(µ′) ∩ V 6= ∅, thereby violating pairwise myopic internal

stability. Consequently, it holds that V \ C = ∅.

Knuth (1976) observes that the process of allowing blocking pairs to form may lead

to cycles of blocking pairs and then may not lead to a stable matching. By means of an

example, Knuth (1976) raises the question of whether, for any preferences of the agents,

there exists at least one path from any matching to a stable matching. Theorem of Roth

and Vande Vate (1990) resolves this question and proposes a family of random processes,

beginning from an arbitrary matching and selecting a blocking pair at random to create

a new matching, that will reach a stable matching with probability one. In the proof of

Theorem 1, we use the result by Roth and Vande Vate (1990) to prove that pairwise myopic

external stability follows and that the core is the unique pairwise myopic vNM set.

An alternative to the pairwise myopic vNM set is to allow a coalition of any size to

form and block, while respecting coalitional sovereignty. We denote the transitive closure

of g by g∞.

Definition 3. A set of matchings V ⊂M is a myopic vNM set if it satisfies:

(i) Myopic internal stability: For every µ, µ′ ∈ V , it holds that µ′ 6∈ g∞(µ).

(ii) Myopic external stability: For every µ ∈M \ V , it holds that g∞(µ) ∩ V 6= ∅.

The definition of a myopic vNM set is equivalent to the definition of a generalized

stable set for abstract systems as introduced in van Deemen (1991), when we consider the

abstract system (M, g) and it corresponds to the stable set with respect to path dominance

in Page and Wooders (2009) when g is taken to be the direct dominance relation. The

next result demonstrates that allowing larger coalitions to form and block does not change

our previous result: the unique myopic vNM stable set in a one-to-one matching market

coincides with the core.

Theorem 2. For every µ ∈M it holds that g∞(µ) = h∞(µ).

Proof. Let some µ ∈M be given. Obviously, it holds that h∞(µ) ⊂ g∞(µ).

To show the converse, it is sufficient to show that for every µ ∈M, for every µ′ ∈ g(µ),

there is a sequence µ0, . . . , µk′ such that µ = µ0, µ
′ = µk′ and, for every k = 0, . . . , k′ − 1,

µk+1 ∈ h(µk).
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Let µ ∈M, µ′ ∈ g(µ), and S ∈ N be given such that µ′(S) = S, for every i ∈ µ(S)\S,

µ′(i) = i, for every i ∈ N \ (S ∪ µ(S)), µ′(i) = µ(i), and µ′ �S µ. The set S can be

partitioned into sets S1 = {i1, . . . , ij′} and S2 = {ij′+1, . . . , i2k′−j′} such that for every

i ∈ S1, µ
′(i) = i and, for every ik ∈ S2 with k ≤ k′, µ′(ik) = ik+k′−j′ . We form the

sequence µ0, . . . , µk′ by defining µk+1 = µk − (ik+1, µ(ik+1)) for every k = 0, . . . , j′− 1, and

µk+1 = µk + (ik+1, µ
′(ik+1)) for every k = j′, . . . , k′ − 1. It is easily verified that, for every

k = 0, . . . , k′ − 1, it holds that µk+1 ∈ h(µk).

The following result now follows as an easy corollary.

Corollary 1. A set of matchings is a myopic vNM set if and only if it is equal to the core.

In general, the vNM stable set with g as the dominance relation, Vg, is substantially

different from the vNM stable set with h as the dominance relation, Vh, as shown in

Example 1. However, these differences disappear whenever the external stability as based

on direct dominance is replaced by a condition that allows for a sequence of matchings,

each matching in the sequence being dominated by the next one that ultimately reaches a

matching in the set.

4 Level-1 Farsighted Sets

An alternative to the pairwise myopic vNM set and the myopic vNM set is the pair-

wise myopically stable set as defined in Herings, Mauleon, and Vannetelbosch (2009) for

network formation problems. This concept is equivalent to the level-1 farsighted set of

Herings, Mauleon, and Vannetelbosch (2014), who also define this notion for higher levels

of farsightedness. Their definitions for network formation problems can be adapted in a

straightforward way to one-to-one matching problems.

Definition 4. A set of matchings U ⊂M is a level-1 farsighted set if it satisfies:

(i) Level-1 deterrence of external deviations: For every µ ∈ U , h(µ) ∩ (M\ U) = ∅.

(ii) Level-1 external stability: For every µ ∈M \ U , it holds that h∞(µ) ∩ U 6= ∅.

(iii) Minimality: There is no proper subset of U satisfying Conditions (i) and (ii).

Condition (i) in Definition 4 captures level-1 deterrence of external deviations and re-

quires that there is no pairwise myopic improvement from a matching µ ∈ U to a matching

outside U. Condition (ii) requires level-1 external stability and coincides with pairwise my-

opic external stability in Definition 2. It requires that, for every matching µ ∈ M \ U
outside the level-1 farsighted set, there exists a sequence of matchings, each matching in
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the sequence being a pairwise myopic improvement of the previous one, that ultimately

reaches a matching in the set. Notice that the set of all matchings M trivially satisfies

Conditions (i) and (ii) in Definition 4. This motivates Condition (iii), the minimality con-

dition. That is, there is no proper subset of U satisfying the first two conditions. As

has also been argued in Myerson and Weibull (2015), minimality can also be viewed as a

requirement of internal stability.

For network formation problems, Herings, Mauleon, and Vannetelbosch (2014) show

that there always exists a unique level-1 farsighted set. It is given by the set consisting

of all networks that belong to closed cycles, so it includes all pairwise stable networks. In

the following, we characterize the level-1 farsighted sets for one-to-one matching problems.

Notice that both the level-1 farsighted set and the pairwise myopic vNM set require level-1

external stability, also called pairwise myopic external stability. On top of this, the level-1

farsighted set requires level-1 deterrence of external deviations and minimality, and the

pairwise myopic vNM set requires pairwise myopic internal stability. We show now that,

for one-to-one matching problems, both solutions concepts coincide with the core.

Theorem 3. A set of matchings is a level-1 farsighted set if and only if it is equal to the

core.

Proof. We show first that the core C is a level-1 farsighted set.

Let some µ ∈ C be given. It holds by definition of the core that f(µ) = ∅. Since

h(µ) ⊂ f(µ), it follows that h(µ) = ∅. Level-1 deterrence of external deviations follows.

Let some µ ∈M\C be given. Since level-1 external stability is equivalent to pairwise

myopic external stability, Condition (ii) of Definition 4 follows from Theorem 1.

For every µ ∈ C it holds that h(µ) = ∅, so h∞(µ) = ∅. Level-1 external stability

therefore requires C to be a subset of every level-1 farsighted set. It follows that C satisfies

Condition (iii) of Definition 4.

We have shown C to be a level-1 farsighted set. Since we also argued C to be contained

in every level-1 farsighted set in order to satisfy level-1 external stability, the minimality

condition implies it to be the unique level-1 farsighted set.

The notion of a level-1 farsighted set can also be defined when arbitrary coalitional

deviations are allowed for, so by replacing the dominance relation h by the dominance

relation g in Definition 4. Let U ⊂ M be any set of matchings satisfying the alternative

of Definition 4 based on the dominance relation g. Since g(µ) = ∅ for every µ ∈ C, level-1

external stability requires the core C to be contained in U . Since g(µ) = ∅, C satisfies

the version of Condition (i) of Definition 4 as based on g. Since h∞(µ) ⊂ g∞(µ) for every

µ ∈ M, Theorem 3 implies that C satisfies Condition (ii) of Definition 4 as based on g.

From minimality, we conclude that U = C.
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5 Conclusion

We propose different notions of stable sets for one-to-one matching problems that take the

requirement of coalitional sovereignty into account. Coalitional sovereignty means that the

objecting coalition does not have the power to arrange the matchings of agents outside the

coalition. In these new notions of stable sets, the internal and external stability conditions

are formulated using path dominance, following van Deemen (1991) and Page and Wooders

(2009), and motivated by Example 1. If only pairwise deviations are allowed, then path

dominance corresponds to the myopic blocking dynamics introduced by Roth and Vande

Vate (1990) for marriage markets.

We consider both general coalitional deviations as well as pairwise deviations, resulting

in the concepts of myopic vNM set and pairwise myopic vNM set. We obtain a unique

prediction: the matchings that belong to the core. Thus, while Ehlers (2007) has shown

that the set of matchings in the core is a subset of any vNM stable set and may contain

matchings outside the core when the enforceability condition does not respect coalitional

sovereignty, we obtain the same predictions as Roth and Vande Vate (1990) and Jackson

and Watts (2002): both the pairwise myopic vNM set and the myopic vNM set concide

with the core.

We also adapt the level-1 farsighted set of Herings, Mauleon, and Vannetelbosch (2014),

defined for general network formation problems, to one-to-one matching problems. We

again obtain the core as the unique prediction, both when only pairwise deviations are

allowed as well as under general coalitional deviations. Mauleon, Vannetelbosch, and

Vergote (2011) have found the singleton core elements as the stable set prediction under

farsighted behavior of the agents. Here we show that the same conclusion follows if agents

are myopic.

Acknowledgments
Vincent Vannetelbosch and Ana Mauleon are Senior Research Associates of the Na-

tional Fund for Scientific Research (FNRS). Financial support from the Spanish Ministry

of Economy and Competition under the project ECO2015-64467-R, from the Fonds de

la Recherche Scientifique - FNRS under the grant J.0073.15 and from the Belgian French

speaking community ARC project n◦15/20-072 of Saint-Louis University - Brussels is grate-

fully acknowledged.

References

Chwe, M. S.-Y. (1994), “Farsighted Coalitional Stability,” Journal of Economic The-

ory, 63, 299–325.

13



Deemen, A.M.A. van (1991), “A Note on Generalized Stable Sets,” Social Choice and

Welfare, 8, 255–260.

Ehlers, L. (2007), “Von Neumann-Morgenstern Stable Sets in Matching Problems,” Jour-

nal of Economic Theory, 134, 537–547.

Gale, D., and L.S. Shapley (1962), “College Admissions and the Stability of Mar-

riage,” American Mathematical Monthly, 69, 9–15.

Harsanyi, J.C. (1974), “An Equilibrium-point Interpretation of Stable Sets and a Pro-

posed Alternative Definition,” Management Science, 20, 1472–1495.

Herings, P.J.J., A. Mauleon, and V. Vannetelbosch (2009), “Farsightedly Stable

Networks,” Games and Economic Behavior, 67, 526–541.

Herings, P.J.J., A. Mauleon, and V. Vannetelbosch (2014), “Stability of Networks

under Level-K Farsightedness,” METEOR Research Memorandum 14/30, Maastricht

University, Maastricht, pp. 1–39.

Jackson, M.O., and A. Watts (2002), “The Evolution of Social and Economic Net-

works,” Journal of Economic Theory, 106, 265–295.

Knuth, D.E. (1976), Marriages Stables, Les Presses de l’Université de Montreal, Mon-

treal.

Mauleon, A., V. Vannetelbosch, and W. Vergote (2011), “Von Neumann-Morgenstern

Farsightedly Stable Sets in Two-sided Matching,” Theoretical Economics, 6, 499–521.

Myerson, R.B., and J. Weibull (2015), “Tenable Strategy Blocks and Settled Equi-

libria,” Econometrica, 83, 943–976.

Neumann, J. von, and O. Morgenstern (1944), Theory of Games and Economic Be-

havior, Princeton University Press, Princeton, New Jersey.

Page, F.H., Jr., and M. Wooders (2009), “Strategic Basins of Attraction, the Path

Dominance Core, and Network Formation Games,” Games and Economic Behavior,

66, 462–487.

Ray, D., and R. Vohra (2015), “The Farsighted Stable Set,” Econometrica, 83, 977–

1011.

Roth, A.E., and M.A.O. Sotomayor (1990), Two-sided Matching, A Study in Game-

theoretic Modeling and Analysis, Econometric Society Monographs No. 18, Cam-

bridge University Press, Cambridge.

14



Roth, A.E., and J.H. Vande Vate (1990), “Random Paths to Stability in Two-sided

Matching,” Econometrica, 58, 1475–1480.

Shapley, L.S. (1971), “Cores of Convex Games,” International Journal of Game Theory,

1, 11–26.

15


