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Abstract

This paper develops a mechanism for a principal to assign a prize to

the most valuable agent from a set of heterogeneously valued agents on

a network. The principal does not know the value of any agent. Agents

are competing for the prize and they have a
”
knowledge network“: If

two agents are linked, they know each other’s value for the principal.

Each agent sends a costless private message to the principal about her

own value and the values of other agents she knows. This message can

be truthful or not. However, it is common knowledge that agents can

lie about each value only to a certain extent and that agents only lie if

lying increases their chances of being selected, otherwise they report

truthfully. A mechanism which determines the probability of getting

the prize for each agent for each possible message profile is proposed.

It is shown that if every agent is linked to at least one other agent

in the knowledge network, then the mechanism ensures existence of

an equilibrium in which the most valuable agent gets the prize with

certainty. If the knowledge network is complete or is a star, then the

mechanism ensures that in every equilibrium the most valuable agent

gets the prize with certainty.

Keywords: network, knowledge network, information network, mech-

anism design, principal-agents problem, allocation problem

JEL Classification Codes: C72, D82, D83
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1 Introduction

This paper considers a mechanism design problem in a network setting: A

principal has to assign a prize to one agent from a set of heterogeneously

valued agents. She does not know the exact value of any agent and she

wishes to assign the prize to the most valuable. Every agent would like to

get the prize and knows her own value for the principal. So far, this is a

standard allocation problem in the mechanism design literature which has

many real-world-interpretations: A government wants to privatize a public

service and has to select one firm out of many applying firms to provide

the service from then on; an employer has to select one applicant out of all

applicants for a position; a committee has to assign the prize to one individual

among all nominees. Agents might have knowledge about the values of other

applicants: two firms operating in the same field might have a good estimate

about each others’ costs; two people who have worked on a joint project might

know each others’ abilities. Such an information structure among agents can

be interpreted as a knowledge network in which links between agents signify

knowledge. The general concern of this paper is to propose a mechanism

for the principal to identify the highest value agent with certainty in such a

setting.

In the model introduced in this paper, agents exactly know their own

value and the values of agents to whom they are linked in the knowledge

network. We restrict our attention to knowledge networks in which every

agent is linked to at least one other agent. The principal does not know

any exact value, but the distribution of values and the network are common

knowledge. Every agent sends a private costless message about her informa-

tion to the principal. An agent’s message contains a statement about her

own value (application) and statements about the value of each of the agents

she is linked to (references). Agents can lie about a true value, but only

to a commonly known certain extent. This accounts for the intuition that

statements must be to some extent credible and verifiable. For example, a

scholar with a PhD in Economics cannot pass off as a PhD in Biology as her

degree certificate specifies Economics as a field. However, it is possible to
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lie about her specialization within the field of Economics. Likewise, a junior

applicant cannot pass off as a senior, but it is possible to lie about certain

abilities of the junior.

Before agents send their messages, the principal publicly announces a

mechanism according to which she will select an agent for the prize given a

profile of messages. This mechanism defines a probability of being selected

for every agent for every message profile. Knowing the mechanism, agents

engage in a static Bayesian game. They simultaneously choose and send

their messages. Each agent selects her message such that it maximizes her

expected probability of being selected given her own type and all other agents’

strategies. We introduce a truth-telling assumption: If the true message

maximizes an agent’s expected probability of being selected, then she strictly

prefers to tell the truth over lying. The solution concept applied to this static

game among agents is Bayesian Nash equilibrium. Finally, given the profile

of messages sent by the agents, the principal selects an agent according to

the announced mechanism.

The paper proposes a mechanism which guarantees partial implementa-

tion for any knowledge network in which every agent is linked to at least one

other agent. This means if every agent is linked to at least one other agent,

then the proposed mechanism induces a static Bayesian game for which there

exists an equilibrium strategy profile such that the principal selects the best

agent with probability 1. Moreover, the mechanism achieves full implemen-

tation for knowledge networks which are complete or a star. This means if

the knowledge network is complete or a star, then every equilibrium strategy

profile is such that the principal selects the best agent with probability 1.

However, full implementation is not achieved for every knowledge network;

the circle network of four agents is an example for this.

The paper in particular relates to the literature on mechanism design

for allocation, implementation and persuasion problems with one principal,

multiple agents and (partially) verifiable private information. In our model

private information is partially verifiable because of the limits to lying. An

agent’s message space varies with the true values about which she holds pri-

vate information. Contributions from the mechanism design literature which

4



are most closely related to this paper are the following. Lipman and Seppi

(1995) analyze how much provability is needed to obtain “robust full revela-

tion” when symmetrically informed agents with conflicting preferences com-

municate sequentially with an uninformed principal. Glazer and Rubinstein

(2001) investigate which rules of debate maximize the probability that an

uninformed principal chooses the correct one of two possible outcomes after

listening to a debate between two fully informed agents. The two debaters

have conflicting interests and can each raise a limited number of arguments.

Deneckere and Severinov (2008) study partial implementation of social choice

functions when each agent’s message space depends on her type and is thus

partial evidence of her type. Contrary to our paper, agents can only prove

something about their own type, but not about other agents’ types. In our

setup, it is impossible to always identify the best agent without the references

which are partial proofs about other agents’ types. Ben-Porath and Lipman

(2012) study full implementation of social choice functions with monetary

transfers when agents can present evidence about the state. In allocation

problems they fully implement certain social choice functions without mon-

etary transfers but just by allocating a positive amount to every agent in

equilibrium. Such a mechanism cannot “allocate” the prize to the best agent

with probability 1. Kartik and Tercieux (2012) analyze which social choice

functions are fully implementable when agents can send hard evidence and

have full information about the state, in an otherwise general setting. Their

results substantially rely on the full information of all agents, whereas a key

aspect of our model is that agents can have different degrees of information

as determined by their network position.

Within the literature on networks, Renou and Tomala (2012) study imple-

mentation of incentive-compatible social choice functions for different com-

munication systems among agents and the mechanism designer. A network

between agents and the designer determines the communication channels;

an agent’s ex-ante information is independent of her network position and

her message space is determined by the designer. In our paper, an agent’s

information and message space are dependent on her network position and

the communication system between agents and the designer is fixed; every
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agent can only communicate to the principal independent of the network

architecture.

Several papers have investigated strategic communication and informa-

tion transmission among agents in communication networks. Examples are

Hagenbach and Koessler (2010), Garcia (2012), Galeotti et al. (2013), Ace-

moglu et al. (2014), Bloch et al. (2014), Patty and Penn (2014), Calvó-

Armengol et al. (2015), Currarini and Feri (2015), Förster (2015), and Wolitzky

(2015). These are different from the present paper, as we do not study strate-

gic communication and information transmission among agents in a commu-

nication network, but between agents who have a knowledge network and an

uninformed principal who wants to extract information from the network.

In section 2 and 3, we introduce the model and discuss the partial verifi-

ability of information. In section 4, we construct the mechanism and provide

examples to highlight the role of references and of the truth-telling assump-

tion. In section 5, we first propose a strategy profile of agents, second, we

show that given the strategy profile the constructed mechanism selects the

best agent with certainty, and third, we prove that the proposed strategy

profile is a Bayesian Nash equilibrium of the static game among agents. In

section 6, it is shown that if the knowledge network is complete or a star, then

every Bayesian Nash equilibrium of the game induced by the mechanism is

such that the best agent is selected with certainty. However, we also provide

an example of a knowledge network for which there exists an equilibrium

such that the best agent is not selected with certainty. Finally, we conclude.

2 The Model

A principal has to assign a prize to one agent out of a set N of n agents where

n ≥ 3. Agents are competing for the prize because the prize is valuable

to every agent. Each agent is differently suited to receive the prize. The

principal knows which properties the ideal candidate should have. An agent

i’s value for the principal is measured by her absolute distance, di, to the

ideal. Thus an agent matching the ideal would have di = 0. Regarding the

distribution of distances across agents, we assume that each agent’s distance
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is a random draw from distribution with strictly positive density f over

the unit interval [0, 1].1 The profile of distances will be denoted by d =

(d1, ..., dn). The lower di, the better agent i fits the principal’s purpose. It

is further assumed that no two agents have the same distance. This means

di 6= dj for i 6= j.2 The principal does not know the distance of any agent

but only the distribution of distances. Every agent exactly knows her own

distance.

Agents are organized in a network characterized by the set of links L

which exist among them. A link between agent i and agent j is denoted by

ij. We say that two agents i and j are linked if link ij ∈ L. The network

is undirected, thus if ij ∈ L, then ji ∈ L. An agent j to whom agent i

is linked is called a neighbor of agent i. The set of all neighbors of agent

i is Ni := {j |ij ∈ L}. Links signify familiarity: Besides knowing her own

exact distance, an agent also knows the exact distances of her neighbors.

Regarding the distances of agents who are not her neighbors, agent i only

knows the distribution of distances across these agents. Importantly, we

assume in the following that every agent has at least one neighbor. This is

an important assumption as for identifying the best agent for all d it will

be necessary that every agent is known to at least one other agent. Note

that this assumption does not require the network to be connected. The

network is common knowledge. This means everybody knows about which

other agents j an agent i is informed.

For given d and L, agents do not only differ in their own distances but

also in who their neighbors are and which distances their neighbors have.

These aspects together determine an agent’s type. Consequently, an agent

i’s type ti is defined as the tuple of her own distance and all her neighbors’

distances, ti :=
(
di, dj1 , ..., dj|Ni|

)
with jk ∈ Ni and jk 6= jk+1, and the type

profile as t := (t1, ..., tn).

1The assumption that distances have an upper bound is without loss of generality. All
our results would still hold without assuming an upper bound.

2The assumption that no two agents have the same distance is for analytical convenience
only. With this assumption we exclude special cases which would complicate the analysis
significantly, and would not add further insights. Although we do not show it in this
paper, we strongly believe that our results continue to hold if we allowed the distances of
two agents to be the same.
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After distances and thus types have realized, every agent sends a costless,

private message about her information to the principal. The message from

agent i is denoted by mi and the profile of messages from all agents by

m := (m1, ...,mn). The profile of messages from all agents except i will

be denoted by m−i. Agent i’s message contains statements about her own

distance and about the distance of each of her neighbors. The statement

about her own distance is mii and is called application; the statement about

the distance of her neighbor j ∈ Ni is mij and is called agent i’s reference

about j. Thus, mi =
(
mii,mij1 , ...,mij|Ni|

)
with jk ∈ Ni and jk 6= jk+1.

Agents can lie about their own distance and about a neighbor’s distance but

only to a certain extent: It is common knowledge that each statement mik

must be an element of [max {0, dk − b} ,min {dk + b, 1}] where b ∈ (0, 1
2
) is

the maximum possible lie about the distance of agent k. Hence, an agent’s

message space depends on her type.

The principal chooses a function π which specifies a probability πi of being

selected for every agent i for every possible m. More specifically, she chooses

π(m) = (π1(m), ..., πn(m)) with πi(m) ∈ [0, 1] for every i and
∑

i∈N πi(m) = 1

for every possible m. That fact that selection probabilities sum up to 1 given

m accounts for the assumption that the principal has to assign the prize and

cannot destroy it. The principal publicly announces π and commits to it

before agents send their messages. The function π is the mechanism which

the principal designs and commits to and according to which the principal

selects an agent when she receives message profile m.

Knowing π, agents engage in a static Bayesian game. The solution con-

cept applied will be Bayesian Nash equilibrium. Each agent chooses a mes-

sage strategy m̂i such that her message m̂i(ti) given any of her possible types

ti maximizes her expected probability of being selected, πe
i , given every other

agent j’s message strategy, m̂j. The strategy profile will be denoted by m̂

and the profile of every agent’s strategy except agent i’s by m̂−i. We intro-

duce an assumption on an agent’s preference for truth-telling. If the truthful

message maximizes πe
i for agent i of type ti, then she tells the truth, this

means m̂ik(ti) = dk for all k. On the other hand, we will say that an agent

with type ti is lying if m̂ik(ti) 6= dk for some k. Thus given her type an agent’s
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first priority is to maximize her chances of being selected, and, second, she

cares about truth-telling. After agents have chosen their strategies, distances

and hence types realize. An agent of type ti sends message mi = m̂i(ti) and

the message profile the principal receives is m = m̂(t).

The model summarizes as follows. First, the principal chooses, announces

and commits to π. Second, agents engage in the static Bayesian game. They

simultaneously choose their message strategies, then their types are realized

and the according messages are privately send to the principal. Third, having

received m the principal selects an agent according to π(m).

The goal of this paper is to construct π such that the principal selects the

best agent with probability 1. For any distance profile d, the best agent is

agent i with di = min d. The best agent will be called the global minimum.

In section 3, we briefly explain the partial verifiability of information in

our model.

3 Partial Verifiability of Information

Before receiving the message profile m, the principal only knows the dis-

tribution of distances among agents. The message profile reveals partial

information about the true distances of agents. The principal can infer from

any message mik that dk ∈ [max {0,mik − b} ,min {mik + b, 1}] because she

is aware of the maximum possible lie b. This means that if di < dj for agent

i and agent j and ij ∈ L, then i proves that she is better than j by sending

mij − mii > 2b: The principal knows that di ≤ mii + b and mij − b ≤ dj.

If mij −mii > 2b ⇔ mij − b > mii + b, then the principal also knows that

di ≤ mii + b < mij − b ≤ dj. Thus, in this case, the principal is sure that i

is better than j. For certain configurations of di and dj, i can always prove

that she is better. For example, if b < di < dj < 1− b, i can always send mii

and mij such that mij −mii > 2b.

Agent i does not prove that she is better than agent j, if mij −mii < 2b.

In this case, the principal cannot be sure that i is better than j because

dj < di with di, dj ∈ [max {0,mij − b} ,min {mii + b, 1}] is possible. For

certain configurations of di and dj, i can never prove that she is better. For
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example, if di < dj < b, i cannot send mii and mij such that mij −mii > 2b.

She creates the largest difference between her application and her reference

about j by choosing mii = 0 and mij = dj + b for which mij −mii < 2b is

true.

Observe that the partial verifiability of information due to the limits to

lying implies that an agent i with type ti can never imitate all other types

tj ∈ [0, 1]. Thus the revelation principle does not apply in this model.

In section 4, we first define the mechanism π. Second, we give examples

to provide intuition for the mechanism and to highlight the role of references

and of the truth-telling assumption.

4 The Mechanism

The following mechanism π defines the outcome of the static Bayesian game

among agents for any message profile m with πi(m) being the probability

for agent i to be selected given m. We show in section 5 that π as defined

below induces a game for which there exists a Bayesian Nash equilibrium

with message profile m = m̂(t) such that the principal selects the global

minimum with probability 1 for any t. In section 6, we prove that every

equilibrium of the game induced by π is such that the principal selects the

global minimum with probability 1 for any t, if the knowledge network is

complete or a star.

Definition 1 introduces π. The cardinality of a set x will be denoted by

|x|.

Definition 1. Define π(m) for any message profile m as follows.

When the principal receives message profile m, she first identifies all

agents who send the best application. She defines these agents as set B1(m).

Formally, i ∈ B1(m) if and only if mii = minj∈N mjj.

Second, the principal selects a set B2(m) from B1(m).

If the best application is greater than zero, then all agents in B1(m) are

in B2(m). Formally, if minj∈N mjj > 0, then B2(m) = B1(m).
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If the best application is equal to zero, then the principal turns to the ref-

erences about the agents in B1(m) to construct B2(m). For each i ∈ B1(m),

the principal identifies the worst reference about i: ri = maxj∈Ni
mji. Then,

the principal determines who receives the least bad worst reference (the min-

max reference) among agents in B1(m). This means she determines every

agent i for whom ri = mink∈B1(m) rk. These agents then form the set B2(m).

Formally, if minj∈N mjj = 0, then i ∈ B2(m) if and only if i ∈ B1(m) and

ri = mink∈B1(m) rk.

Third, the principal selects a set B3(m) from B2(m). An agent i ∈ B2(m)

is in B3(m) if and only if at least one of the following two conditions is

satisfied:

1) Agent i’s application conflicts with a reference about her or her refer-

ence about a neighbor conflicts with this neighbor’s application, this means

mii 6= mji or mij 6= mjj for some j ∈ Ni.

2) Agent i’s message proves that she is better than each of her neighbors,

this means mij −mii > 2b for all j ∈ Ni.

Having constructed B1(m), B2(m) and B3(m), the principal determines

πi(m) for each i ∈ N .

If B3(m) is not empty, then the principal selects every i ∈ B3(m) with

πi(m) = 1
|B3(m)| .

If B3(m) is empty and B2(m) is not singleton, then the principal selects

every i ∈ B2(m) with πi(m) = 1
|B2(m)| .

If B3(m) is empty and B2(m) = {i}, then the principal selects i with

πi(m) = 0. If there exists j /∈ Ni, the principal selects every j /∈ Ni with

πj(m) = 1
|N |−|Ni|−1 . If every j is in Ni and there exists j with mij−mii > 2b,

then the principal selects every j with this property with the same πj(m) = p

such that p|J | = 1 where J = {j ∈ Ni|mij −mii > 2b}. If every j is in Ni

and there does not exist j ∈ Ni with mij−mii > 2b, then the principal selects

every j ∈ Ni with πj(m) = 1
|N |−1 .

Observe that B2(m) is not empty for any m. There is always at least one
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agent who sends the best application among all agents such that B1(m) is

not empty. Moreover, either minimii = 0 or minimii > 0 and at least one

agent i ∈ B1(m) obtains ri = mink∈B1(m) rk.

It is in order to provide some intuition for the mechanism and to high-

light the importance of the truth-telling assumption. Assume the principal

commits to π. Then, for any m, the principal first selects agents with the

best application for B1(m); for B2(m), the principal selects all agents from

B1(m), if the best application is larger than zero; if the best application is

zero, then the principal compares the references about agents in B1(m) and

selects those with the least bad reference for B2(m); for B3(m), the principal

selects all agents from B2(m) who prove that they are better than all their

neighbors, or who conflict with some neighbor. For every equilibrium which

we establish in sections 5 and 6, it will always be the case that the global

minimum is in B3(m). The different cases in which B3(m) = ∅ serve as a

punishment for agents who would deviate from equilibrium. For all of the

following equilibria, B3(m) = ∅ never occurs.

For the three examples below, assume n = 3 and the line network L =

{12, 23} as depicted in figure 1. In this network, 1 knows d1 and d2; 2 knows

d1, d2 and d3; 3 knows d2 and d3.

Figure 1: Line network with agents 1, 2 and 3.

Example 1. Consider b = 0.2 and the following realization of distances

d = (0.5, 0.6, 0.4) as depicted in figure 2 below.

Figure 2: b = 0.2 and d = (0.5, 0.6, 0.4) in the unit interval.

In this example, 3 is the global minimum. 1 and 3 both expect with
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positive probability to be the global minimum, and 2 knows that she is not

the global minimum. Consider agents send the following message profile:

m11 = d1 − b = 0.3, m12 = d2 + b = 0.8;

m22 = d2 = 0.6, m21 = d1 = 0.5, m23 = d3 = 0.4;

m33 = d3 − b = 0.2, m32 = d2 + b = 0.8.

1 and 3 exaggerate positively about themselves and negatively about 2,

and 2 says the truth. The principal executes π such that B3(m) = {3} and

π3(m) = 1. No agent has an incentive to deviate given the other agents’

strategies: 1 and 3 maximize their expected probability of being selected

and truth-telling would be strictly worse for each of them in expectation. 2

knows that she has no chance of being selected and tells the truth. We will

be precise about the corresponding equilibrium strategy profile and provide

a proper proof in the next section. For now, this example should only serve

to illustrate certain properties of the model and the mechanism. Observe

that given m it is possible to differentiate between agents only on the basis

of their applications. Applications are sufficient to identify the best agent in

this case and B1(m) = B2(m) is justified.

Example 2. Consider b = 0.2 and d = (0.15, 0.3, 0.05) as in figure 3

below.

Figure 3: b = 0.2 and d = (0.15, 0.3, 0.05) in the unit interval.

Let agents send the following message profile:

m11 = 0, m12 = 0.5;

m22 = 0.3, m21 = 0.15, m23 = 0.05;
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m33 = 0, m32 = 0.5.

Again, 1 and 3 exaggerate positively about themselves and negatively

about 2, and 2 says the truth. Executing π results into B3(m) = {3} and

π3(m) = 1. No agent has an incentive to deviate, for the same reasons as

above. Observe that given m it is not possible to differentiate between 1 and

3 only on the basis of their application. Therefore the principal consults the

references of 2 about 1 and 3. As 2 reports truthfully, the principal can now

perfectly differentiate between 1 and 3. Thus, B1(m) still includes all agents

with the best application which is zero in this case, but B2(m) only includes

those who also get the least bad reference. In this case, it is 3.

Note that 2 knows that she is selected with probability zero for any of

her messages, given the strategies of 1 and 3, because she cannot send an

application of zero. Thus if we did not introduce the truth-telling assump-

tion, 2 would be indifferent between any of her messages. The truth-telling

assumption lets 2 strictly prefer the truth over any other message. The prin-

cipal can rely on the informativeness of 2’s references because 2 is not lying.

If 2 was indifferent between all her messages, there would exist other equilib-

rium message profiles for which 2 would be lying. Then, the principal could

not use 2’s references to differentiate between 1 and 3 and she could not

identify the best agent with certainty. Thus, if we dropped the truth-telling

assumption, we would sacrifice the full implementation achieved in certain

knowledge networks and could only sustain partial implementation.

The truth-telling assumption necessitates the introduction of B3(m). To

see why, consider the next example.
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Example 3. Consider b = 0.2 and d = (0.5, 0.3, 0.4) as depicted in figure

4.

Figure 4: b = 0.2 and d = (0.5, 0.3, 0.4) in the unit interval.

Thus 2 knows that she is the global minimum, and 1 and 3 know that

they are not the global minimum. Let agents send the following message

profile:

m11 = 0.5, m12 = 0.3;

m22 = 0.1, m21 = 0.7, m23 = 0.6;

m33 = 0.4, m32 = 0.3.

2 exaggerates positively about herself and negatively about 1 and 3, and

1 and 3 say the truth. Executing π results into B3(m) = {2} and π2(m) = 1.

No agent has an incentive to deviate, by the same arguments as above. To

understand the role of B3(m), assume for a moment that B3(m) is not part of

the mechanism, meaning that the principal ends the procedure after forming

B2(m) and selects agents in B2(m) with equal probability. Then, for an agent

to be selected, the principal only requires a best application, and, if this is

zero, a least bad reference. In that case, given the above messages of 1 and 3,

2 is still selected with probability 1 if she deviates to the truth. Thus, given

the truth-telling assumption, 2 has a strict incentive to deviate to the truth.

If, however, all three agents tell the truth, 3 has an incentive to deviate and

to send m′33 = 0.2.

The purpose of B3(m) is to force the global minimum to prove that she is

better than all her neighbors or to conflict with some neighbor. We eliminate

her incentive to deviate to the truth. Given the truth-telling assumption

which is necessary for full implementation with our mechanism, B3(m) is

needed to guarantee equilibrium existence.
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In section 5, we propose a strategy profile of the game induced by π for

n agents and for any network architecture. Subsequently, we show that the

proposed strategy profile is a Bayesian Nash equilibrium of the game. The

message profiles we used in the above examples correspond to this equilibrium

strategy profile for n = 3 in the line network given each respective d.

5 Partial Implementation

In this section, we first define a strategy profile m̂ for the static game fol-

lowing the announcement of π. Second, we show that if agents use m̂ and

the principal executes π, then the principal selects the best agent with cer-

tainty. Third, we show that m̂ is an equilibrium given π. Remember that

by assumption, the following analysis and results only apply to knowledge

networks in which every agent has at least one neighbor, as mentioned in

section 2.

For the definition of m̂, we introduce three type categories according to

which we can classify all possible types.

An agent i who is better than all of her neighbors and who is not linked

to all other agents will be called a local minimum with partial information.

Thus, these are all agents with a type ti such that |Ni| < n−1 and di < dj for

all j ∈ Ni. Such agents have partial information because they do not know

every other agent. Agents 1 and 3 are both a local minimum with partial

information in example 1 and 2.

An agent i who is better than all of her neighbors and who is linked to

all other agents will be called a local minimum with full information. Thus,

these are all agents with a type ti such that |Ni| = n− 1 and di < dj for all

j ∈ Ni. Such agents have full information because they know the distance

of every other agent. Agent 2 is a local minimum with full information in

example 3.

Note that the global minimum is a local minimum. A local minimum with

partial information might be the global minimum, and a local minimum with

full information is always the global minimum.
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The third type category includes every agent who has at least one neigh-

bor who is better than her. These are all agents with a type ti for which

dj < di for some j ∈ Ni. An agent in this category will be called non-

minimal. Agent 2 is non-minimal in examples 1 and 2, and agents 1 and 3

are non-minimal in example 3.

In the following, an agent’s message will only depend on her type category.

Roughly speaking, we condense infinitely many types to just three types. At

this point, we redefine an agent’s type ti as

ti ∈ {local minimum with part. inf., local minimum with full inf., non-minimal} .

Intuitively, the strategy profile m̂ introduced below in definition 2 is such

that every local minimum either proves that she is better than each of her

neighbors or at least lies to the full extent about herself and her neighbors.

Every non-minimal agent says the truth.

Definition 2. The strategy profile m̂ with m̂i for every agent i is such that

• an agent who is non-minimal says the truth.

Formally, for ti = non-minimal

m̂ii(ti) = di and m̂ij(ti) = dj for all j ∈ Ni.

• an agent i who is a local minimum with partial information sends

the best possible application. Regarding her neighbors, she sends the

worst possible references if some neighbor’s distance is relatively close

to her’s, and she sends truthful references if all neighbors are sufficiently

worse than her.

Formally, for ti = local minimum with partial information

m̂ii(ti) = max {0, di − b},

m̂ij(ti) = min {dj + b, 1} for all j ∈ Ni, if dj−di ≤ 2b for some j ∈ Ni,

and m̂ij(ti) = dj for all j ∈ Ni, if dj − di > 2b for all j ∈ Ni.

• an agent who is a local minimum with full information sends the best

possible application and the worst possible references if some neighbor’s
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distance is sufficiently close to her’s. If all her neighbors are sufficiently

worse than her, she says the truth about herself and her neighbors.

Formally, for ti = local minimum with full information

m̂ii(ti) = max {0, di − b} and m̂ij(ti) = min {dj + b, 1} for all j ∈ Ni,

if dj − di ≤ 2b for some j ∈ Ni,

and m̂ii(ti) = di and m̂ij(ti) = dj for all j ∈ Ni, if dj − di > 2b for all

j ∈ Ni.

Proposition 5.1. If agents use strategy profile m̂ and the principal selects

an agent according to π, then the principal selects the global minimum with

probability 1 for every t.

To prove that proposition 5.1 is true, we have to show that the claim is

true for a) all t in which the global minimum is a local minimum with full

information, and b) all t in which the global minimum is a local minimum

with partial information. Case a) is reflected in example 3 in which agent 2

is the global minimum and is linked to all other agents. Case b) is reflected

in examples 1 and 2 in which agent 3 is the global minimum and is not linked

to all other agents. In the following proof, we first consider a) and second b).

Proof. Let agent g be the global minimum. If g is a local minimum with

full information, then g is linked to every other agent j 6= g. Thus every

other agent j is non-minimal, because she is linked to the better agent g.

Then, every j sends the truthful application mjj = dj. Agent g either sends

application mgg = max {0, dg − b} or mgg = dg. In each case, mgg < mjj

because dg < dj for all j. Then B1(m) = {g}.
As B2(m) ⊆ B1(m) = {g} and B2(m) is not empty, it must be that

B2(m) = B1(m) = {g}.
It is left to check if g is in B3(m). If all j are sufficiently worse than g,

this means dj−dg > 2b for all j, then g says the truth. The truthful message

proves that she is better than each of her neighbors as mgj−mgg > 2b for all

j. Thus B3(m) = {g} and πg(m) = 1. If some j’s distance is sufficiently close

to g’s, this means dj − dg ≤ 2b for some j, then g sends the best possible
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application mgg = max {0, dg − b} and the worst possible reference mgj =

max {dj + b, 1} for all j. Thus g’s message conflicts, this means mgg 6= mjg

or mgj 6= mjj, with j for whom dj−dg ≤ 2b. This ensures that B3(m) = {g}
and πg(m) = 1.

If g is a local minimum with partial information, then g is not linked

to every other agent j 6= g and every agent j 6= g is either another local

minimum with partial information or non-minimal.

Agent g and every other local minimum j 6= g send their best possible

applications mgg = max {0, dg − b} and mjj = max {0, dj − b}, respectively.

Every non-minimal agent j sends a truthful application mjj = dj. If mgg > 0,

then mgg < mjj as dg < dj for all j. Thus B1(m) = {g} and B2(m) = B1(m).

If mgg = 0, then agent g is in B1(m). Moreover, each local minimum j with

dj ≤ b also sends mjj = 0 and is in B1(m). As every agent in B1(m) is a

local minimum, every neighbor k of an agent in B1(m) is non-minimal and

says the truth. Thus all references about each i ∈ B1(m) are truthful and

the worst reference about any i ∈ B1(m) is ri = di. As dg < dj for all

j, agent g receives the min-max reference of all agents in B1(m) and hence

B2(m) = {g}.
It is left to check if g is in B3(m). If dk − dg > 2b for all k ∈ Ng, g

sends mgk = dk. Then mgk −mgg > 2b for all k ∈ Ng and B3(m) = {g} and

πg(m) = 1. If dk−dg ≤ 2b for some k ∈ Ng, g sends mgk = max {dk + b, 1} for

all k ∈ Ng. Then mgg 6= mjg or mgk 6= mkk for k ∈ Ng for whom dk−dg ≤ 2b.

Hence, B3(m) = {g} and πg(m) = 1.

Next it is shown that the strategy profile m̂ is a Bayesian Nash equilibrium

of the static game following the announcement of π. First, we define the

equilibrium conditions for our model.

Definition 3. The strategy profile m̂ is an equilibrium if for every agent i

and for all ti

1. m̂i(ti) maximizes πe
i given m̂−i, and

2. m̂i(ti) is the truthful message if the truthful message maximizes πe
i given

m̂−i.
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If m̂i is such that both of the above conditions which we will call 3.1.

and 3.2., respectively, are satisfied for all ti for every agent i, then no agent i

with preferences as outlined in section 2 has an incentive to deviate from m̂i

given all other agents’ strategies. Thus, if m̂i satisfies 3.1. and 3.2. for all ti

for every agent i, then m̂ is a Bayesian Nash equilibrium strategy profile.

Proposition 5.2. The strategy profile m̂ is an equilibrium strategy profile of

the static Bayesian game induced by π.

To prove proposition 5.2, we establish the following three lemmata each

of which claims that, given one of the three possible types of agent i, m̂i(ti)

maximizes πe
i and is the truth if the truth maximizes πe

i given m̂−i.

Lemma 5.3 deals with ti = loc. min. with full inf., lemma 5.4 with ti =

loc. min. with partial inf., and lemma 5.5 with ti = non-minimal. These

lemmata taken together prove that m̂ is an equilibrium strategy profile.

Lemma 5.3. If ti = loc. min. with full inf., then m̂i(ti) = mi maximizes πe
i

and is the truth if the truth maximizes πe
i given m̂−i.

Proof. Let agent i be a local minimum with full information. This means

agent i is linked to every other agent and each of her neighbors j is non-

minimal with dj > di. Thus, i knows that she is the global minimum and

that πi(m) = 1. There does not exist another message m′i which increases

πe
i .

To prove the second part of the lemma we must show that if mi is not

the truth, then the truth does not maximize πe
i . If agent g does not say

the truth, then dj − di ≤ 2b for some neighbor j ∈ Ni. Every j ∈ Ni says

the truth. If agent i deviates to the true message m′i, then m′ij = mjj and

m′ii = mji for all j ∈ Ni. Moreover, m′ij − m′ii ≤ 2b for j ∈ Ni for whom

dj − di ≤ 2b. Then B3(m
′
i,m−i) = ∅ and B2(m

′
i,m−i) = {i} such that agent

i is selected with probability 0. Thus, if mi is not the truth and i deviates to

the truth, then πe
i (m

′
i,m−i) = 0 < πe

i (m) and the truth does not maximize

πe
i .

20



Lemma 5.4. If ti = loc. min. with part. inf., then m̂i(ti) = mi maximizes

πe
i and is the truth if the truth maximizes πe

i given m̂−i.

Proof. Let agent i be a local minimum with partial information. Then agent

i expects with positive probability p > 0 to be the global minimum and that

πi(m) = 1. Thus, if she is the global minimum, mi maximizes πi.

With 1−p, she expects not to be the global minimum and that πi(m) = 0.

If agent i is not the global minimum, then another agent g /∈ Ni is the

global minimum with dg < di. Agent g sends the best application mgg =

max {0, dg − b} ≤ mii = max {0, di − b}. The references about agent g and

about agent i are given by non-minimal agents j only and are mjg = dg and

mji = di, respectively, for all j. Thus, for any m′i, agent g still sends the best

application, receives the min-max reference among agents in B1(m
′
i,m−i) in

case mgg = 0, and conflicts with every neighbor j ∈ Ng for whom dj−dg ≤ 2b.

Hence for any m′i 6= mi, B3(m
′
i,m−i) = {g} and πi(m

′
i,m−i) = 0. Thus, if

agent i is not the global minimum, mi maximizes πi.

As mi maximizes πi also if agent i is not the global minimum, mi maxi-

mizes πe
i for agent i.

Next, we show that πe
i strictly decreases if mi is not the truth and agent

i deviates to the truth m′i. Agent i expects with strictly positive probability

that she is the global minimum, that πi(m) = 1 and that there exists another

local minimum j with dj ∈ (di, di + b) who sends mjj = max {0, dj − b}.
Consider i is indeed the global minimum and that such j exists. If di > 0

and i deviates from mii = max {0, di − b} to m′ii = di, then her application

is worse than j’s. Thus B3(m
′
i,m−i) 6= ∅ but i /∈ B3(m

′
i,m−i) such that

πi(m
′
i,m−i) = 0. If di = 0, agent i only does not say the truth in case she has

a neighbor k with dk − di ≤ 2b. By deviating to the truth, B3(m
′
i,m−i) = ∅

and B2(m
′
i,m−i) = {i} such that πi(m

′
i,m−i) = 0.

Lemma 5.5. If ti = non-minimal, then m̂i(ti) = mi which is the truth

maximizes πe
i .

Proof. Let agent i be non-minimal. Agent i knows that she is not the global

minimum and that πi(m) = 0 because she has a neighbor j with dj < di.
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We show that there does not exist a message m′i for which πe
i (m

′
i,m−i) > 0.

This means that the true message mi maximizes πe
i .

Agent i is aware that the global minimum agent g sends application mgg =

max {0, dg − b}, unless g has full information and dj−dg > 2b for all j ∈ Ng in

which case g sends mgg = dg. Remember that i ∈ Ng if g has full information.

If di > b, then agent i’s best feasible application is di − b > 0 which is

strictly larger than max {0, dg − b}, or dg if di − dg > 2b. Hence, there is no

m′i such that i ∈ B1(m
′
i,m−i).

If di ≤ b, then agent i can choose m′ii = 0 and, consequently, will be

in B1(m
′
i,m−i). However, there is no message m′i such that i will be in

B2(m
′
i,m−i): The maximum reference about agent i is ri = di + b if some

neighbor of agent i is a local minimum and is ri = di if no neighbor of

agent i is a local minimum. Every neighbor of the global minimum is non-

minimal, sends reference mjg = dg about g and hence rg = dg. If agent i

is not a neighbor of g, then agent i cannot increase the maximum reference

about g and rg = dg < ri for any message m′i. If agent i is a neighbor

of g, then agent i can increase the maximum reference about g to at most

m′ig = dg + b. However, rg = dg + b is still less than ri = di + b which is agent

i’s maximum reference as a neighbor of g. Thus there is no message m′i such

that i ∈ B2(m
′
i,m−i) and gets selected with πi(m

′
i,m−i) > 0 as a member of

B2(m
′
i,m−i) or B3(m

′
i,m−i).

If i does not get selected with πi(m
′
i,m−i) > 0 as a member of B2(m

′
i,m−i)

or B3(m
′
i,m−i), the other possibility for i to get selected with πi(m

′
i,m−i) > 0

is when B3(m
′
i,m−i) = ∅ and B2(m

′
i,m−i) = {j} where j 6= i. Next, we show

that there does not exist m′i such that i gets selected with πi(m
′
i,m−i) > 0 if

B3(m
′
i,m−i) = ∅ and B2(m

′
i,m−i) = {j} where j 6= i.

An agent j is in B2(m
′
i,m−i) and not in B3(m

′
i,m−i) if and only if, given

(m′i,m−i), she sends the best application, receives the min-max reference

among all agents in B1(m
′
i,m−i) in case the best application is zero, and

does not conflict with any neighbor where mjk −mjj ≤ 2b for some k ∈ Nj.

Since agent i did sent mii > mink∈N mkk and cannot influence the application

of other agents, the only candidate agents j to be in B2(m
′
i,m−i) are those

who already did sent mjj = mink∈N mkk before any deviation of agent i.
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These candidates are the global minimum g and other local minima l.

Before any deviation of i, g and every l conflict with each of their neigh-

bors k ∈ Nj with j = l, g for whom mjk − mjj ≤ 2b . In order for

j ∈ B2(m
′
i,m−i) and j /∈ B3(m

′
i,m−i), agent i must deviate to m′i such

that agent j does not conflict any more with any of her neighbors k ∈ Nj

and mjk − mjj ≤ 2b for some k. For such m′i to exist, agent i must be a

neighbor of agent j and mji −mjj ≤ 2b. Assume such m′i exists.

If there exists some agent k 6= i who is not a neighbor of j, then still

πi(m
′
i,m−i) = 0.

If every agent k 6= i is a neighbor of j and there is some k for whom

mjk −mjj > 2b, then still πi(m
′
i,m−i) = 0.

If every agent k 6= i is a neighbor of j and mjk −mjj ≤ 2b for all k, then

such m′i cannot exist: By assumption, |Nj| ≥ 2 because |N | ≥ 3. So even if

agent i chooses a message such that she does not conflict with agent j, there

is at least one other agent k with whom agent j is conflicting and j cannot

be in B2(m
′
i,m−i) without being in B3(m

′
i,m−i).

Thus, there does not exist m′i for which B3(m
′
i,m−i) = ∅, B2(m

′
i,m−i) =

{j} and πi(m
′
i,m−i) > 0.

Hence, πe
i (m

′
i,m−i) = 0 for every m′i 6= mi and the true message mi

maximizes πe
i .

Lemma 5.3, 5.4, 5.5 together imply that m̂i satisfies conditions 3.1. and

3.2. for all ti for every agent i and thus m̂ is a Bayesian Nash equilibrium

strategy profile. Then proposition 5.2 is true.

6 Full Implementation

In this section, we first show that the complete network and the star network

are two architectures of the knowledge network for which every equilibrium

of the Bayesian game induced by π is such that the principal selects the

global minimum with probability 1. Second, we show that the circle network

of four agent is an example for a network architecture for which the principal

does not select the global minimum with probability 1 in every equilibrium
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given π.

The knowledge network is complete if ij ∈ L with i 6= j for all i ∈ N

and all j ∈ N . The knowledge network is a star if there exists one agent

i ∈ N such that ij ∈ L for all j ∈ N and jk /∈ L for all k 6= i. We will call

the agent who is linked to every other agent in the star network the center

c. The knowledge network is a circle of four agents if it takes the following

form:

Figure 5: Circle network of four agents.

Proposition 6.1. If the knowledge network is complete, then every equilib-

rium of the Bayesian game induced by π is such that the principal selects the

global minimum with probability 1.

Proof. Let the knowledge network be complete. As every agent has full

information, the global minimum agent g knows t, m, and π(m). Suppose

that m̂ is an equilibrium strategy profile and that m̂(t) = m and πg(m) < 1

for t.

If dg > b, then g can increase πg by deviating to m′g with m′gg = dg − b
and m′gj 6= mjj for some j 6= g. After deviating, g uniquely sends the best

application and conflicts with some neighbor. Hence, B3(m
′
g,m−g) = {g}

and πg(m
′
g,m−g) = 1.

If dg ≤ b, then g can increase πg by deviating to m′g with m′gg = 0 and

m′gj > dg + b such that m′gj 6= mjj for all j 6= g. After deviating, g sends

the best application which is equal to zero and uniquely receives the min-

max reference because g’s reference about every agent j 6= g is strictly greater

than any reference about g. Moreover, g conflicts with her neighbors. Hence,

B3(m
′
g,m−g) = {g} and πg(m

′
g,m−g) = 1.
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Then, however, m̂ is not an equilibrium strategy profile because g can

deviate to some m′g which strictly increases πe
g.

Proposition 6.2. If the knowledge network is a star, then every equilibrium

of the Bayesian game induced by π is such that the principal selects the global

minimum with probability 1.

Proof. Let the knowledge network be a star. First, we show by contradiction

that there does not exist an equilibrium strategy profile m̂ and t such that

m = m̂(t) and B3(m) = ∅. Second, we show by contradiction that every

equilibrium strategy profile m̂ is such that m = m̂(t) and B3(m) = {g} for

all t. Given these two results, we then conclude that every equilibrium strat-

egy profile m̂ is such that m = m̂(t) and πg(m) = 1 for all t.

First suppose that m̂ is an equilibrium strategy profile and that m = m̂(t)

and c ∈ B2(m) and B3(m) = ∅ for t. From c ∈ B2(m) and B3(m) = ∅ follows

that πc(m) < 1. Since c is linked to every other agent, she has full information

and knows t, m and π(m).

If mcc > max {dc − b, 0}, then c strictly increases πc by deviating to m′c

with m′cc < mcc such that m′cc 6= mjc for all j 6= c. After deviating, c

uniquely sends the best application and conflicts with her neighbors. Hence,

B3(m
′
c,m−c) = {c} and πc(m

′
c,m−c) = 1.

If mcc = max {dc − b, 0} and j ∈ B2(m) for all j 6= c, then all i ∈ N

are in B2(m) and B3(m) = ∅. Every agent sends the same best application

and there are no conflicts, this means mcc = mjj = mjc = mcj for all j 6= c.

Then πc(m) = 1
n
. In this case, c strictly increases πc by deviating to m′c

with m′cc = mcc, m
′
ck 6= mck such that m′ck > 0 for exactly one neighbor k

and m′cj = mcj for all other neighbors j 6= k. After c’s deviation, all agents

still send the same best application and there is exactly one conflict – the

one between c and k. Thus, all j 6= c, k are still in B2(m
′
c,m−c) but not in

B3(m
′
c,m−c). If the best application is larger than zero, then B3(m

′
c,m−c) =

{c, k}. If the best application is zero and rc = 0 as mjc = 0 for all j 6= c,

then B3(m
′
c,m−c) = {c} because rk = m′ck > rc. Thus πc(m

′
c,m−c) ≥ 1

2
> 1

n
.

If mcc = max {dc − b, 0} and some j /∈ B2(m), then c strictly increases
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πc by deviating to m′c with m′cc = mcc, m
′
cj 6= mcj such that m′cj > 0 for

some j /∈ B2(m), and m′ck = mck for all k ∈ B2(m). After c’s deviation,

still B2(m
′
c,m−c) = B2(m) and now c is the only agent in B2(m

′
c,m−c) who

conflicts with a neighbor. Hence, B3(m
′
c,m−c) = {c} and πc(m

′
c,m−c) = 1.

Then, however, m̂ cannot be an equilibrium strategy profile because if

m = m̂(t) and c ∈ B2(m) and B3(m) = ∅ for t, then c can deviate to some

m′c which strictly increases πe
c . Hence, there does not exist an equilibrium

strategy profile m̂ and t such that m = m̂(t) and c ∈ B2(m) and B3(m) = ∅.

Second suppose that m̂ is an equilibrium strategy profile and that m =

m̂(t) and j ∈ B2(m) and B3(m) = ∅ for t where j is not the center agent

of the star. From j ∈ B2(m) and B3(m) = ∅ follows that πj(m) ≤ 1
2
. Also

c /∈ B2(m) because B3(m) = ∅, as we know from above, and πc(m) = 0.

As c has full information, c knows that πc(m) = 0. From our equilibrium

definition, it then follows that c must say the truth if m̂ is an equilibrium

profile. This implies that agent j also say the truth since she would otherwise

conflict with c and the outcome would not be j ∈ B2(m) and j /∈ B3(m) = ∅.
Thus, for agent j who has partial information to expect with positive

probability that j ∈ B2(m) and B3(m) = ∅, her own message must be such

that mjj = dj and mjc = dc. We show that if mjj = dj and mjc = dc and j

expects j ∈ B2(m) and B3(m) = ∅ with positive probability, then j strictly

increases πe
j by deviating to another message m′j. From this, we can conclude

that m̂ cannot be an equilibrium.

Let mjj = dj and mjc = dc and let j expect j ∈ B2(m) and B3(m) = ∅
with positive probability.

Assume first that dj > 0.

If it is indeed the case that j ∈ B2(m) and B3(m) = ∅, then j strictly

increases πj by deviating to m′j with m′jj < dj such that m′jj 6= m̂cj(tc) for

all tc and m′jc = dc. The deviation results into B3(m
′
j,m−j) = {j} and

πj(m
′
j,m−j) = 1.

If it is not the case that j ∈ B2(m) and B3(m) = ∅, then j does not

do worse by deviating to m′j. If j ∈ B3(m), then B3(m
′
j,m−j) = {j} and

πj(m
′
j,m−j) = 1. If B2(m) = {k} where k 6= j, c and B3(m) = ∅, then either
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B2(m
′
j,m−j) = B2(m) = {k} and πj(m

′
j,m−j) = πj(m) or B3(m

′
j,m−j) =

{j} and πj(m
′
j,m−j) = 1. In all other remaining sub-cases which could occur

in equilibrium πj(m) = 0 and j always weakly improves by deviating to m′j.

Remember, also for the following paragraphs, that we showed before that the

sub-case of B2(m) = {c} and B3(m) = ∅ which could imply πj(m) > 0 does

not occur in equilibrium.

Assume second that dj = 0 and dc < 1.

If it is indeed the case that j ∈ B2(m) and B3(m) = ∅, then j strictly

increases πj by deviating to m′j with m′jj = dj and m′jc > dc such that

m′jc 6= m̂cc(tc) for all tc. The deviation results into B3(m
′
j,m−j) = {j} and

πj(m
′
j,m−j) = 1.

If it is not the case that j ∈ B2(m) and B3(m) = ∅, then j does not do

worse by deviating to m′j. If j ∈ B3(m), then j ∈ B3(m
′
j,m−j) ⊆ B3(m) and

πj(m
′
j,m−j) ≥ πj(m). If B2(m) = {k} where k 6= j, c and B3(m) = ∅, then

B2(m
′
j,m−j) = B2(m) and πj(m

′
j,m−j) = πj(m). For all other remaining

sub-cases which could occur in equilibrium πj(m) = 0 and thus j always

weakly improves by deviating to m′j.

Assume third that dj = 0 and dc = 1.

If it is indeed the case that j ∈ B2(m) and B3(m) = ∅, then j strictly

increases πj by deviating to m′j with m′jj = dj and m′jc ∈ (2b, 1) < dc such

that m′jc 6= m̂cc(tc) for all tc. The deviation results into B3(m
′
j,m−j) = {j}

and πj(m
′
j,m−j) = 1.

If it is not the case that j ∈ B2(m) and B3(m) = ∅, then j does not do

worse by deviating to m′j. If j ∈ B3(m), then B3(m
′
j,m−j) = B3(m) and

πj(m
′
j,m−j) = πj(m). If B2(m) = {k} where k 6= j, c and B3(m) = ∅, then

B2(m
′
j,m−j) = B2(m) and πj(m

′
j,m−j) = πj(m). For all other remaining

sub-cases which could occur in equilibrium πj(m) = 0 and thus j always

weakly improves by deviating to m′j.

Then, however, m̂ is not an equilibrium strategy profile because there

always exists a deviation for j which strictly increases πe
j if she expects with

positive probability that j ∈ B2(m) and j /∈ B3(m). Hence, there does

not exist an equilibrium strategy profile m̂ and t such that m = m̂(t) and

j ∈ B2(m) and B3(m) = ∅ where j is not the center of the star.
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Thus, there is no equilibrium strategy profile m̂ and t such that m = m̂(t)

and B3(m) = ∅. This completes the first part of the proof for proposition 6.2.

The implication of this first result is that for every equilibrium strategy

profile m̂ and every t such that m = m̂(t) it is true that πi(m) > 0 if and

only if i ∈ B3(m) for all i ∈ N .

Next, we show by contradiction that any equilibrium strategy profile m̂

is such that m = m̂(t) and B3(m) = {g} for all t where g is the global

minimum.

First, assume that m̂ is an equilibrium strategy profile and that m = m̂(t)

and B3(m) 6= {c} for t where c is the global minimum. From B3(m) 6= {c}
follows that πc(m) < 1. Since c has full information, she knows t, m and

π(m).

If dc > b, then c can strictly increase πc by deviating to m′c with m′cc =

dc − b and m′cj 6= mjj for all j. The deviation leads to B3(m
′
c,m−c) = {c}

and πc(m
′
c,m−c) = 1. If dc ≤ b, then c can strictly increase πc by deviating

to m′c with m′cc = 0 and m′cj > dc + b such that m′cj 6= mjj for all j. The

deviation leads to B3(m
′
c,m−c) = {c} and πc(m

′
c,m−c) = 1.

Then, however, m̂ is not an equilibrium strategy profile. Hence, there

does not exist an equilibrium strategy profile m̂ and t such that m = m̂(t)

and B3(m) 6= {c} where c is the global minimum.

Second, assume that m̂ is an equilibrium strategy profile and that m =

m̂(t) and B3(m) 6= {j} for some t where j 6= c is the global minimum. From

B3(m) 6= {j} follows that πj(m) < 1. Given B3(m) 6= {j} where j 6= c

is the global minimum, j is a local minimum with partial information and

expects with positive probability that B3(m) 6= {j} and that she is the global

minimum.

Let j 6= c expect with positive probability to be the global minimum and

that B3(m) 6= {j}.
Assume first that dj > b. If it is indeed the case that B3(m) 6= {j} where

j 6= c is the global minimum, then j strictly increases πj by deviating to

m′j with m′jj = dj − b and m′jc 6= m̂cc(tc) for all tc. The deviation leads
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B3(m
′
j,m−j) = {j} and πj(m

′
j,m−j) = 1. If it is not the case that B3(m) 6=

{j} where j 6= c is the global minimum, then j does never do worse by

deviating to m′j. If j ∈ B3(m), then j still sends the best application which is

greater than zero after her deviation to m′j. Thus, j ∈ B3(m
′
j,m−j) ⊆ B3(m)

and πj(m
′
j,m−j) ≥ πj(m). If j /∈ B3(m), then πj(m) = 0. In this case

deviating to m′j always weakly increases πj.

Assume second that dj ≤ b < dc. Define agent j’s deviation as m′j with

m′jj = 0 and m′jc > dj + b such that m′jc 6= m̂cc(tc) for all tc.

If B3(m) 6= {j} and c ∈ B3(m) where j 6= c is the global minimum, then

B3(m
′
j,m−j) = {j} and πj(m

′
j,m−j) = 1 because j uniquely sends the best

application after deviating.

If B3(m) 6= {j} and c /∈ B3(m) where j 6= c is the global minimum,

then πc(m) = 0. This implies that mc must be the true message if m̂ is an

equilibrium profile because c has full information. If mc is the truth and j

deviates to m′j, then B3(m
′
j,m−j) = {j} and πj(m

′
j,m−j) = 1 because j as

the global minimum receives the min-max reference from c.

Thus, if B3(m) 6= {j} where j 6= c is the global minimum, then j strictly

improves πj by deviating to m′j.

If it is not the case that B3(m) 6= {j} where j 6= c is the global mini-

mum, then j does never do worse by deviating to m′j. If j ∈ B3(m), then

j ∈ B3(m
′
j,m−j) ⊆ B3(m) and πj(m

′
j,m−j) ≥ πj(m). If j /∈ B3(m), then

πj(m) = 0 and j always weakly improves by deviating to m′j.

Up to here, we showed that there does not exist an equilibrium strategy

profile m̂ and t such that m = m̂(t) and B3(m) 6= {j} where j 6= c is the

global minimum and dj > b or dj ≤ b < dc. The proof strategy was to define

a profitable deviation for agent j, if dj > b or dj ≤ b < dc and she expected

with positive probability to be the global minimum and that B3(m) 6= {j}.

We use a different proof strategy to show that there does not exist an

equilibrium m̂ and t such that m = m̂(t) and B3(m) 6= {j} where j 6= c is

the global minimum and dj < dc ≤ b. First, we show that every equilibrium

m̂ and t is such that m = m̂(t) where an agent j 6= c with dj < dc ≤ b sends

mjj = 0 and mjc > dj + b. From this, we derive that every equilibrium m̂
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and t is such that m = m̂(t) where c says the truth if there exists an agent j

with dj < dc ≤ b. If an agent j with dj < dc ≤ b exists, then such an agent

j is the global minimum. From these three observations, we conclude that

every equilibrium m̂ and t is such that m = m̂(t) and B3(m) = {j} where

the global minimum is agent j 6= c with dj < dc ≤ b.

First, suppose m̂ is an equilibrium and that m = m̂(t) for t such that

agent j with dj < dc ≤ b sends mjj > 0. Given dj < dc ≤ b, agent j expects

with strictly positive probability that dj < dc ≤ b < dk for all k 6= j. If indeed

dj < dc ≤ b < dk for all k 6= j, then c sends mc such that B3(m) = {c} in

order to maximize πe
c given m̂−c. Then, however, πj strictly increases, if j

deviates to m′j with m′jj = 0 and m′jc > dj + b with m′jc 6= m′cc(tc) for all tc

such that B3(m
′
j,m−j) = {j}. If it is not the case that dj < dc ≤ b < dk for

all k 6= j and if j ∈ B3(m) which is necessary for πj(m) > 0, then deviating to

m′j leads to B3(m
′
j,m−j) = {j} and πj(m

′
j,m−j) = 1 as well. Thus, deviating

to m′j strictly increases πe
j such that m̂ is not an equilibrium. Hence, there is

no equilibrium m̂ and t such that m = m̂(t) where agent j with dj < dc ≤ b

sends mjj > 0.

Second, suppose m̂ is an equilibrium and that m = m̂(t) for t such that

agent j with dj < dc ≤ b sends mjj = 0 and mjc < dj + b. Given dj < dc ≤ b,

agent j expects with strictly positive probability that dj < dc ≤ b < dk for all

k 6= j. If indeed dj < dc ≤ b < dk for all k 6= j, then every agent k says the

truth. If agent k did not say the truth, this means that she expected with

positive probability to be B3(m) and that πk(m) > 0. Suppose k ∈ B3(m)

and that πk(m) > 0 for agent k with dc ≤ b < dk. Then c would always

deviate to a message m′c such that B3(m
′
c,m−c) = {c}. Thus, agent k with

dk > b ≥ dc expects with probability 0 to be in B3(m) in equilibrium and says

the truth. Then, given m−c, c sends mcc = 0 and some mcj > mjc such that

B3(m) = {c} to maximize πe
c . In this case, however, πj strictly increases, if

j deviates to m′j with m′jj = 0 and m′jc > dj + b with m′jc 6= m′cc(tc) for all tc

such that B3(m
′
j,m−j) = {j}. If it is not the case that dj < dc ≤ b < dk for

all k 6= j and if j ∈ B3(m) which is necessary for πj(m) > 0, then deviating to

m′j implies j ∈ B3(m
′
j,m−j) ⊆ B3(m) and πj(m

′
j,m−j) ≥ πj(m) and weakly

improves j as well. Thus, deviating to m′j strictly increases πe
j such that
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m̂ is not an equilibrium. Hence, there is no equilibrium m̂ and t such that

m = m̂(t) where agent j with dj < dc ≤ b sends mjj = 0 and mjc < dj + b.

Third, suppose m̂ is an equilibrium and that m = m̂(t) for t such that

agent j with dj < dc ≤ b sends mjj = 0 and mjc = dj + b. Given dj < dc ≤ b,

agent j expects with strictly positive probability that dj < dc ≤ b < dk for

all k 6= j. If indeed dj < dc ≤ b < dk for all k 6= j, then every agent k

says the truth. Thus, given m−c, c sends mcc = 0 and mcj = mjc such that

B3(m) = {j, c} to maximize πe
c . Then, however, πj strictly increases, if j

deviates to m′j with m′jj = 0 and m′jc > dj + b with m′jc 6= m′cc(tc) for all tc

such that B3(m
′
j,m−j) = {j}. If it is not the case that dj < dc ≤ b < dk for

all k 6= j and if j ∈ B3(m) which is necessary for πj(m) > 0, then deviating to

m′j implies j ∈ B3(m
′
j,m−j) ⊆ B3(m) and πj(m

′
j,m−j) ≥ πj(m) and weakly

improves j as well. Thus, deviating to m′j strictly increases πe
j such that

m̂ is not an equilibrium. Hence, there is no equilibrium m̂ and t such that

m = m̂(t) where agent j with dj < dc ≤ b sends mjj = 0 and mjc = dj + b.

Thus, every equilibrium m̂ and t is such that m = m̂(t) where an agent

j 6= c with dj < dc ≤ b sends mjj = 0 and mjc > dj + b. This implies that

every equilibrium m̂ and t is such that m = m̂(t) and πc(m) = 0 if there

exists an agent j with dj < dc ≤ b because the best application is zero and

the worst reference about c is worse than any feasible reference about j. As

c has full information and knows that πc(m) = 0, she says the truth. Thus,

every equilibrium m̂ and t is such that m = m̂(t) where c says the truth, if

there exists an agent j with dj < dc ≤ b.

If there exists an agent j with dj < dc ≤ b, then such an agent j is the

global minimum g. Thus, for every equilibrium m̂ and t such that m = m̂(t)

and such that there exists an agent j with dj < dc ≤ b, the global minimum

sends mgg = 0 and receives the min-max reference since c says the truth.

Moreover, the global minimum conflicts with c. Thus, B3(m) = {g}.
Hence, every equilibrium m̂ and t is such that m = m̂(t) and B3(m) = {j}

where j 6= c with dj < dc ≤ b is the global minimum.

Thus, if the knowledge network is a star, then every equilibrium m̂ and

t is such that m = m̂(t), B3(m) = {g} and πg(m) = 1 where g is the global

minimum.
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The mechanism π does not guarantee full implementation for every knowl-

edge network. The following example identifies a network architecture and

an equilibrium m̂ such that the principal does not select the global minimum

with probability 1.

Example 4. Let n = 4 and let the network architecture be a circle as

shown in figure 6.

Figure 6: Circle network with n = 4.

Let m̂ be such that

• a local minimum sends the best possible application. Regarding her

neighbors, she sends the worst possible references if some neighbor’s

distance is relatively close to her’s, and she sends truthful references if

both neighbors are sufficiently worse than her.

Formally, if di < dj for all j ∈ Ni, then

m̂ii(ti) = max {0, di − b},

m̂ij(ti) = min {dj + b, 1} for all j ∈ Ni, if dj − di ≤ 2b for some j ∈ Ni,

and m̂ij(ti) = dj for all j ∈ Ni, if dj − di > 2b for all j ∈ Ni.

• a non-minimal agent i who has di > b or a neighbor j with dj = 0 says

the truth.

Formally, if di > dj for some j ∈ Ni and if di > b or dj = 0 for some

j ∈ Ni, then

m̂ii(ti) = di and m̂ij(ti) = dj for all j ∈ Ni.
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• a non-minimal agent i who has di ≤ b and no neighbor j with dj = 0

sends the best possible application, a reference equal to b for every

neighbor j with dj ≤ b and a truthful reference about a neighbor with

dj > b.

Formally, if di > dj for some j ∈ Ni and if di ≤ b and dj = 0 for no

j ∈ Ni, then

m̂ii(ti) = 0,

m̂ij(ti) = b for all j ∈ Ni with dj ≤ b,

and m̂ij(ti) = dj for j ∈ Ni with dj > b.

Lemma 6.3. If ti is such that agent i is a local minimum, then m̂i(ti) = mi

maximizes πe
i and is the truth if the truth maximizes πe

i given m̂−i.

Proof. First, we show that m̂i(ti) = mi maximizes πe
i given m̂−i, if ti is such

that agent i is a local minimum.

Let ti be such that that agent i is a local minimum and let mi = m̂i(ti).

Suppose i = g and j /∈ Ni has dj > b. Then B3(m) = {i} because

mii = mink∈N mkk, ri = mink∈N rk and i conflicts with neighbor j ∈ Ni if

dj − di ≤ 2b. This implies πi(m) = 1.

Suppose i = g and j /∈ Ni has dj ≤ b. Then i and j /∈ Ni both send

the best application 0. No j ∈ Ni is in B2(m) because i sends reference

mij = min {dj + b, 1} about each j ∈ Ni if one of them is sufficiently close to

i. If both neighbors j ∈ Ni of i send truthful references, then B3(m) = {i}
and hence πi(m) = 1. If one neighbor j ∈ Ni sends references equal to b, then

B3(m) = {i, j} for j /∈ Ni and πi(m) = 1
2
. In this case there does not exist

m′i 6= mi such that B3(m
′
i,m−i) = {i} or B2(m

′
i,m−i) = {j} with j /∈ Ni and

hence there exists no m′i 6= mi such that πi(m
′
i,m−i) > πi(m).

Suppose i 6= g. Then j /∈ Ni is g.

If di > b, then B3(m) = {g} and πi(m) = 0. In this case there does not

exist m′i 6= mi such that i ∈ B1(m
′
i,m−i) or B2(m

′
i,m−i) = {j} with j /∈ Ni

and hence there exists no m′i 6= mi such that πi(m
′
i,m−i) > πi(m).

If di ≤ b, and both neighbors j ∈ Ni of i send truthful references, then

B3(m) = {g} and πi(m) = 0. In this case there does not exist m′i 6= mi such
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that i ∈ B2(m
′
i,m−i) or B2(m

′
i,m−i) = {j} with j /∈ Ni and hence there

exists no m′i 6= mi such that πi(m
′
i,m−i) > πi(m).

If di ≤ b, and one neighbor j ∈ Ni of i sends references equal to b, then

B3(m) = {g, i} and πi(m) = 1
2
. In this case there does not exist m′i 6= mi

such that B3(m
′
i,m−i) = {i} or B2(m

′
i,m−i) = {j} with j /∈ Ni and hence

there exists no m′i 6= mi such that πi(m
′
i,m−i) > πi(m).

Thus, m̂i(ti) = mi maximizes πe
i given m̂−i, if ti is such that agent i is a

local minimum.

Second, we show that if ti is such that agent i is a local minimum and

m̂i(ti) = mi is not the truth, then deviating to the truth strictly decreases

πe
i given m̂−i.

A local minimum i with di > 0 assigns a strictly positive probability to

i = g and j /∈ Ni being a local minimum as well with dj ∈ (di, di + b). If

indeed i = g and j /∈ Ni is a local minimum as well with dj ∈ (di, di + b),

then i ∈ B3(m) and πi(m) > 0. In this case, a deviation by i to the truth

results into i /∈ B1(m
′
i,m−i) and B3(m

′
i,m−i) = {j} with j /∈ Ni and thus

πi(m
′
i,m−i) = 0.

A local minimum i with di = 0 only does not say the truth if dj−di ≤ 2b

for some j ∈ Ni. Given m, B3(m) = {i} and πi(m) = 1. If i deviates to the

truth, then B2(m
′
i,m−i) = {i} and B3(m

′
i,m−i) = ∅ and thus πi(m

′
i,m−i) =

0.

Thus, if ti is such that agent i is a local minimum and m̂i(ti) = mi is not

the truth, then deviating to the truth strictly decreases πe
i given m̂−i.

Lemma 6.4. If ti is such that agent i is non-minimal and has di > b or a

neighbor j ∈ Ni with dj = 0, then m̂i(ti) = mi which is the truth maximizes

πe
i given m̂−i.

Proof. Let ti be such that agent i is non-minimal and has di > b or a neighbor

j ∈ Ni with dj = 0 and let mi = m̂i(ti). Given m, i /∈ B3(m) 6= ∅ and thus

πe
i (m) = 0.
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If di > b, then there is no m′i 6= mi such that i ∈ B1(m
′
i,m−i) be-

cause mgg < di − b. Moreover, there does not exist m′i 6= mi such that

B2(m
′
i,m−i) = {j} with j /∈ Ni and B3(m

′
i,m−i) = ∅: If j = g for j /∈ Ni,

then B3(m
′
i,m−i) = {g} for all m′i 6= mi. If j 6= g for j ∈ Ni, then j /∈ Ni is

never in B2(m
′
i,m−i) for any m′i 6= mi because g sends mgg = max {0, dg − b}

and mgj = min {dj + b, 1} if dj − dg ≤ 2b for j ∈ Ng.

If i has a neighbor with dj = 0, then this neighbor is g. There does

not exist m′i 6= mi such that i ∈ B2(m
′
i,m−i) because mgg = 0 and mgi =

min {di + b, 1} if di ≤ 2b. Moreover, j /∈ Ni is never in B2(m
′
i,m−i) for any

m′i 6= mi because g sends mgg = max {0, dg − b} and mgj = min {dj + b, 1} if

dj − di ≤ 2b for j ∈ Ng.

Thus, if ti is such that agent i is non-minimal and has di > b or a neighbor

j ∈ Ni with dj = 0, then m̂i(ti) = mi which is the truth maximizes πe
i given

m̂−i.

Lemma 6.5. If ti is such that agent i is non-minimal and has di ≤ b and no

neighbor j with dj = 0, then m̂i(ti) = mi which is not the truth maximizes

πe
i and the truth does not maximize πe

i given m̂−i.

Proof. First, we show that m̂i(ti) = mi which is not the truth maximizes πe
i

given m̂−i, if ti is such that agent i is non-minimal, has di ≤ b and has no

neighbor j with dj = 0.

Let ti be such that agent i is non-minimal, has di ≤ b and has no neighbor

j with dj = 0 and let mi = m̂i(ti).

If g /∈ Ni and dg > 0, then at least one neighbor of i and g sends references

equal to b such that B3(m) = {g, i} and πi(m) = 1
2
. For any m′i 6= mi,

g ∈ B3(m
′
i,m−i) and thus no m′i 6= mi increases πi.

If g /∈ Ni and dg = 0, then B3(m) = {g} and πi(m) = 0. For any m′i 6= mi,

B3(m
′
i,m−i) = {g} because mgg = 0 and the neighbors of i and g say the

truth.

If g ∈ Ni and dg > 0, then i /∈ B3(m) 6= ∅ and πi(m) = 0. There does not

exist m′i 6= mi such that i ∈ B2(m
′
i,m−i) because mgg = 0 and mgi = di + b.

Moreover, there is no m′i 6= mi such that j ∈ B2(m
′
i,m−i) for j /∈ Ni because
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mgg = 0 and mgj = min {dj + b, 1}.
Thus, m̂i(ti) = mi which is not the truth maximizes πe

i given m̂−i, if ti

is such that agent i is non-minimal, has di ≤ b and has no neighbor j with

dj = 0.

Second, we show that if ti is such that agent i is non-minimal, has di ≤ b,

has no neighbor j with dj = 0 and m̂i(ti) = mi which is not the truth, then

deviating to the truth strictly decreases πe
i given m̂−i.

Let ti be such that agent i is non-minimal, has di ≤ b and has no neighbor

j with dj = 0 and let mi = m̂i(ti).

Agent i assigns strictly positive probability to g /∈ Ni and dg > 0. If

g /∈ Ni and dg > 0, then B3(m) = {g, i} and πi(m) = 1
2
. Deviating to the

true message results into B3(m
′
i,m−i) = {g} and πi(m

′
i,m−i) = 0 because

m′ii > mgg.

Thus, deviating to the truth strictly decreases πe
i .

Lemmata 6.3, 6.4, and 6.5 together imply that m̂ as defined in example

4 is an equilibrium strategy profile for the circle network with n = 4.

Consider the type realization in the circle network with n = 4 is such

that all i ∈ N have di ≤ b and dg > 0 and that agents use the equilib-

rium m̂ as defined in example 4. Then B3(m) = {g, j} where j /∈ Ng and

πg(m) = 1
2
. This case occurs with a strictly positive probability. Thus, m̂ is

an equilibrium strategy profile for the circle network with n = 4 for which

the principal does not expect to select the global minimum with probability 1.

We summarize the results from example 4 in the following proposition.

Proposition 6.6. Let n = 4 and the knowledge network be a circle. Then

m̂ as defined in example 4 is an equilibrium in which the principal does not

select the global minimum with probability 1 for some t.

Example 4 raises the important question for which network architectures

the mechanism π achieves full implementation. This question is not answered
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in this paper. Our conjecture is that π guarantees full implementation for

every network architecture in which one agent has full information. This

means that there exists one agent who is linked to every other agent.

7 Conclusion

In this paper, we introduce a model in which a principal has to assign a prize

to one agent out of a set of heterogeneously valued agents. The principal

is uninformed in the sense that she only knows the distribution of values

across agents. Every agent would like to get the prize and she exactly knows

her own value for the principal. Moreover, an agent might have knowledge

about other competing agents. The distribution of information across agents

is described by their knowledge network. In addition to her own value an

agent exactly knows the values of other agents she is linked to in the network.

A link signifies familiarity between two agents, e.g. two researcher who are

coauthors have knowledge about each other’s abilities.

We propose a mechanism for the principal to identify the best agent in

such an environment, when 1) agents send a private costless messages to

the principal containing statements about their own value (application) and

about values of other agents they know (references), 2) agents can lie about

true values only to a commonly known extent, and 3) prefer to tell the truth

if they cannot increase their expected probability of being selected by lying.

The mechanism specifies a probability of being selected for every agent for

any possible message profile. Intuitively, the proposed mechanism encour-

ages agents who have a positive expectation of being selected and who cannot

prove better than all their neighbors to exaggerate positively about them-

selves. Moreover, truthful references are necessary to distinguish between

different agents who are all close to the ideal. We show that if every agent

has at least one neighbor, this mechanism induces a static Bayesian game

among agents for which there exists an equilibrium in which the principal

selects the best agent with certainty. In this equilibrium, agents who have

a positive expectation of being the best agent prove that they are better

than all their neighbors or lie positively about themselves and negatively

37



about their neighbors. Agents who know that they are not the best agent

say the truth. Moreover, we show that if the knowledge network is complete

or a star, the mechanism guarantees that every equilibrium is such that the

best agent is identified with certainty. However, we also provide an exam-

ple of a knowledge network for which the mechanism does not achieve full

implementation. A characterization of all knowledge networks for which full

implementation is attained and an analysis of which properties determine

whether full implementation on a given network is possible or not would be

interesting to pursue in future work.

The fact that in our model references of competitors are valuable to dis-

tinguish between agents close to the ideal suggests that also in real world

allocation problems it might be helpful to request statements from appli-

cants about their competitors to identify the best applicant. Of course, our

model speaks to some real world allocation problems more than to others.

For example, modeling an agent’s value for the principal as a her distance

to the ideal is suitable when an agent’s value is measured on a continuous

space and the ideal point is known. In the real world this is, for example,

the case when an individual’s abilities and qualifications are summarized in

a score. Such scores are sometimes used by committees to evaluate and rank

candidates for scholarships or other rewards. We would expect limits to ma-

nipulating the “true” score, which are reflected in the b of our model. Usually

points attributed to an individual must be well reasoned, but of course it is

possible to either emphasize the positive or negative aspects and by that

distort an individual’s true value.

Our assumption that b is common knowledge and a candidate perfectly

knows her own value and the one of her “neighbors” does not account for

existing uncertainties and partial knowledge in the real world. Such uncer-

tainty about an agent’s own value and about her neighbors’ values is an

important extension of the model to investigate. Moreover, the knowledge

network is probably common knowledge in only few real world situations.

This leads us to another interesting alteration of the model: to allow the

existence of a link to be private knowledge and agents to be silent about

neighbors. Agents might want to conceal that they have knowledge about
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another neighbor or might not want to make a statement about one of her

neighbor if it improves their own expected probability of being selected. It

is unclear if with such extensions we can still find a mechanism to identify

the best agent with certainty.
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