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Abstract

This paper introduces a model of endogenous network formation and systemic risk.
In the model a link represents a trading opportunity that yields benefits only if the
counterparty does not subsequently default. After links are formed, they are subjected
to exogenous shocks that are either good or bad. Bad shocks reduce returns from links
and incentivize default. Good shocks, the reverse. Defaults triggered by bad shocks
might propagate via links. The model yields three insights. First, a higher probability
of good shocks generates a higher probability of system wide default. Increased in-
terconnectedness in the network offsets the effect of better fundamentals. Second, the
network formed critically depends on the correlation between shocks to the links. As a
consequence, an outside observer who misconceives the correlation structure of shocks,
upon observing a highly interconnected network, will underestimate the probability of
system wide default. Third, when the risk of contagion is high, the networks formed in
the model are utilitarian efficient.
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1 Introduction

The awkward chain of events that upset the bankers, began with the collapse of Lehmann
Brothers in 2008. Panic spread, the dollar wavered and world markets fell. Interconnected-
ness of the financial system, it was suggested, allowed Lehmann’s fall to threaten the stability
of the entire system. Thus prompted, scholars have sought to characterize the network struc-
ture that would allow shocks to one part of the financial network to be spread and amplified.
Blume et al. (2013) as well as Vivier-Lirimonty (2006), for example, argue that dense inter-
connections pave the way to systemic failures. In contrast, Allen and Gale (2000) as well
as Freixas et al. (2000), argue that a more interconnected architecture protects the system
against contagion because the losses of a distressed institution can be divided among many
creditors. With some exceptions, a common feature of these and other papers (Acemoglu et
al. (2013), Eboli (2013), Elliott et al. (2014), Gai et al. (2011), Glasserman and Young (2014))
is an exogenously given network. A node (or subset of them) is subjected to a shock and
its propagation studied as the size of the shock varies. Absent are reasons for the presence
of links between agents.1 This paper assumes that a link between two agents represents a
potentially lucrative joint opportunity. However, every link increases the possibility of con-
tagion. In the presence of such a trade-off we ask what kinds of networks would agents form?
In particular, do they form networks that are susceptible to contagion?

In the model we use to answer these questions, agents first form links. The payoff to the
counterparties that share a link is uncertain and depends upon the future realization of a
random variable (which we call a shock) and actions taken subsequent to the shock. Specif-
ically, there are three stages. In stage one, agents form links which can be interpreted as
partnerships or joint ventures. In stage two, each link formed is subjected to a shock. In stage
three, with full knowledge of the network and realized shocks, each agent decides whether to
‘default’ or not. The payoff to an agent depends on the action she takes in the third stage
as well the actions of her counterparties (and their counterparties and so on) as well as the
realized shocks. The default decision corresponds to exiting from every partnership formed
in stage one. The event that the only Nash equilibrium of the game in stage three is that
everyone defaults is called system wide failure. In our model, default is the result of a ‘loss
of confidence’ rather than simple ‘spillover’ effects.2

In the benchmark version of this model we show that the network formed in stage one is util-
itarian efficient. Efficiency is a consequence of the high risk of contagion which forces agents

1Blume et al. (2013) and Farboodi (2014) are exceptions.
2Glasserman and Young (2014) argue that spillover effects have only a limited impact. They suggest that

the “mere possibility (rather than the actuality) of a default can lead to a general and widespread decline in
valuations.....”
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to form isolated clusters that serve as firebreaks. The main source of possible inefficiency,
contagion spreading to distant parts of the network, is eliminated by the absence of links
between clusters.3 This is outcome is not obvious because the high risk of contagion might
cause agents to form inefficiently few links.

A second contribution is to examine how the probability of system wide failure as well as
the expected number of defaults varies with a change in the distribution of shocks. In a
setting where shocks are independent and binary (good or bad), the probability of system
wide failure increases with an increase in the probability of a good shock, up to the point at
which the formed network becomes a complete graph, i.e. every pair of agents is linked. After
this point, probability of system wide failure declines. Intuitively, as partnerships become
less risky, agents are encouraged to form more partnerships increasing interconnectedness
which increases the probability of system wide failure. This gives a network foundation for
the volatility paradox described in Brunnermeier and Sannikov (2014). The expected number
of defaults, in contrast, declines with an increase in the probability of a good shock. This
highlights that two plausible measures of systemic risk can move in different directions with
a change in the fundamentals.

Our final contribution shows that the structure of the network formed in stage one depends
critically on whether the shocks to the links are believed to be correlated or independent
of each other. When shocks are perfectly correlated, the network formed in stage one is
a complete graph. We think this finding relevant to the debate between two theories of
financial destruction advanced to explain the 2008 financial crisis. The first, mentioned
above, is dubbed the ‘domino theory’. The alternative, advocated most prominently by
Edward Lazear 4, is dubbed ‘popcorn’. Lazear describes it thusly in a 2011 opinion piece in
the Wall Street Journal:

“The popcorn theory emphasizes a different mechanism. When popcorn is made
(the old fashioned way), oil and corn kernels are placed in the bottom of a pan,
heat is applied and the kernels pop. Were the first kernel to pop removed from
the pan, there would be no noticeable difference. The other kernels would pop
anyway because of the heat. The fundamental structural cause is the heat, not
the fact that one kernel popped, triggering others to follow.

Many who believe that bailouts will solve Europe’s problems cite the Sept. 15,
2008 bankruptcy of Lehman Brothers as evidence of what allowing one domino

3Later on we consider various extensions in the strength of contagion and types of agents that lead various
other network structures as well.

4Chair of the US President’s Council of Economic Advisers during the 2007-2008 financial crisis.
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to fall can do to an economy. This is a misreading of the historical record.
Our financial crisis was mostly a popcorn phenomenon. At the risk of sounding
defensive (I was in the government at the time), I believe that Lehman’s downfall
was more a result of the factors that weakened our economic structure than the
cause of the crisis.”

Our model suggests that underlying structural weaknesses (modeled by strong correlations
between shocks) and greater interconnectedness can coexist. Therefore, it would be incor-
rect to highlight the interconnectedness of the system and suggest it alone as the cause of
instability.

More importantly, it suggests that a mistake in assessing the correlation structure of shocks
can lead to disproportionately bigger mistakes in assessing the probability of systemwide
failure. In the model, a complete network arises from perfectly correlated shocks, the popcorn
world, no matter how likely the shocks are to be bad. However, a complete network arises
from independent shocks, the dominoes world, only if the shocks are very likely to be good.
Therefore, we suggest that Edward Lazear’s view might shed light on the possible causes for
the underestimation tin he likelihood of a financial crisis.

Our model differs from the prior literature in the following ways. The networks we study
are formed endogenously. Babus (2013) also has a model of network formation, but one in
which agents share the goal of minimizing the probability of system wide default. In our
model agents are concerned with their own expected payoffs and only indirectly with the
possibility of system wide failure. Acemoglu et al. (2013) also discusses network formation
but within a set of limited alternatives. Zawadowski (2013) models the decision of agents
to purchase default insurance on their counter-parties. This can be interpreted as a model
of network formation, but it is not a model of an agent choosing a particular counter-party
because the counter-parties are fixed. Default insurance serves to change the terms of trade
with an existing counter-party. The model in Farboodi (2014) includes network formation
with the same solution concept we employ. Our model is encompasses mutual cross-holdings
whereas her model focuses on directional interbank lending. Furthermore, we explicitly
characterize all networks formed, and provide detailed comparative statics by determining
the exact distribution of defaults. Blume et al. (2013) has networks that form endogenously.
However, the risk of a node defaulting is non-strategic and independent of the network formed.
In our model, the likelihood of a node defaulting depends on the structure of the network
formed.

A critical departure from the literature is that we examine the effects of a distribution that
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generates the shocks rather than the effects of fixed shocks applied to particular nodes.5 This
allows us to discuss the volatility paradox as well as the popcorn vs. dominoes debate.

In section 2, we give a formal description of the model. Section ?? characterizes the set of
agents that choose to default in stage three for a given realized network and realization of
shocks. Section 3 uses these results to characterize the structure of the realized networks.
Section 4 investigates efficiency and systemic risk of the networks formed. Section 5 discusses
correlated shocks and section 6 describes some extensions to the basic model. We propose
some future work in Section 7.

2 The Model

Denote by N a finite set of agents.6 Each pair of agents in N can form a joint venture. We
frequently refer to agents as nodes and each potential partnership as a potential edge.

A potential edge e, a subset of N with two elements, represents a bilateral contract whose
payoff to each party is contingent on some future realized state θe and actions that each
incident7 node can take upon realization of θe. The set of possible values of θe is Θ, a finite
set of real numbers.

The model has three stages. In stage one, the stage of network formation, agents, by mutual
consent, decide which potential edges to pick. The edges picked are called realized. The set
of realized edges is denoted E. The corresponding network denoted (N,E), is called a
realized network.

In stage two, for each realized edge e, θe is chosen by nature identically and independently
across edges via a distribution φ over Θ. We relax the independence assumption in Section
5. We denote by (N,E,θ) the realized network and vector of realized θ’s.

In stage three, with full knowledge of (N,E,θ) each agent n chooses one of two possible
actions called B (business as usual) or D (default), denoted by an. Agent n enjoys the sum
of payoffs un(an, am; θ{n,m}) over all of his neighbors8 m in (N,E).

We make two assumptions about payoff functions. The first is that if an agent n in (N,E)
has degree one and the counter-party defaults, it is the unique best response for agent n to
default as well. Formally:

5Glasserman and Young (2014) is the only exception we are aware of, but the networks they consider are
exogenously given.

6We abuse notation by using N to denote the cardinality of the set when appropriate.
7A node v is incident to an edge e if v ∈ e.
8Two distinct nodes v and v′ are neighbors if {v, v′} ⊂ E. In this case v and v′ are also said to be adjacent.
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Assumption 1. un(D,D; θ) > un(B,D; θ) for all n and θ.

The second assumption is a supermodularity which can be interpreted as a form increasing
returns in fulfilling the terms of the partnership.

Assumption 2. un(D,D; θ) + un(B,B; θ) > un(B,D; θ) + un(D,B; θ) for all n and θ.

If we focus on a pair of agents (n,m) and denote by e the realized edge between them, the
payoff matrix of the game they are engaged in stage three is the following (player n is the
row player and m the column player):

B D

B un(B,B; θe), um(B,B; θe) un(B,D; θe), um(D,B; θe)
D un(D,B; θe), um(B,D; θe) un(D,D; θe), um(D,D; θe)

A special case of this game is the coordination game of Carlsson and van Damme (1993)
reproduced below that will be considered in section 3:

B D

B θe, θe θe − 1, 0
D 0, θe − 1 0, 0

It is clear from this last table that a pair of agents that share a realized edge play a coordi-
nation game whose payoffs depend upon the realized state variable θe. Following Carlsson
and van Damme (1993), the game has a natural interpretation. In stage one the agents get
together to pursue a joint investment. In stage two, θe is realized, i.e. new information
arrives about the profitability of the project. In stage three, agents are allowed to reassess
their decision to continue with the project or not. For other examples of games of this kind
and their applications in finance see Morris and Shin (2003).

Two features of the model deserve discussion. First, in contrast to prior literature, shocks,
in the form of realized states, apply to edges rather than nodes. In section 6 we extend our
model to allow for shocks to nodes as well as edges. However, we believe shocks to edges
to be of independent interest. An agent’s solvency depends on the outcomes of the many
investments she has chosen to make. The interesting case is when these investments required
coordination with at least one other agent, a joint venture if you will. It is the outcome of
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this joint venture that will determine whether the participants decide to continue or walk
away.

Second, an agent must default on all partnerships or none. While extreme, it is not, we
argue, unreasonable. Were an agent free to default on any subset of its partnerships, we
could model this by splitting each node in (N,E) into as many copies of itself as its degree.9

Each copy would be incident to exactly one of the edges that were previously incident to the
original node. Thus, our model would easily accommodate this possibility. However, this has
the effect of treating a single entity as a collection of independent smaller entities which we
think inaccurate. Institutions considering default face liquidity constraints, which restrict, at
best, the number of parties they can repay. When a company fails to pay sufficiently many
of its creditors, the creditors will force the company into bankruptcy. While entities like
countries can indeed selectively default, there is a knock-on effect. Countries that selectively
default, have their credit ratings downgraded which raise their borrowing costs for the other
activities they are engaged in. Thus, it is entirely reasonable to suppose that the default
decisions associated with the edges a node is incident to must be linked. Ours is an extreme,
but simple, version of such a linkage.

2.1 Solution concepts

Here we describe the solution concepts to be employed in stages one and three. We begin
with stage three as the outcomes in this stage will determine the choices made by agents in
stage one.

Agents enter stage three knowing (N,E,θ). With this knowledge, each simultaneously
chooses action B or D. We do not allow actions chosen in stage three to be conditioned
on what happens in earlier stages. The outcome in stage three is assumed to be a Nash
equilibrium. While ‘everybody plays D’ is a Nash equilibrium, by Assumption 1, it need
not be the only one. We focus on the Nash equilibrium in which largest (with respect to
set inclusion) set of agents, among all Nash equilibria, play B. Call this the cooperating
equilibrium. The proposition below shows that the cooperating equilibrium is well-defined
and unique, by using rationalizable strategies.

A realized network along with realized states, (N,E,θ), exhibits system wide failure if
in the cooperating equilibrium of the game all agents in N choose D.10 In this case, agents
can coordinate on nothing but action D. The probability of system wide failure of a realized
network is called its systemic risk.

9The degree of a node in a graph is the number of edges incident to it.
10This is equivalent to saying that ‘everybody plays D’ is the only Nash equilibrium.
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Proposition 1. A cooperating equilibrium is well-defined and unique.

Proof. Fix (N,E,θ). The profile where all agents in N play D is a Nash equilibrium by
Assumption 1. Hence, D is rationalizable for everyone. Let M be the set of agents who have
the unique rationalizable action D. For agents in N \M , both B and D are rationalizable.

Consider an agent n 6∈ M . B is rationalizable, i.e., B is a best response to some strategy
profile, say a−n, of agents −n in which agents in M play D. Let ∆(s−n) be the difference in
payoffs for n between playing B and D against strategy profile s−n of −n. ∆(a−n) ≥ 0 since
B is a best reply to a−n.

Now consider the strategy profile b−n of agents −n such that agents inM play D and the rest
play B. We will prove that ∆(b−n) ≥ ∆(a−n). In a−n, players in N \M could be playing B
or D. Let K ⊆ N \M be those agents who play D in a−n and let Γn be the set of neighbors
of n in the realized network (N,E). Then ∆(b−n)−∆(a−n) =

∑
k∈K∩Γn

(
un
(
B,B; θ{n,k}

)
− un

(
D,B; θ{n,k}

))
−
(
un
(
B,D; θ{n,k}

)
− un

(
D,D; θ{n,k}

))

which is positive by Assumption 2.

As ∆(b−n) ≥ ∆(a−n) ≥ 0 it follows that B is a best reply by n to b−n. This argument works
for every agent in N \M , not just n. Also, recall that D is the unique rationalizable action
for agents in M so that D is the unique best reply to any strategy profile in which all agents
in M play D. Therefore, a profile where all agents in M play D and all agents in N \M
choose B is a Nash equilibrium.

Note that in any Nash equilibrium, everyone in M must play D since it is their unique
rationalizable action. Therefore, “M plays D, M c plays B” is the unique cooperating equi-
librium.

The proof suggests an equivalent definition of a cooperating equilibrium: the rationalizable
strategy profile in which those who have the unique rationalizable action D play D, while
the remainder play B.

Recall that rationalizable actions are those which remain after the iterated elimination of
strictly dominated actions. The iteration is as follows. Those agents who have a strictly
dominant action D play D. Then, knowing that these agents play D, it becomes strictly
dominant to play D for other agents to do so. This iteration stops in a finite number of steps
as N is finite. The remaining action profiles are the rationalizable ones, and the cooperating
equilibrium is given by the profile in which whoever is not reached in the iteration plays B.
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There is a natural analogy between contagion of sequential defaults and rationalizable strate-
gies.11 First, agents whose incident edges have realized states that cause them to default in
any best response, no matter what other players do, default. Then, some agents, knowing
that some of their counter-parties will default in any best response, choose to default in any
best response. Then some more agents and so on.

In stage one, agents know the distribution by which nature assigns states and the equilibrium
selection in stage three. Therefore, they are in a position to evaluate their expected payoff in
each possible realized network. Using this knowledge they decide which links to form. Here
we describe how the realized network is formed.

Consider a candidate network (N,E) and a coalition of agents V ⊂ N . A feasible deviation
by V allows agents in V

1. to add any absent edges within V , and
2. to delete any edges incident to at least one vertex in V .

A profitable deviation by V is a feasible deviation in which all members of V receive
strictly higher expected payoff.12

A realized network (N,E) is called pairwise stable if there are no profitable deviations by
any V ⊂ N with |V | ≤ 2 (see Jackson (2010)). G is multilaterally stable if there are no
profitable deviations for any V ⊂ N . 13 We assume that the network formed in stage one
is multilateraly stable. In the sequel we discuss how our main results change under weaker
notions of stability.

Multilateral stability is equivalent to strong Nash equilibrium of a certain non-cooperative
network formation game played between the members of N . Each agent simultaneously
proposes to a subset of agents to form an edge. The cost of each proposal is b > 0. If
a proposal is reciprocated, the corresponding edge is formed. The owners of the edge are
refunded b. If a proposal is not reciprocated, b is not refunded and the edge is not formed.

Notice that in any Nash equilibrium of this game, all proposals must be mutual. Consider
a strong Nash equilibrium of the proposal game. A coalition V can make mutual proposals

11See Milgrom and Roberts (1990) for more on this. Although not exactly the same, similar algorithms
are used in Eisenberg and Noe (2001), Elliott et al. (2014), etc.

12The requirement that all agents in a profitable deviation receive strictly higher payoff prevents ‘cycling’.
To illustrate, consider three nodes N = {v1, v2, v3} and E = {{v1, v2}, {v2, v3}}. Suppose v1 and v3 deviating
to E′ = {{v1, v3}, {v2, v3}}, leaves v1 indifferent and v3 strictly better off. However, E′ is just isomorphic to
E and there is no good sense in which v1 would bother deviating to E′. v1 and v2 could very well want to
deviate back to E from E′. The same argument applies for E with one element as well. As one can see in
this example, precluding ’weak’ deviations would be overly restrictive, in particular almost trivially imposing
very strong forms of symmetry on any candidate network to be formed.

13Farboodi (2014) calls this solution concept group stable. It is also the same as as the notion of core in a
NTU co-operative game.
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between themselves to form a missing edge, or undo a proposal by any member which would
delete the corresponding edge. Therefore, strong Nash equilibria of this game correspond to
multilaterally stable networks in the way we have defined it.

2.2 Two states

We assume that |Θ| = 2, with one state being positive and the other negative. This will be
convenient for the analysis of the network formation stage and is sufficient to capture most
of the essential intuition.

Assumption 3. Θ = {θ0, θ1}, θ1 < 0 < θ0.

In addition:

Assumption 4. 0 < θ0 < min{ 1
N−1 ,

−θ1
N−2}.

Assumption 5 ensures that the maximum possible sum of gains from trade scale linearly with
N . Another way to interpret this is that the system as a whole cannot withstand bad shocks
that make up a fraction of more than 1/N of all edges. This assumption simplifies contagion
dynamics and buys us great technical convenience in the benchmark model as we will see in
the next proposition. We relax this assumption later on.

A path between two nodes v0 and vk+1 is a sequence of nodes v0, v1, ..., vk, vk+1 such that
{vi, vi+1} ⊂ E for all i = 0, 1, ..., k. Two nodes are connected nodes if there is path between
them. A subset V of nodes is a connected set if any two elements of V are connected by a
path that is resides entirely in V . V ⊂ N maximally connected if V is connected and there
is no strict superset of V that is connected.

Proposition 2. Fix (N,E,θ). A set V ⊂ N of nodes is ex-post cohesive if and only if it is
(ex-ante) maximally connected and (ex-post) all edges with endpoints in V have state θ0.

Proof. Choose any V ⊂ N and any v ∈ V . Observe that π(V |v) = 1 if and only if all of
v’s neighbors are in V . Otherwise π(V |v) ≤ 1 − 1

N−1 . Also, θ · π(v) = θ0 if and only if all
edges of v are θ0. Otherwise θ · π(v) ≤ N−1

N
θ0 + 1

N
θ1 < 0. Note that 1 − 1

N−1 + θ0 < 1
and 1 + N−1

N
θ0 + 1

N
θ1 < 1. Therefore, π(V |v) + θ · π(v) ≥ 1 if only if both π(V |v) = 1 and

θ · π(v) = θ0 hold. Equivalently, V is ex-post cohesive if and only if for any v ∈ V all of v’s
neighbors are in V and all edges incident to v are in state θ0.
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In the cooperating equilibrium, an agent defaults even if only one edge in the agent’s maxi-
mally connected component is in the bad state. This is a consequence of the strong contagion
embedded in Assumption 5. The condition 0 < θ0 <

−θ1
N−2 ensures that anyone incident to at

least one bad edge defaults. The condition 0 < θ0 <
1

N−1 ensures that anyone who has at
least one defaulting neighbor also defaults. In a later section, we relax this assumption and
discuss its consequences.

3 Network Formation

In this section we characterize the set of multilaterally stable networks under the assumptions
stated previously. We show that a multilaterally stable network consists of a collection of
node disjoint complete subgraphs14. By forming into complete subgraphs agents increase the
benefits they enjoy from partnerships. However, the complete subgraphs formed are limited
in size15 and order16, and are disjoint. In this way agents ensure that a default in one portion
of the realized network does not spread to the entire network. This extreme structure is
a consequence of the spareness of our model. However, it suggests that more generally we
should expect to see collections of densely connected clusters that are themselves sparsely
connected to each other. Blume et al. (2013) have a similar finding in their paper.

We first need to determine an agent’s expected payoff in various realized networks. Recall
that nature determines states identically and independently across edges. Let α be the
probability that an edge has state θ0 and 1 − α be the probability that it has state θ1.
Consider v ∈ N and suppose that in a realized network, v has degree d and the maximally
connected component that contains v has e edges. By virtue of Proposition 2 we need only
consider the case where everyone in the maximally connected component defaults or no one
does. The probability that every node in the relevant component defaults is 1− αe. In this
case, v gets 0. The probability that no one in the relevant component defaults is αe. In this
case, v gets dθ0. So v’s expected payoff in stage two is dαeθ0. Using this, we can find what
happens in stage one.

Being pairwise stable, henceforth stable, is a necessary condition for being multilaterally
stable. We first identify conditions on stable networks, then move onto multilaterally stable
networks.

14A graph (N ′, E′) is a subgraph of (N,E) if N ′ ⊂ N and E′ ⊂ E.
15The size of a subgraph or a subset of edges is the number of edges in it.
16The order of a subgraph or a subset of nodes is the number of nodes in it.
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3.1 Stable networks

Lemma 1. Any stable network consists of disjoint complete subgraphs.

Proof. Suppose, for a contradiction, a stable network with two non-adjacent nodes v′ and
v′′ in the same connected component. Take a path v′ = v1, v2,... vt = v′′ between v′ and
v′′. Insert the edge {v′, v′′} and delete {v′, v2}, as well as {vt−1, v

′′}. The degrees of v′ and
v are unchanged but the number of edges in the component that contains them strictly
decreases. Hence, this is a profitable pairwise deviation by v′ and v′′ which contradicts
stability. Therefore, in any stable network all nodes within the same connected component
are adjacent, which completes the proof.

The orders of these complete subgraphs are not arbitrary. Let U(d) := dα(0.5)d(d+1), and
d∗ = arg maxd∈N U(d). For generic α, d∗ is well defined. Note that U(d) is strictly increasing
in d ∈ N up to d∗, and strictly decreasing after d∗. Further, d∗ is an increasing step function
of α. Let h∗ ≥ d∗ be the largest integer h such that U(1) ≤ U(h). Let h∗∗ ≤ d∗ be the largest
integer such that 1

α
≤ h+1

h
α(0.5)h(h+1) = U(h+1)

hαh .

Proposition 3. Any network that consists of disjoint complete subgraphs, each with order
between h∗∗ + 1 and h∗ + 1, is stable. Call these uniform stable networks.17

Proof. Consider a uniform-stable network and suppose that there is a profitable bilateral
deviation by two nodes. Take one of them, let her have degree d, and let her have e =
d(d+1)/2 edges in her complete subgraph. Suppose that in the bilateral profitable deviation
she deletes x of her incident edges in her complete subgraph, and adds t ∈ {0, 1} new edges.

If x = d, her payoff is at most α = U(1) ≤ U(d) (since 1 ≤ d ≤ h∗) which cannot be a
profitable deviation. So x < d, which means she is still incident to e − x edges in her old
component. Then her payoff is at most (d− x+ t)αe−x+t. If t− x ≤ 0, this is less than dαe

since yαy is strictly increasing up to k∗ in y ∈ N and h ≤ k∗. Then t − x > 0, which is
possible only when t = 1 and x = 0. This is true for the other deviator as well. Therefore,
these two deviators keep all their previous edges and connect to each other with a new edge.

Let the other deviator have degree d′. Without loss of generality, let d ≤ d′. Then, the devia-
tor with the smaller degree has her payoff moved from dα(0.5)d(d+1) to (d+1)α1+(0.5)d(d+1)+(0.5)d′(d′+1)

which is less than or equal to (d+ 1)α1+d(d+1). This being a profitable deviation immediately
implies d < h∗∗, which is a contradiction.

17This is close to a complete characterization of all stable networks in the following sense. Any complete
subgraph in any stable network has to be of order at most h∗ + 1. Moreover, there can be at most one
complete subgraph with order less than h∗∗ + 1. The bound on the smallest order depends on what the
second smallest order is, and is more involved to characterize.
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3.2 Multilaterally Stable Networks

Lemma 2. If a network is multilaterally stable, it consists of a collection of disjoint complete
subgraphs, all but one of order (d∗ + 1). The remaining complete subgraph is of order at most
d∗ + 1.

Proof. By Lemma 1 a multilaterally stable network (if it exists) is composed of disjoint
complete subgraphs. The payoff to an agent in a (d+ 1)-complete subgraph is U(d) =
dα(0.5)d(d+1)θ0. This is strictly increasing up to d∗.

First, no complete subgraph can have order d+1 > d∗+1 in the realized network. Otherwise,
d∗+ 1 members could deviate by forming a (d∗ + 1)-complete subgraph and cutting all other
edges. This would be a strict improvement since d∗ is the unique maximizer of U(d).

Second, there cannot be two complete subgraphs of order d + 1 < d∗ + 1. Suppose not. Let
there be d′+ 1 nodes all together in these two complete subgraphs. Then min{d′+ 1, d∗+ 1}
nodes would have a profitable deviation by forming an isolated complete subgraphs since
U(d) is increasing in d up to d∗.

A realized network that is multilaterally stable necessarily consists of a collection of complete
subgraphs of order d∗ + 1 and one ‘left-over’ complete subgraph with order different from
(d∗ + 1). To avoid having to deal with the ‘left-over’ we make a parity assumption about
N . For the remainder of the analysis we assume N ≡ 0 (mod d∗ + 1). In fact, without this
assumption, the set of multilaterally stable networks may be empty. To see why, assume
that the ‘left-over’ complete subgraph is of order 1. This single left-over agent would like to
have any edge rather than having none, and any other agent would be happy to form that
edge since that extra edge does not carry excess risk. We would expect a pairwise deviation
which would contradict the stability. However, even in this case, N − 1 agents don’t have a
deviation among themselves without using the single left over node. In section 6 we consider
solution concepts other than multilaterally stability as well.

Theorem 1. For N ≡ 0 (mod d∗+ 1), the set of multilaterally stable networks is non-empty,
unique (up to permutations) and consists of disjoint (d∗ + 1)-complete subgraphs.

Proof. Assuming non-emptiness of the set of multilaterally stable networks and the parity
assumption, Lemma 2 suffices to yield uniqueness once we have existence. It remains to show
that a realized network G = (N,E) consisting of disjoint complete subgraphs C1, C2, ..., Ck

all of order (d∗ + 1) (for k such that N = k (d∗ + 1)) is a multilaterally stable network.
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For any profitable deviation by V ′ from G to G′, define φ(V ′, G′) as the number of edges
between V ′ and N/V ′ in G′. Let the minimum of φ be attained at (V ∗, G∗).

Consider G∗. Take a node v′ ∈ V ∗ that is adjacent to N/V ∗. Suppose that there exists
v′′ ∈ V ∗ such that v′ is connected but not adjacent to. Cut one edge connecting v′ to
N/V ∗ and join the missing edge between v′ and v′′. This new graph, say G′′, is also a
profitable deviation by V ∗ from G. This is because when we move from G∗ to G′′, the
degrees of all nodes in V ∗ weakly increase, and their component sizes weakly decreases.
However, φ(V ∗, G′′) < φ(V ∗, G∗), which is a contradiction. Therefore, any node in V ∗ that
is connected to v′ is adjacent to it. The same holds for any node that is adjacent to N/V ∗.

Take a node in V ∗ with minimal degree, say v with degree d. Let d′ ≥ 0 be the number of v’s
neighbors in N/V ∗. Suppose d′ ≥ 1. By the last paragraph, a node in V ∗ that is connected to
a neighbor of v can only be a neighbor of v. Therefore, any neighbor of v in V ∗ has at most
d− d′ neighbors in V ∗, hence at least d′ ≥ 1 neighbors in N/V ∗. So by the last paragraph, v
and his d− d′ neighbors in V ∗ are all adjacent to each other, forming (0.5)(d− d′+ 1)(d− d′)
edges. Each of them have at least d′ edges to N/V ∗, so that makes d′(d − d′ + 1) edges.
Finally, since nodes in N/V ∗ have not deviated from G and are connected to each other,
they are all adjacent to each other, forming (0.5)d′(d′−1) edges. Therefore, in v’s maximally
connected component, there are at least (0.5)d(d + 1) edges, so that his payoff is at most
U(d). Now suppose d′ = 0. Then all v’s d neighbors are in V ∗, hence all have degree at least
d. Then again, v’s component has at least d(d + 1)/2 edges, so that his payoff is at most
U(d). In both cases, v’s payoff in G∗ is at most U(d) ≤ U(d∗); contradiction with profitable
deviation from G.

Theorem 2. For N < d∗ + 1, the unique multilaterally stable network is the N-complete
subgraph.

Proof. Recall that dα(0.5)d(d+1) is increasing in d up to d∗ > N . The remainder of the proof
follows the proof of Theorem 1 by replacing d∗ + 1 with N . We omit the details.

4 Efficiency and Systemic Risk

In this section we define what it means for a network to be efficient and show that a network
is efficient if and only if it is a multilaterally stable. The other stable networks are inefficient,
which suggests that some inefficiencies in observed networks stem from the inability of large
groups to coordinate.
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We also identify another source of inefficiency by relaxing the assumptions governing the
strength of contagion. When bad shocks are highly contagious, any expected externality that
a node imposes on others turns back on itself, and is naturally internalized. On the other
hand, when bad shocks are weakly contagious, agents don’t need to consider anyone other
than their immediate neighbors. As a consequence, they don’t internalize their externalities
which leads to excess connectivity and inefficiency.

We further show that systemic risk in the efficient/multilaterally stable network increases as
the probability α of a good shock increases. This follows the safety belt argument: as the
economy gets safer, agents form networks with higher systemic risk. This intuition, however,
may change with different notions of systemic risk.

4.1 Efficiency

4.1.1 The efficient network

Call a realized network (N,E) efficient if it maximizes the sum of expected payoffs of agents
among all realized networks. Consider a connected subgraph with e edges. A node in the
subgraph with degree d enjoys an expected payoff of dαeθ0. Therefore, the sum of payoffs of
nodes within the graph is 2eαeθ0. Here we use the well known fact that the sum of degrees is
twice the number of edges. It follows then, that the problem of finding an efficient network
devolves into two parts: how to partition nodes into maximally connected components, and
how many edges to put into each component.

Let k∗ = arg maxy∈N yαy. For generic α this is well defined.18 Note that yαy is strictly
increasing in y ∈ N up to k∗ and strictly decreasing after k∗. Note also that when maximizing
yαy over the non-negative reals, the maximum occurs at a number y∗ = − 1

log(α) where
αy
∗ = e−1. Here e is Euler’s constant and y∗ lies in the interval ( α

1−α ,
1

1−α).

Theorem 3. If N ≡ 0 (mod d∗ + 1), a network is efficient if and only if it is multilaterally
stable.

Proof. Recall that U(x) = xα(0.5)x(x+1). Let U = {u ∈ R |u = U(x) for some x ∈ N}. The
maximum of U is achieved, uniquely, at x = d∗. Let ū = U(d∗). Notice that this is the
average payoff in a multilaterally stable network. We will prove that the average is strictly
less in any other network.

18For α such that (1−α)−1 is integral, there are two integers in the arg max: α
1−α and 1

1−α . In other cases,
the arg max is unique: it is the unique integer in the open interval ( α

1−α ,
1

1−α ), i.e. b 1
1−αc.
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Consider an efficient network G and suppose it to be made up of a collection of disjoint
connected components: C1, C2, C3, . . .. Consider component Ci and suppose it has qi edges.
The total payoff of Ci scales with 2qiαqi . If qi 6= k∗ we can improve total payoff by deleting
or adding (if not complete graph) edges to Ci. Therefore, we can assume that qi = k∗, or
that Ci is complete.

Let ri be the largest integer such that ri(ri − 1)/2 < qi ≤ ri(ri + 1)/2. Let wi be such that
qi = ri(ri − 1)/2 + wi, where 1 ≤ wi ≤ ri. Note that there must be at least ri + 1 nodes in
Ci.
Case 1: 1 ≤ wi ≤ ri−1

2 .
The average degree of nodes in Ci is at most 2k∗

ri+1 = ri(ri−1)+2wi

ri+1 ≤ ri− 1. Note that k∗ = qi ≥
(ri−1)ri/2+1. Hence the average payoff per node is at most (ri−1)αk∗ < (ri−1)α

(ri−1)ri
2 ≤ ū.

So the average payoff is strictly less than ū.

Case 2: ri − 1 ≥ wi ≥ ri

2 .
Since wi < ri, k∗ = qi ≤ ri(ri + 1)/2 − 1. The average degree of nodes in Ci is at most
2k∗
ri+1 ≤

ri(ri+1)−2
ri+1 ≤ ri − 2

ri+1 . Note that k∗ = qi = (ri − 1)ri/2 + wi ≥ r2
i /2. Hence the aver-

age payoff per node is at most
(
ri − 2

ri+1

)
αr

2
i /2. Now we show that this is strictly less than

(ri−1)α(r2
i−ri)/2 = U(ri−1). That is equivalent to showing that α <

(
ri+1
ri+2

)2/ri . Recall that k∗

is the unique integer between α/(1−α) and 1/(1−α). Therefore, α ≤ 1− 1
k∗+1 ≤ 1− 2

ri(ri+1) .

Hence, it suffices to verify that

1− 2
ri(ri + 1) <

(
ri + 1
ri + 2

) 2
ri ⇐⇒

(
ri + 1
ri + 2

) 2
ri
>

(ri + 2)(ri − 1)
(ri)(ri + 1)

⇐⇒ (ri + 2) log
(

1− 1
ri + 2

)
> ri log

(
1− 1

ri

)
which is true since the function f(x) = x log(1 − 1

x
) is strictly increasing. Therefore, the

average payoff is strictly less than U(ri − 1) ≤ U(d∗) = ū.

Case 3: wi = ri. (This covers the case in which Ci is complete as well.)
Then the average payoff per node is less than U(ri) ≤ ū , and the inequality is strict unless
Ci is a (d∗ + 1)−complete graph.

All stable networks other than those that are multilaterally stable are, thus, inefficient.19

19Blume et al. (2013) find that their stable networks are not efficient. However, their notion of efficient is a
worst-case one, very different from the one employed here. Farboodi (2014) also finds that formed networks
are inefficient, despite having multilaterally stability as a solution concept.
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This suggests that some inefficiencies that arise in the observed networks may stem from the
inability of large groups to coordinate at the network formation stage.

In order to focus on the benchmark case we economize on the proofs of other results by
sketching lengthy ones or omitting entirely, proofs similar to previous proofs, in the paper.
The fundamental techniques we use are contained in the proofs provided thus far.

4.1.2 Relaxing the strength of contagion

In this subsection only, we relax the assumption governing the strength of contagion to
provide better intuition for why agents may or may not form efficient networks.

In Assumption 5, θ1 + (N − 2)θ0 < 0 ensures anyone with degree d ≤ N − 1 incident to an
edge subject to a bad shock defaults. This allows a single bad shock to start a contagion,
and we keep this unchanged here. The condition (θ0 − 1) + (N − 2)θ0 < 0 ensures that a
node, even when all incident edges are good, has to default if at least one neighbor defaults
no matter his degree. This governs the spread of contagion, and we relax this condition here.

First note that under θ1 + (N − 2)θ0 < 0, a realized network is Nash 20 only if the degrees of
all nodes are less than or equal to k∗.

If 2(θ0− 1) + (N − 3)θ0 < 0 it means that a node incident to a bad edge, with degree exactly
N , defaults if it has two defaulting neighbors. But, it is unlikely for relatively large N that
any node will have degree N since in any Nash, hence stable, hence multilaterally stable
network, all degrees must be less than or equal to k∗. What is actually relevant for a node
with degree d is 2(θ0 − 1) + (d − 3)θ0 < 0, hence we could safely relax the assumption by
many degrees, especially for large N .

For this reason, we consider the other extreme, as a way of retarding contagion: if all a node’s
incident edges are good, she defaults only when all her neighbors default. As long as one
neighbor does not default, she does not default either. Formally: (N − 2)(θ0 − 1) + θ0 > 0.

In this case, the expected payoff of an agent who has degree d, and whose neighbors have
degrees n1, n2, ..., nd is

1
α
αd (αn1 + αn2 + ...+ αnd) .

Define k∗∗ := argmaxd∈Ndα
2d−2. Note that k∗

2 − 1 ≤ k∗∗ ≤ k∗

2 + 1.

Proposition 4. A network is efficient if and only if it is k∗∗-regular.
20A network in which no node has a profitable unilateral deviation
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Proof. See appendix.

Proposition 5. Consider any stable network. There are at most
(
k∗+1

2

)2
many nodes with

degree different than k∗−1. The remainder have degree k∗−1. In this sense, any sufficiently
large stable network is almost k∗ − 1 regular, hence inefficient.

Proof. See appendix.

Note that stable networks have an average degree almost double that of the efficient level. In
this sense, there is excess interconnection in any stable network when the risk of contagion
is low. Other properties of stable networks which are not of first order importance, thus
omitted.21

Proposition 6. If N ≥
(
k∗

2 + 1
)2

and α > 2
e , the set of multilaterally stable networks is

empty.

Proof. See appendix.

Recall that k∗ = b 1
1−αc. When α is such that k∗ < 1

1−α − α, there are no stable networks for
large N . For α such that 1

1−α − α < k∗ < 1
1−α , we have the following.

Proposition 7. If N ≡ 0 (mod k∗) and α such that 1
1−α − α < k∗ < 1

1−α , then, a network
that consists of disjoint complete subgraphs of order k∗ is stable.

Proof. See appendix.

When contagion is very strong, any externality imposed on another at any distance, comes
back to ‘bite one.’ The strength of contagion ensures nodes internalize their externalities.
Hence, they form efficient structures, in the form of complete subgraphs. When contagion
is very weak, nodes no longer internalize the externalities they impose on others. Therefore,
efficiency is lost. This highlights the risk of contagion (conditional on it being initiated) as
a source of efficiency (but not necessarily higher welfare with respect to the weak contagion
case), rather than inefficiency, in our main result.

21For example, nodes with degrees other than k∗ − 1 are in close proximity to each other.
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4.1.3 Comparative Statics

We return to the benchmark model with strong contagion, and provide some comparative
statics on efficiency.

Note that the total payoff in a network which consists of disjoint complete subgraphs of order
d+ 1 is N × U(d). The figures below illustrate the differences in connectivity and efficiency
between multilaterally stable and stable networks. 22
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Figure 3: Cluster Sizes of Stable and Multilaterally Stable Networks vs. α
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Figure 6: Payoffs and Efficiency in Stable Networks
22We plot the properties of the the most and the least interconnected uniform-stable networks, the ones

with cluster size h∗ and h∗∗.
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4.2 Systemic risk

4.2.1 Systemic risk of the multilaterally stable/efficient network

Fix N ≡ 0 (mod d∗+ 1) and consider the multilaterally stable network. Recall that all nodes
of a maximal complete subgraph play D if at least one of the edges in the complete subgraph
is in a ‘bad’ state; otherwise they all choose action B. The probability that any node/all
nodes in a maximal complete subgraph chooses D is 1−α(0.5)d∗(d∗+1). Hence, the probability
that everybody defaults, i.e. systemic risk, is

(
1− α(0.5)d∗(d∗+1)

) N
d∗+1 .

For fixed α, the above expression is increasing in d∗ < N . An increase in d∗ leads to fewer but
larger complete subgraphs. Thus, for fixed α higher interconnectedness translates into higher
systemic risk. For fixed d∗, the expression decreases in α. However it is not apriori clear
whether systemic risk increases or decreases with a change in α. Note that as α increases, the
multilaterally stable network consists of fewer but larger clusters. As one can see in Figure 3,
it turns out, systemic risk of the multilaterally stable/efficient network increases with α. In
our model, d∗ (weakly) increases with α. It increases at such a rate that systemic risk of the
multilaterally stable/efficient network also increases with α.23 This is displayed in Figure 3.
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Figure 7: Systemic Risk of the Multilaterally Stable Network vs. α

Intuitively, as the economy gets fundamentally safer, agents form much larger clusters. That
is in their individual interest and furthermore the outcome is efficient. However, the risk

23Since d∗ is a step function of α, in intervals where d∗ stays constant the probability decreases. How-
ever, this is an artifact of discreteness. When α hits

(
d−1
d

) 1
d , d∗ jumps from d − 1 to d. If one consid-

ers these jumping points of α, the probability is increasing. In order to clarify further, recall the defi-
nition of d∗ = argmaxd∈Ndα

(0.5)d(d+1). For a “smooth version” of d∗ as a function of α, a real number
d∗ = argmaxd∈Rdα

(0.5)d(d+1), the probability is strictly increasing.
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from interconnectedness dominates the safety from α, and this results in increased systemic
risk: catastrophic events become more frequent. Note that once α becomes too large and
hits

(
N−1
N

) 1
N , d∗ becomes N and the clusters cannot get any larger. Hence the systemic risk

cannot get any larger and it starts decreasing again.

Figures 4 below show how the expected number of defaults, N ×
(
1− α(0.5)d∗(d∗+1)

)
varies

with α.
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We can actually pin down the exact distribution of the number of nodes that default. Given
α, the number of maximal complete subgraphs that fail is k with probability N

d∗+1

k

(1− α(0.5)d∗(d∗+1)
)k (

α(0.5)d∗(d∗+1)
) N

d∗+1−k .

This is also the probability that (d∗ + 1)k agents default and the rest do not. For N = 100,
Figure 5 illustrates the distribution.
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There is no first order stochastic dominance order among these distributions. However, the
distributions with larger α’s second order stochastically dominate those with smaller α’s.

4.2.2 Systemic risk at stable and multilaterally stable/efficient networks

Next, we compare the systemic risk of stable networks with multilaterally stable/efficient
networks. Call uniform stable networks whose maximal complete subgraphs all have order
larger than or equal to d∗ + 1 be called upper-uniform stable networks, and those with
all maximal complete subgraphs having order smaller than d∗ + 1 be called lower-uniform
stable networks.

Proposition 8. Take N ≡ 0 (mod d∗ + 1). Upper-uniform (lower-uniform) stable networks
have higher (lower) systemic risk than the multilaterally stable/efficient network.

Proof. Recall that
(
1− α(0.5)x(x+1)

)1/x
is increasing in x. Take any complete subgraph with

order d+ 1 ≥ d∗ + 1.

1− α(0.5)d(d+1) =
(
1− α(0.5)d(d+1)

)(d+1)/(d+1)
≥
(
1− α(0.5)d∗(d∗+1)

)(d+1)/(d∗+1)
.

Let dt+1’s be the orders of maximally complete subgraphs of a upper-uniform stable network.
Then

∏
t

(
1− α(0.5)dt(dt+1)

)
≥
(
1− α(0.5)d∗(d∗+1)

) 1
d∗+1

∑
dt+1

=
(
1− α(0.5)d∗(d∗+1)

) N
d∗+1 .

The case for lower-uniform stable networks have the similar proof.

Figure 6 illustrates the difference in systemic risk between stable and multilaterally stable
networks for various values of α.
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These findings suggest that some inefficiencies in observed networks may stem from the
inability of parties to coordinate. However, systemic risk of these inefficient networks can
be more or less than that of the multilaterally stable network. Thus, systemic risk is not a
good indicator of inefficiency. The frequency of catastrophic events can be more or less at
inefficient networks than the efficient network.

5 Correlation

We noted earlier a debate about whether interconnectedness of nodes is a significant contrib-
utor to systemic risk. An alternative theory is that the risk faced is via common exposures,
i.e., popcorn. Observed outcomes might be similar in both scenarios but the dynamics can
be significantly different.

We model the popcorn story as perfect correlation in states of edges through φ. Thus, φ is
such that with probability σ all edges have state θ0, with probability 1 − σ all edges are in
state θ1.

There is no change in the analysis of stage three. As for stage one, now there is no risk of
contagion.

Theorem 4. Under ‘popcorn’, the unique multilaterally stable (and unique stable) network
is the complete graph on N nodes, denoted KN .

Proof. In any given realized network, if all states are θ0 then everybody play B and if all states
are θ1 then everybody play D. The payoff of an agent with d edges is dθ0 or 0 respectively.
Thus, the expected payoff of each agent is dσθ0. Then, it is clear that in a multilaterally
stable (or stable) network there cannot be any missing edges because that would lead to
a profitable pairwise deviation. The only candidate is KN which is clearly multilaterally
stable.

When agents anticipate common exposures (popcorn) rather than contagion, they form highly
interconnected networks in order to reap the benefits of trade.

In an independent shocks world, the probability that everybody defaults in KN is 1 − αN ,
which is the highest systemic risk that any network can achieve in this world. However,
KN is as safe as all the other possible realized networks in the correlated shocks world.
This highlights the importance of identifying the shock structure before investigating a given
network. A specific network and a particular shock structure might very well be incompatible.
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5.1 More general correlation

Perfect correlation and complete independence are two extremes. Here we extend the bench-
mark model to allow for a correlation structure that is in between. With some probability
the economy operates as ‘normal’ and edges are subject to their own idiosyncratic shocks,
while with complementary probability a common exposure to risk is realized and all edges
have bad states. Formally, with probability 1 − σ all edges are θ1, while with probability σ
all states of edges are i.i.d.: θ0 with probability α and θ1 with probability 1−α. Notice that
‘σ = 1, α > 0’ is the extreme case of ‘independence with α being the probability of an edge
being in a good state’. The case ‘α = 0, σ < 1’ is the extreme case of ‘perfect correlation
with σ being the probability of all edges being in a good state’.

In this setting, the expected payoff of an agent is dαeσθ0. Clearly, the identical analysis in
section 4 goes through for any σ. Notice that as α tends to 1, d∗ diverges to ∞. For some
ᾱ < 1, α > ᾱ implies that d∗ > N . Then, by Theorem 2, the unique multilaterally stable
network is KN . This illustrates that Theorem 4 is not an anomaly due to perfect correlation.
In fact, it is a corollary of Theorem 2; the same result holds for sufficiently strong correlation
not just perfect correlation.

6 Extensions

We summarize three variations to our model to illustrate robustness of our results. The first
considers weaker notions of network formation. The second allows for shocks to nodes in
addition to edge shocks. Lastly, we consider different forms of asymmetries between nodes
and see how the results are altered.

6.1 Weaker notions of network formation

The results above about multilaterally stable networks assume the ability of any coalition
to get together and ‘block’. Networks that survive weaker notions of blocking are also of
interest. Two natural candidates are Nash networks and stable networks. The first preclude
deviations by single nodes only, while the second by pairs only. All multilaterally stable
networks are pairwise stable, and all pairwise stable networks are Nash networks.

Robustness to unilateral deviations is too permissive. Most (permutation classes of) graphs
with degree less than k∗ are Nash networks. This is because no node can add an edge in a
feasible Nash deviation. As for deleting edges, for graphs that are sufficiently well connected
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a unilateral deletion will not reduce the cluster size very much. Hence, agents are not going
to delete edges since they already have less than k∗ edges. We have already studied stability
before in the benchmark model.

Here we consider the middle ground between multilaterally stability and stable networks.
Call a network (N,E) t-stable if no coalition of size t or less has a profitable deviation.
Notice that N -stable is equivalent to the multilaterally stability, and 2-stable is equivalent
to stable.

Proposition 9. For any t ≥ d∗ + 1, the unique t-stable network is multilaterally stable.

Keeping in mind that we typically think of d∗ + 1 as being relatively small with respect
to N , this proposition shows us that the results in the paper don’t need the full power of
multilaterally stability that precludes profitable deviations by any coalition. A restriction on
relatively small sized coalitions is sufficient. The next theorem concerns t ≤ d∗.

Proposition 10. Take any t ≤ d∗. Let h∗(t) ≥ d∗ be the largest integer such that U(t) ≤
U(h∗(t)). Any network that consists of disjoint complete subgraphs, each with order between
d∗ + 1 and h∗(t) + 1, is t-stable. Call these upper-uniform t-stable networks.

Notice that as t ≤ d∗ gets smaller, upper-uniform t-stable networks become similar to upper-
uniform stable networks. As t ≤ d∗ gets larger, h∗(t) approaches d∗+1, so that upper-uniform
t-stable networks become closer to multilaterally stable networks. After d∗, for t ≥ d∗ + 1
the only t-stable network is multilaterally stable itself (the upper-uniform (d∗ + 1)-stable
network). These results bridge the gap between multilaterally stability and stability.

As t gets larger, t-stable-complete networks become more efficient in a sense. Networks
are subjected to further constraints by precluding deviations by larger coalitions, and the
remaining set of networks get closer to the efficient/multilaterally stable networks, increasing
the efficiency. Similarly, systemic risk of upper-uniform t-stable networks decline with larger
values of t.

6.2 Node shocks

We now consider shocks to individual nodes. There are two ways to think about such shocks.
The first is an idiosyncratic shock that affects an institution without any direct effect to any
other institution, such as liquidity shocks. The second is one in which the financial sector
has ties with the real sector and these ties are subject to shocks as well. In the model, each
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node (financial institution) is incident to an (imaginary) edge outside of the network. The
shock to this edge is effectively an idiosyncratic shock to the node itself.

These shocks can be correlated but we consider the case of independent node-shocks only.
Formally, after stage two has ended and before we move on to stage three, each ‘imaginary’
edge independently defaults with probability 1 − β or proceed as normal with probability
β.

In stage three, ex-post cohesive sets are maximally connected sets all of whose edges are in
state θ0 and nodes are normal. In this case members of such a set play B and get θ0 for each
edge they have. Otherwise they play D and get 0.

In stage two, the expected payoff of a node with degree d in a maximally connected component
with e edges and f nodes has payoff, dαeβfθ0.

As for stage one, the earlier results apply. A multilaterally stable network will consist of
disjoint complete subgraphs. Let d∗∗ := arg maxd∈N dα(0.5)d(d+1)βd+1. Theorems and compar-
ative statics concerning multilaterally stable networks apply with d∗ replaced by d∗∗.

Note that d∗∗ is smaller than d∗. This tells us that when agents are exposed to new types of
risks, which effectively increases their overall risk, they form less interconnected networks.

6.3 Different Types of Agents

The ex-ante symmetry of agents leads to symmetric realized network as well. Here, we allow
one agent to differ from the others in its exposure to risks from states of edges.

This one agent, named C, has a utility function which does not depend on the state of its
incident edges. In particular, for some fixed p ∈ (0, 1), uC(B,B; θ) = p, uC(B,D; θ) = p− 1,
uC(D,B; θ) = uC(D,D; θ) = 0 for every θ. On the other hand, the other agents enjoy the
same payoffs as in the benchmark model from all their incident edges, except the edges with
C. The payoffs associated with edges incident with C have the form: u(B,B; θ) = θ + ε,
u(B,D; θ) = θ − 1, u(D,B; θ) = u(D,D; θ) = 0.24 In particular, the game played on the
edges of C is given by

B D

B p, θ + ε p− 1, 0
D 0, θ − 1 0, 0

24ε can be thought of as a robustness or selection tool. Without this slight perturbation, indifferences
lead to many candidates for multilaterally stability which are less intuitive than the unique candidate for the
multilaterally stability with this perturbation. We don’t provide explicit bounds on ε but it can be chosen
to be bounded away from 0 as N diverges to infinity.
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For technical convenience, we take p such that 1
1−p is an integer: s∗ := 1

1−p ∈ N, and
p ≥ α∗ := α(0.5)d∗(d∗+1).25 Subsequently we will provide an interpretation of agent C as a
‘lender’.

Call a set of nodes not containing C a group if these nodes are connected without using
paths going through C. If a group is connected to C, call it a C-group, otherwise an
NC-group. If C defaults, everybody in all C-groups default in any strategy profile that
survives iterated dominance. If strictly more than p portion of C’s neighbors play D, node
C’s only best response is to play D. If at most fraction p of C’s neighbors play D, then B
is a best response of C to the belief that the remaining nodes play B. Therefore, the unique
cooperating equilibrium is given by: 1) all NC-groups behaving as in the benchmark case,
2) if more than p portion of C’s neighbors have at least one bad edge in their group, all
C-groups and C play D, 3) if more than or equal to 1− p portion of C’s neighbors have all
good edges in their group, then those groups and C play B, the other C-groups play D.

Proposition 11. Any stable network consists of some complete subgraphs each containing
vertex C but are otherwise disjoint, and some other disjoint complete subgraphs.

Proof. See appendix.

Thus, C becomes a central node with many clusters around it, which are still internally
densely connected. The number of attached clusters can be large at stable networks, so that
C serves as a channel through which contagion might spread from one cluster to the other.
In this sense, this ‘favored’ node becomes too central and contributes excessively to systemic
risk.

Proposition 12. Take N such that N > 1 + (d∗ + 1)s∗. Any multilaterally stable network
consists of exactly s∗ many complete subgraphs of order d∗+1 that include C and are otherwise
disjoint, and some isolated disjoint complete subgraphs of order d∗+1, and possibly one more
left-over isolated complete subgraph of order less than d∗ + 1.

Proof. See appendix.

In stable networks, there can be many complete subgraphs, possibly more than s∗ many,
that include C. However, in multilaterally stable networks, there are at most s∗ complete
subgraphs that contain C. When s∗ or fewer complete subgraphs contain C, a contagion
that starts at some complete subgraph cannot cause C to default. In fact, even if all but
one of the complete subgraphs that contain C defaults it is still a best response for C not to

25It is easy to check that α∗ > 0.5, indeed very close to 0.6 independently of α.
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default. If, however, there are at least s∗+ 1 complete subgraphs containing C, if all but one
default, then, C will default. Thus, no complete subgraph will want to connect to C once
C is contained in too many complete subgraphs as this would increase the risk of contagion
from other complete subgraphs.

The comparison of stable and multilaterally stable networks here reinforces the previous
intuition that the inability of large groups to coordinate leads to inefficiencies. Moreover,
we see here that the number of firms matter for the global properties of the network. In an
economy where there are a few firms, the result resembles networks with highly interconnected
central nodes. However, if the number of firms keeps growing, while the number of risk free
nodes remain bounded, the network is going to look more and more like multilaterally stable
networks in the benchmark model.

6.3.1 Borrowing and lending

Here we illustrate how C can be interpreted as a lender. Every investment, in the benchmark
case, requires two partners. Now, suppose that the agents can undertake these ventures solo
only if they can find outside funding. Node C represents this outside funding source. No
other node can serve in this role. Without borrowing from C, agents must form partnerships
for the investments.

An investment undertaken by a single agent n with the backing of C will involve two funding
rounds, at the amounts x ≥ 1 and y > 0 respectively. After the initial investment x, C
and n are informed what the stochastic gross return R will be on the investment. Execution
requires a second stage infusion of y. Lending x involves risk and requires a gross rate of
return r > 1 determined exogenously. Lending y is optional and decided after R is observed.
This is riskless and the gross rate of return on y is 1.

An edge between n and C represents a decision by C to extend to n the initial amount of
x. After the edge is formed, x is a sunk cost for C. After R is determined by nature in the
second stage, both C and n must decide whether to continue with the project.

If both C and n choose to continue (this will correspond to action B), C lends n the extra
y and the investment is complete. Node n obtains R and pays C back rx + y. Hence the
payoff to C is rx+ y − x− y = (r − 1)x and to n is R− rx− y.

If C chooses to continue (action B) but n defaults (play D), then C does not give y, and n
does not return the initial x. The payoffs to C in this case is −x and to n is 0.

If C chooses to stop (action D), but n chooses B, n pays C back rx which he owes (C uses
these funds to pay its other debts and still defaults), but does not obtain y, and hence cannot
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complete the project. Therefore, the payoffs are 0 for C and −rx for n. If both play D, both
get 0. The game form is given by

B D

B rx− x, R− rx− y −x, 0
D 0, −rx 0, 0

Define p to be 1− 1
r
. Since all edges of C have the same payoff structure, his payoffs can be

scaled for normalization. Multiply C’s payoffs by 1−p
x
. Assume that the uncertainty in R is

tied to the state of the edge θ in the form R = ε + y + rx + θ. Then the game form on the
edges of C becomes:

B D

B p, θ + ε p− 1, 0
D 0, −c 0, 0

Here c > 1. This is identical to the extension outlined above, modulo c. Notice this does not
effect our results as long as c > 1 − θ for all θ, which is true. The interest rate r could be
determined endogenously via 1

1−p∗ where p∗ is the endogenous probability of default for n.
That is beyond the scope of this paper.

6.3.2 Other forms of asymmetry

There can be many forms of asymmetries between nodes and edges. For example α’s could
be different. Indeed, if all α’s are in an interval (α2

0, α0) for some α0 ∈ (0, 1), then stable
networks still consist of disjoint complete subgraphs.

Alternatively, consider the benchmark model with node shocks with differing individual de-
fault probabilities.

Proposition 13. If there is one firm with a different node shock probability, say β′ > β,
everything follows similarly. Multilaterally stable networks exist and are unique and consist
of disjoint cliques of order d∗ + 1 for appropriate modularity of N .

If there are several groups of people such that each group has number of people divisible by
d∗ + 1 and members of each group have the same β among themselves, possibly different
across groups, then there is assortative matching in multilaterally stable networks: ‘safer’
firms cluster with ‘safer’ firms from top to bottom.
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7 Future Work

The model we introduce is tractable and rich. We have considered some extensions, and
many more important extensions are possible. We list some of them here.

A major extension is allowing for government intervention in the contagion and/or network
formation stages. Would the anticipation of government intervention be harmful due to moral
hazard costs, or would the ex-post gains from intervention outweigh moral hazard costs ?
Should there be caps on the ability of a government to intervene ? What are the welfare
implications of specific policies ? Furthermore, government reputation can be considered
when the model is cast into a dynamic framework.

As we have illustrated in the asymmetry section, borrowing and lending can be incorporated
into the model and endogenous prices can be tractably determined.

Another important but difficult extension is introducing asymmetric information. For exam-
ple in stage three, nodes could be modeled to know the states of their incident edges but not
the rest. It is important to see the what happens in that case, yet it is significantly harder
to solve for technical reasons.

In the network formation stage, we have introduced a proposal game to micro-found the
solution concepts. The agents could have started off with an existing status-quo network,
and build extra edges on top of the the existing ones. It would be interesting to see how this
will alter the resulting network. Furthermore, one can think of a dynamic proposal game to
see whether first-movers tend to become too central.

Recall that the maximal cohesive sets protect themselves from contagion, and this result is
independent of the particular coordination game later embedded. Network formation is driven
by the utility functions, and it is important to see what other utility functions, symmetric or
asymmetric among agents, lead to. Some that are of particular interest would be those that
resemble borrowing and lending correspondences.

Other extensions can include allowing for more than two actions; allowing for moderate
strength of contagion; allowing for heterogeneous volumes of edges; allowing for bilateral
transfers between neighbors and allowing for different forms of correlations of shocks.

8 Conclusion

In our model, rational agents who anticipate the possibility of system wide failure during
network formation, guard against it by segregating themselves into densely connected clusters
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that are sparsely connected to each other. As the economy gets fundamentally safer, they
organize into larger clusters which results in an increase in systemic risk.

Whether the networks formed efficiently trade-off the benefits of surplus generation against
systemic risk depends on two factors. First is the ability of agents to coordinate among
themselves during network formation. If the networks formed are robust to bilateral devia-
tions only, they are inefficient. If robust to deviations by relatively larger subsets, they are
fully efficient. Second, is the infectiousness of counter-party risk, which serves as a natural
mechanism for agents to internalize externalities. With strong contagion, agents recognize
they are in the same boat during network formation.

Our model highlights that assessing the vulnerability of a network to system wide failure
cannot be done in ignorance of the beliefs of agents who formed that network. Efficient
markets generate structures that are safe under the correct specification of shocks, which will
appear fragile under the wrong specification of the shock structure. Thus, mistakes in policy
can arise from a misspecification in the correlation of risks.

Asymmetries between firms can lead to the emergence of ‘central’ institutions. However,
it does not follow that they are ‘too-big’ or ‘too-interconnected’ if the networks formed are
multilaterally stable. If the networks are robust to bilateral deviations only, then, there can be
excess interconnectedness around these central institutions which can generate an excessive
risk of contagion. However, in a large enough economy, these central groups become marginal
and isolated.
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9 Appendix

Proof of Proposition 4

Proof. (Sketch) By Cauchy-Schwarz inequality, the total expected payoff is less than∑i∈N diα
2di ,

which is less than Nk∗∗α2k∗∗ . This bound is achieved if and only if the network is k∗∗-
regular.

Proof of Proposition 5

Proof. (Sketch)
1. A realized network is Nash if and only if the degree of all nodes is less than or equal to
k∗.

2. Take a stable network. Let d be the smallest degree of any node in the network. If two
nodes have degrees d1 and d2 such that k∗ + d ≥ d1 + d2 + 2, then they are adjacent.

3. Any node with degree di ≤ k∗− 2 must be adjacent to each node with degree d. Thus,
there can be at most d nodes with degrees less than or equal to k∗ − 2. (d ≤ k∗ − 1).

4. Take a stable network. Take two nodes v′, v′′ with degrees at most d, which are adjacent
to a third node with degree at least d+ 1. Then v′ and v′′ are adjacent.

5. Nodes with degree at most k∗−1 who have neighbors of degree k∗ form a clique. Then,
there can be at most max{m(k∗ − 1−m)} ≤

(
k∗−1

2

)2
nodes with degree k∗ that have

neighbors with degrees smaller than k∗.
6. If two nodes v′, v′′ have degrees k∗, and all their neighbors also have degree k∗, then
v′ and v′′ are adjacent. Such nodes form a clique, so that there can be at most k∗ + 1
many such nodes.

7. Bringing all the pieces together: there can be at most k∗−1+
(
k∗−1

2

)2
+k∗+1 =

(
k∗+1

2

)2

many nodes with degree different from k∗ − 1.

Proof of Proposition 6

Proof. (sketch)
1. All nodes with degree less than or equal to k∗ − 2 form a clique.
2. There are at most

(
k∗−1

2

)2
nodes which have degree at most k∗ − 2 or have neighbors

with degree less than equal to k∗ − 2. The remainder have degree at least k∗ − 1 and
all neighbors with degree k∗ − 1 or k∗. Hence all these others have payoff at most
1
α

(
k∗αk

∗
)
× αk∗−1.
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3. k∗∗ is very close to k∗/2. Hence there are at least k∗∗ people who would like to deviate
and form an isolated clique. The set of multilaterally stable networks is empty.

Proof of Proposition 7

Proof. (sketch)
1. As nodes are already in cliques, no two non-adjacent nodes have a common neighbor.

Hence, no node is willing to delete an edge to gain at most one other edge
2. No two nodes from disjoint cliques are willing to connect due to their already high

degree.

Proof of Proposition 11

Proof. (sketch)
1. Any group has to be a clique.
2. All nodes of a C-group has to be adjacent to C.

Proof of Proposition 12

Proof. (sketch)
1. Let the C-groups be indexed by t = 1, 2, ..., c and P t be the probability that C plays
B conditional on ‘-t has no bad edges’.

2. Among all C-groups, at most one can have Pt < 1.
3. Among all C-groups, at most one can have nodes less than d∗, all the rest have exactly
d∗ nodes.

4. If among all C-groups at most one has order less than d∗, all the rest have exactly d∗

nodes, then Pt = 1 for all but at most one if and only if c ≤ s∗.
5. If c ≤ s∗, and all but one C-group has order d∗, then the remainder C -group is also of

order d∗.
6. If all C-groups are of order d∗, and c ≤ s∗, then c = s∗.
7. Among all NC-groups, at most one can have nodes less than d∗, all the rest have exactly
d∗ nodes.
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