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Abstract

We study the formation of networks in environments where agents derive bene…ts
from other agents directly linked to them but su¤er losses through contagion when
any agent on a path connected to them is hit by a shock. We …rst consider networks
with undirected links (e.g. epidemics, underground resistance organizations, trade
networks) where we …nd that stable networks are comprised of completely connected
disjoint subnetworks. Then, we consider networks with directed links and we …nd
that the completely connected network is stable, although, its exact structure, and
thus contagion implications, is sensitive to parameter values for costs and bene…ts.
Lastly, we introduce aggregate externalities (e.g. …re sales for the case of …nan-
cial networks) and we …nd that stable networks can be asymmetric, connected but
not completely connected, thus capturing the main features of inter-industry and
…nancial networks.
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JEL: C72, D85

1. Introduction

A signi…cant part of the literature on strategic network formation has focused on variants
of the ‘connections’ model studied by Jackson and Wolinsky (1996). The common idea
of this literature is that being part of a network allows agents to bene…t not only from
their direct links but also from indirect connections to other agents in the network. In
contrast, the costs of network participation in these models are only associated with the
creation of direct links. However, as Blume et al. (2011) observe in many networks
studied in economics and other disciplines the structure of costs and bene…ts is inverted.
As an example from economics they refer to the extensive body of work on issues related
to systemic risk in …nancial networks. In those networks two institutions form a link
by signing a loan agreement from which each party derives a bene…t. A failure by one
institution to meet its obligations in‡icts costs not only to the two parties that have signed
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the agreement but also to other institutions connected to them, directly or indirectly, by
other …nancial agreements.

The above observation motivated Blume et al. (2011) to study the formation of net-
works with this alternative general payo¤ structure. They have restricted their analysis
to undirected graphs where information can ‡ow in either direction along a link. Using
stability as a solution concept that allows them to make predictions about which network
structures are more likely to form they …nd stable networks that consist of fully connected
disjoint subgraphs (cliques). Such arrangements might be o¤ering a good description of
some examples of social networks they mentioned in their paper (e.g. formation of groups
that minimize the risk of disease epidemics and the organization of cladenstine opera-
tions) but de…nitely less so for …nancial systems that have network structures which are
connected but incomplete.1 In such networks there is always a path connecting any of the
nodes (…nancial institutions) with every other node (ignoring for the moment that links
can also be directed), however, not all nodes are directly linked with every other node.

In this paper, we argue that by distinguishing between directed and undirected graphs
we can explain such variations in network structures. We begin by analyzing the formation
of undirected networks in a variant of the Blume et al. (2011) model. As in their model
(a) agents derive a bene…t by forming a link, and (b) each agent fails independently with
some …xed probability. The di¤erence in the two models is related to the way the costs
associated with such failures spread through the network. In their model after a failure
each node with some probability becomes live and shocks can only be transmitted through
live nodes. In our model all nodes are live and thus a¤ected by the shock, however, the
magnitude of the losses for each node depends on its distance from the one that initially
failed. We con…rm that when links are undirected there exist stable networks that consist
of fully connected disjoint subgraphs but we also show that these are the only structures
that can be stable.

Then, we turn our attention to directed networks where shocks can be only transmitted
along directed paths. In …nancial networks an outgoing (ingoing) link means that the
institution represented by the node is a borrower (lender). Thus, the link captures the
‡ow of …nancial liabilities. By having only a subset of nodes being live the Blume et
al. (2011) model mimics the transmission of shocks in directed networks. However, there
is an important di¤erence. In their model the paths are exogenously determined but in
our model are equilibrium outcomes. The direction of the links are determined by the
strategic decisions of agents. We …nd that the most likely stable structures are complete
directed networks (tournaments). More interestingly, we …nd that small variations in the
parameters of the model can signi…cantly a¤ect the vulnerability of the network to a failure
of any randomly chosen node. In particular, we …nd that by either slightly decreasing the
bene…t derived from forming a link or slightly decreasing the cost associated with failure
we can move from a stable network structure where there is only one agent whose failure
would lead to the collapse of the whole network to a structure where all agents become
critical.

The prediction that stable networks with directed links are connected is in agreement
with our knowledge on the structure of …nancial networks our prediction that such networks

1For a variety of examples see the review article by Bougheas and Kirman (2015).
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are complete is not. With that in mind we next consider a modi…ed version of our model
that allows for aggregate externalities. More speci…cally, we consider the case where the
costs su¤ered by each agent following a failure is increasing in the number of agents being
a¤ected by the failure. Now we …nd that there are parameter values such that any stable
network is connected but not complete.

In the following section, we describe a few examples of networks from economics and
other disciplines, both undirected and directed, whose general structure is captured by
our model.2 We also o¤er examples of aggregate externalities that might generate cost
structures similar to the one we introduced in the last version of our model.

1.1. Contagion in Social and Economic Networks

The …rst three are examples of undirected networks and the following two are examples
of directed networks where, as many researchers have suggested in the past, externalities
might be playing an important role.

Contagious diseases and group size As Blume et al. (2011) observe there is a trade-
o¤ related to the formation of social group. Larger clusters increase the bene…ts of partici-
pants, however, they also increase the risk of contagion. This trade-o¤ is clearly illustrated
in the study by Hamilton et al. (2007) of hunter-gatherer societies where they make the
distinction between cohesive and disruptive forces in the process of group formation and
among the latter they identify the spread of diseases.

Underground resistance networks This is another of the examples o¤ered by Blume
et al. (2011). Participants in such organizations bene…t by working in groups but also
there is a risk that the group might be in…ltrated. Chai (1993) explores this trade-o¤ in
the context of groups that resist governments while Morselli et al. (2007) do the same for
criminal networks.

Globalization and the international transmission of shocks The free movement of
goods and services, intermediate inputs in production and …nancial capital can be welfare
enhancing during times of prosperity but they also facilitate the transmission of regional
shocks around the globe. This trade-o¤ has been studied by Imbs (2004), Kose et al.
(2003) and since then has been an active topic of research.

What all three examples mentioned above have in common is that links are symmetric
and thus undirected.3 In all three examples he size of the group is a source of tension
between opposing forces. Larger groups confer bene…ts to participants as there are more
opportunities for collaboration. However, larger groups also expose a greater number of

2Many more examples of social and economic networks can be found in Jackson (2008) and Newman
(2010).

3There are exceptions but to address them we need a more specialized model. For example, as Chai
(1993) suggests while it is true that exposure to the risk of in…ltration keeps the size of resistance groups
small, these groups can be further protected by having a hierachical structure where every person is in
contact with no more that three other members (one above and two below).
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participants to shocks in their network (new virus, an agent caught by the authorities, a
macroeconomic downturn). How big the network will be it will depend on balancing the
costs and bene…ts of participation. The risk of losing a member in clandestine operations
might be unacceptable and thus would keep the size of the network small. In contrast, the
international trade network has been expanding both by enlisting more trading partners
and reducing barriers to trade.

Financial networks and systemic risk This is our …rst example of a directed net-
work. In the description we o¤ered above shocks are transmitted around the network from
borrowers to lenders. The inability of a borrower institution to meet its obligations with
its lenders can cause a cascade of failures through the system. The lenders of the initially
failing institution might be unable to meet their own obligations and this process can keep
going till the system is cleared (e.g., Eisenberg and Noe, 2001).4 Shocks can also be trans-
mitted from lenders to borrowers when the former group suddenly interrupts established
credit lines that it has earlier provided to the latter group. Episodes of market freezes
usually take place before the onset of a crisis, as lenders anticipate that borrowers will, in
the near future, have a hard time repaying their debts (e.g. Diamond and Rajan; 2011).5

During a crisis, systemic losses can get magni…ed because of ‘…re sales’.6 As Shleifer and
Vishny (1992) have shown the simultaneous liquidation of assets by multiple institutions
can depress the market prices of these assets which in turn further deteriorates the balance
sheets of other institutions holding similar assets thus potentially leading to more failures.

Firm linkages and macroeconomic fat tails Directed networks are also useful for
understanding the causes of fat tails in the distribution of macroeconomic shocks. Recent
work by Acemoglu et al. (2012, forthcoming-b) have shown that the interaction between
the distribution of idiosyncratic shocks and the structure of the network can become a
shock ampli…cation mechanism that can explain ‘abnormal’ shocks at the aggregate level.7

They analyze networks where nodes represent …rms that buy from and sell goods to each
other thus creating a web of complex relationships.

In Acemoglu et al. (forthcoming-b) they show that light-tailed risks (small deviations
from the normal case) in conjunction with some lack of balance in terms of economic im-
portance across the sectors of the economy can give rise to macroeconomic fat tails. One
possible explanation for the deviation of the distribution of idiosyncratic shocks from the
normal case can be related to what in the past macroeconomists have identi…ed as aggre-
gate demand externalities. Examples of such externalities have been o¤ered in relation to
search in labor markets (Diamond, 1982), coordination of economic activity (Cooper and
John, 1988), market structure (Kiyotaki, 1988) and industrial development (Murphy et
al., 1989).

4For excellent literature reviews see Acemoglu, Ozdaglar and Tahbaz-Salehi (forthcoming-a), Babus
and Allen (2009) and Glasserman and Young (2016).

5For a network approach to market freezes see Gabrieli and Georg (2014).
6See Shleifer and Vishny (2011) for a review of the literature.
7See also Carvalho (2014) for a lees technical exposition of this topic.
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By introducing in our model aggregate external e¤ects we were able to show that
directed networks, such those considered above, though connected are not complete.

1.2. Related Literature

Our paper is related to a quickly expanding literature on the endogenous formation of
economic and social networks. Early work focused on variants of the Jackson and Wolin-
sky (1996) connectionist model.8 We focus our literature review on papers that consider
network formation in environments with systemic risk.

As we mentioned above, the most closely related paper to ours is Blume et al. (2011).
They restrict their attention to undirected graphs. However, the transmission of a shock is
restricted to spread only through live nodes. In contrast, in the undirected graph version
of our model all nodes are live but we allow for losses to be discounted with the distance
of nodes from the one hit by the shock. The two models become identical by setting equal
to one the probability of a node being live in Blume et al. (2011) and the discount factor
in our model. In addition, to …nding, as they do, that there exist stable networks that
consist of disjoint fully connected subgraphs we also show that any stable network must
have that structure.

Erol and Vohra (2014) also consider formation of undirected links and derive a similar
result, however, from a network formation game that has a quite di¤erent structure. In
their model any pair of agents linked together play a coordination game, each deciding
whether to default or not and where their expected payo¤s also depend on their beliefs
about the default strategies of all other agents. At an earlier stage agents form undirected
links anticipating the later stage possibilities.

Our work is also related to a number of papers in the …nance literature that explore
the links between network structure and systemic risk. There has been a lot of work in
trying to understand which types of network structures are more vulnerable to systemic
risk (e.g., Acemoglu et al., 2015; Elliott et al., 2014).

Recently, there has also been some work on the formation of such networks. Cohen-Cole
et al. (2010) study competition in the …nancial market where participants form undirected
links. In Babus (2013) …nancial institutions form links to insure themselves against the
probability of system wide default. In the …nancial interpretation of our model …nancial
institutions are participating in an interbank market. Acemoglu et al. (2014) also study
network formation but they exogenously restrict the links that are allowed to be formed.
When such restrictions are lifted then the complete network can be stable. We derive
alternative equilibrium structures by introducing aggregate externalities.

Lastly, Caballero and Simpsek (2013) also consider externalities in …nancial markets
within a network approach. They introduce the concept of ‘price complexity externality’
to refer to the negative externality imposed to the rest of the system by the liquidation of
assets by failing institutions.

8See, for example, Bala and Goyal (2000), Dutta and Mutuswami (1997), Jackson and Watts (2002)
and Watts (2002).
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2. Undirected Networks

There are  agents represented as nodes on a graph (network). Let  = f1  g denote
the set of nodes. A link between two nodes indicates that the corresponding agents have
a direct relationship. Let  denote the complete network where all agents are directly
connected and let  = f j  µ g denote the set of all possible graphs. For two agents
that are directly linked in network  we write  2 .

The following notations will be useful. We will write  +  for the network that we
obtain when we add link  to an existing network . Similarly, we will write ¡  for the
network that we obtain after deleting link . A walk between agents  and  is de…ned
as a sequence of agents beginning with  and ending with  such that for every pair of
adjacent agents in the sequence there exists a direct link. A path between agents  and 
is de…ned as a sequence of agents beginning with  and ending with  such that for every
pair of adjacent agents there exists a direct link and each agent appears only once in the
sequence (each node is distinct). We let () denote the number of direct links in the
shortest path between agents  and . A cycle is formed by adding the link  to a path
between agents  and . A complete cycle is a cycle where all the agents that belong on
the cycle are connected with each other. An empty cycle is a cycle that there are no links
between agents that belong on the loop and are not adjacent.

For any network  we let () denote the set of all distinct connected subgraphs and
() the set of all isolated nodes. Then  = ([02()

0) [ (). We let 0 denote that
the subgraph 0 is complete.

For any player  we de…ne  
 = f : () = g, that is the set of agents with a shortest

distance from agent  equal to . Let j 
j denote the cardinality of the set. Then we haveP¡1

=1 j 
j =  ¡ 1. Notice that j 

1j is equal to the degree of node .
Next, we de…ne the bene…ts and costs from network participation. With probability

 one of the nodes of the network is hit by a shock. Conditional on the occurrence of
the shock all nodes are hit by the shock with equal probability. Thus, the unconditional
probability that a node is hit by a shock is equal to 


.9 Agents derive bene…t  from each

direct link as long as one of the following two conditions holds: Either the network is not
hit by a shock or the network is hit by the shock but they are not connected, neither
directly nor indirectly, to the agent hit by the shock. There is no bene…t from indirect
links. The cost to an agent of being hit by a shock is equal to   1. Other agents of the
network will su¤er losses only if they are connected to the agent who is hit by the shock
(they have to belong to the same connected graph). Say agent  is hit by a shock. For any
agent  connected to agent  this indirect cost is given by (), where 0    1; thus,
the cost is declining with the number of links in the shortest path between the two agents.

Suppose that 0 2 () and let j0j denote the cardinality of 0. Then, the expected

9In Section 4, we discuss alternative speci…cations of the distribution of shocks.
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net payo¤ (
0 ) of agent  2 0 is given by:

(
0 ) =

µ

1¡
j0j 



¶
¯
¯ 
1

¯
¯ ¡





¡
1 + 

¯
¯ 
1

¯
¯+ + ¡1

¯
¯ 

¡1

¯
¯
¢

=

µ

1¡
j0j 



¶
¯
¯ 
1

¯
¯ ¡





¡
1 +

P¡1
=1 


¯
¯ 



¯
¯
¢

The …rst term is equal to the expected bene…t derived from belonging in a subset of the
network  represented by a connected subgraph 0. There subgraph has j0j nodes and thus

the probability that one of these agents is hit by a shock is equal to j0j


. As long as the no
agent that belongs to the subgraph is hit by the shock agent  will derive a bene…t  from
each of the direct links where the total number of these links is equal to j 

1j. The second
term is equal to the corresponding expected costs. Each agent fails with probability 


.

When an agent who belongs to the subgraph is hit by the shock all agents su¤er a loss that
is equal to  times a discount factor that depends on the shortest distance of the agent
from the one hit by the shock.

2.1. Stability

As in Jackson and Wolinsky (1996) we use the notion of pair-wise stability to allow us to
make predictions about the types of networks that are likely to form.

De…nition 1 A network, , is stable if no agent  prefers to severe a link, and no pair of
agents  and  prefers to form link .

Thus, the formation of a new link requires the approval of both agents forming the link.
But any players can severe a link unilaterally. This is a relatively weak notion of stability
given that, as we will see below, allows for stable networks where every participant would
prefer to severe all links simultaneously. In Section 4, we discuss alternative notions of
stability where such cases would be eliminated. Still, the notion of pair-wise stability by
su¢ciently restricting the set of stable networks allows us to make interesting predictions.
Moreover, as Jackson and Wolinsky (1996) note pairwise stability is independent of any
particular dynamic process through which the network is formed.

Proposition 1 (a) if
¡
1¡ 2



¢
  


 then the empty network is stable, and

(b) if (1¡ )   

 (1¡ )  then the complete network,  , is stable.

Proof

(a) Consider the empty network and any pair of agents  and . The probability that one
of the two agents is hit by a shock is equal to 


in which case, if the link has been

formed, the agent not hit by the shock will bear an indirect loss . With probability
1¡ 2


, none of the two agents is hit by the shock in which case each receives bene…t

. Thus, if
¡
1¡ 2



¢
  


 the two agents will decide not no form the link and the

proof follows from the arbitrary choice of the pair.
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(b) The payo¤ of agent  who is part of the complete network is given by:

(
  ) = (1¡ ) ( ¡ 1)  ¡




 (1 + ( ¡ 1)) (1)

Agent  by severing a link, say with agent , loses the bene…t  when there is no shock on
the network that is with probability 1¡ . Now () = 2 and thus by severing the
link the expected cost of participating in the network for agent  has been reduced by


 (1¡ ) . The proof follows form comparing bene…ts and losses and the arbitrary

choice of agents. ¤

Corollary 1 If

(1¡ )  



 (1¡ )  




 

µ

1¡
2



¶

 (2)

then neither the complete network nor the empty network are stable.

Our next result shows that stable networks always exist. In particular, as in Blume
et al. (2011), we will show that we can always construct stable networks that consist of
disjoint connected subgraphs. Then we will also show that any stable network has that
structure.

Proposition 2 Stable networks always exist.

Proof We will prove the proposition in two steps. We will …rst show that the existence
of a stable complete subgraph is su¢cient for the existence of at least one stable
network. Then we will show that a stable complete subgraph exists.

Lemma 1 If there exists a stable complete subgraph 0 then there also exists at
least one stable network.

Proof Let
¯
¯0

¯
¯ = . Suppose that mod =  and consider the network with

¡


complete subgraphs each with  nodes and 1 complete subgraph of size .
To prove the proposition we need to show that the complete subgraph of size
 is stable. The expected payo¤ of an agent  belonging to one of the complete
subgraphs of size  is given by:

(
0  ) =

µ

1¡




¶

( ¡ 1) ¡



 (1 + (¡ 1)) (3)

One of the necessary conditions for the stability of the subgraph is that agent
 does not want to severe a link. The new payo¤ of an agent who severs a link
is given by

¡
1¡ 



¢
( ¡ 2) ¡ 


(+ (¡ 2)2 + 3), and thus the stability

condition is given by:

µ

1¡




¶

 ¡



 (1¡ )   0 (4)
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Next, we consider the stability of a complete subgraph of size . The stability of
the rest of the subgraphs implies that none of the agents belonging to the other
subgraphs are willing to link with any agent belonging to another subgraph.
Given that the left-hand side of (4) is decreasing in  and given that   
none of the agents in the complete subgraph of size  prefers to severe a link.
¤

Suppose that (2) holds; that is neither the empty network nor the complete network
are stable. Clearly, if this is not the case existence of stable networks is trivially
satis…ed. Then the lemma implies that it is su¢cient to show that a stable com-
plete subgraph exists. The existence of a stable complete subgraph of cardinality
 requires that two conditions are satis…ed: (a) No agent prefers to break a link,
that is

¡
1¡ 



¢
  


 (1¡ ) , and (b) that no isolated agent would like to join

the graph, that is
³
1¡ (+1)



´
  



¡
 + (¡ 1)2

¢
. (Stability also requires that

none of the agents belonging on the subgraph would like to join agents outside the
graph but this constraint does not bind. Further, if no isolated agent would like to
join the complete subgraph then this will be the case for any other agent belonging
to any type of subgraph as joining an even larger network always decreases expected
payo¤.) Then it su¢ces to show that if (2) holds then there exists  2 [2  ¡ 1]
such that the following inequalities are satis…ed:

µ

1¡
(+ 1) 



¶

 



 

µ

1¡




¶

 (5)

The proof follows from the observations that for  = 2 the second inequality is
satis…ed by (2) and for  =  ¡ 1 the …rst inequality is satis…ed by (2). ¤

The networks identi…ed by proposition 2 are such that every 0 2 () is complete.

Example 1 Let  = 9,  = 09,  = 5, and  = 1. Then the network comprised of two
complete subgraphs of sizes 5 and 4, respectively, is stable (see Figure 2.1). Notice that
(4) is satis…ed for these parameter values. In addition, we need to ensure that no agent
from the size 4 subgraph would like to link with an agent from the size 5 subgraph. The
expected payo¤ from creating the new link is given by

(1¡ )4¡


9

¡
1 + 4 + 42

¢

which is less than the expected payo¤ from not creating the link given by (3) when we use
the values  = 9 and  = 4.

(5) is a su¢cient but by no mean necessary condition. Even if a network might not
be stable in the presence of isolated agents might be so in their absence. For example,
a subgraph of size, say 0 might not be stable if there are isolated agents it might be so
if the smallest size complete connected subgraph in the network exceeds some minimum
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Figure 2.1: A Stable Network ( = 9,  = 09,  = 13,  = 5,  = 1)

value. An implication of the last comment is that a multiplicity of stable networks might
exist.

Next, we extend the characterization of the stable networks described by the above
result by providing an upper bound on the size of subgraphs that can be parts of stable
networks. De…ne ¤¤() as the maximum value of  such that the following inequalities

hold
³
1¡ (+1)



´
 > 



¡
 + (¡ 1)2

¢
. ¤¤ is equal to the largest size of fully connected

subgraph that an isolated agent would wish to join and thus sets an upper bound for the
size of such subgraphs. The lower bound can be an isolated agent. To see this suppose
that ¤¤ =  ¡ 1. In that case, one stable network consists of a completely connected
subgraph of size  ¡ 1 and an isolated agent.

Next, we show that any stable network consists of disjoint fully connected subgraphs.

Proposition 3 Any incomplete connected subgraph is not stable.

Proof We prove the following results:

Lemma 2 If a complete subgraph of size  is not stable because agents would prefer
to severe a link then any connected subgraph of size  is also not stable because
agents would prefer to severe a link.

Proof We need to consider two cases:

(a) A broken link does to alter the size of the subgraph: Form (4) we know that
instability implies that

¡
1¡ 



¢
  


 (1¡ ) . The left hand side shows the

expected loss from breaking a link which does not depend on the structure of
the subgraph as long as its size is equal to . When the original graph is not
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complete then it must be the case that for no agent the expected bene…t of
breaking a link can be lower than 


 (1¡ )  (the expected bene…t correspond-

ing to breaking a link of a complete subgraph) and there must be at least one
agent whose expected bene…t must be higher. Expected costs once more decline
by 


 because of the direct link but now they can decline even more because

the shortest path to other agents has increased. Further, after the break of a
link in the complete network the shortest path between the two corresponding
agents has increased to 2 with corresponding cost 2 and when the subgraph
is not complete the shortest path can be even higher.

(b) A broken link decreases the size of the subgraph: The lowest expected payo¤
that an agent can gain be severing a link is when the other agent is not connected
to anyone else. This is because (a) the probability of being a¤ected by a shock
depends on the size of the subgraph which in this case only declines by 1,
and (b) there are no additional bene…ts from cost reduction given that the
shortest path to other agents is not a¤ected. For such an agent the expected
bene…t from participating in the network prior to the break of the link would
be is to

¡
1¡ 



¢
( ¡ 1) and the corresponding bene…t after the break is

equal to
³
1¡ (¡1)



´
( ¡ 2). There is also a reduction in expected costs by



. These conditions imply that the agent would prefer to break the link if¡
1¡ 



¢
¡ 


( ¡ 2) ¡ 


  0 which is implied by the instability condition

of the complete subgraph. ¤

Lemma 3 Consider a complete subgraph of size  where no agent prefers to severe
a link. Then any incomplete connected subgraph of size  is not stable.

Proof Notice that the fact that no agent prefers to severe a link when the subgraph
is complete implies that (4) holds. Consider any incomplete connected subgraph
of size  where no agent prefers to hold a link. (If this is not the case the lemma
holds.) Then there exist agents    such that  2 0  2 0  2 0 and
both  and  would like to link with each other. We focus on the decision of
agent  given that the decision of agent  is symmetric. We need to consider
three cases:

(a)  is a terminal node: agent ’s expected payo¤ from creating a link with agent
 is given by the left-hand side of (4) and therefore is positive.

(b) Breaking link  would divide the original subgraph into two distinct connected
subgraphs: The expected payo¤ to agent  from creating link  is higher than
the expected payo¤ to agent  from maintaining . This is because agent 
by breaking  could bene…t from (a) reducing the costs due to all indirect
links through agent , and (b) reducing the size of the subgraph and thus the
likelihood of being a¤ected by a shock. In contrast, agent ’s decision does
not a¤ect the size of the subgraph. Moreover by creating the link  the only
additional cost is that the shortest path to all indirect links is reduced by 1.
(See, Figure 2.2)
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Figure 2.2: Proof of Lemma 3 (b)

(c) In the original subgraph there exists at least one cycle such that the subgraph
remains connected after link  is broken: Clearly  belongs to the cycle.
Agent ’s net expected payo¤ from linking with agent  only depends on the
distance of those agents from whom the shortest path includes link . (The
shortest paths from all other agents is not a¤ected by creating the link .) We
need to consider two cases:

(i)  belongs to all cycles: Consider all agents from whom the shortest paths
to  after linking with  are through the link . Then the shortest paths of
these agents to agent  are through link . (The reverse in not true as there
are agents whose shortest paths from agent  are not through agent  - other
way around the cycles - but their shortest path from agent  is through agent
.) From the above it follows that if agent  prefers to maintain link  then
agent  will prefer to create link . (See, Figure 2.3)

(ii)  does not belong to any of the cycles: This implies that the links  and
 are on opposite sides of any cycle. If an empty cycle does not exist then
the arguments used in part (i) still hold. Suppose that there exists at least
one empty cycle. If the number of links in this empty cycle is odd then the
arguments used in part (i) above still hold. If the number of links in the cycle
is even then there exists an agent  such that there exist two (shortest) paths
from agent  to agent  that are equal. In this case, the shortest path form 
to  is not a¤ected by the decision of  to break or to retain link . However,
for if link  is created then the shortest path from agent  to agent  decreases
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Figure 2.3: Proof of Lemma 3 (ci)

by 1. Thus, in such case there is a possibility that while agent  prefers to
retain link, agent  might prefer not create link . However, given that the
cycle is empty consider any three agents 0 0 0 such that 00 and 00 belong
to the cycle. By supposition these agents prefer not to break these links. Then,
following the arguments so far, it must be the case that either agent 0 prefers
to create link 00 or there is an empty cycle where the links 00 and 00 are on
opposite sides of the new cycle. The proof of the lemma is completed with the
observation that the size of the connected graph is …nite. (See, Figure 2.4) ¤

The proof of the Proposition follows from the above two results. ¤

Corollary 2 Stable networks exist and each stable network consists of a collection of
connected subgraphs.

Stable networks respond to a trade-o¤ between large size structures that bring more
bene…ts to participants and small size structures that protect them from shocks. Given
that indirect connections do not confer any bene…ts but are still a potential source they
are absent in stable networks. The small size of hunter-gatherer societies might have
indeed protected them against epidemics as the small size of resistance groups protects
them against in…ltration. In contrast, despite the losses in welfare resulting from the
transmission of macroeconomic shocks there is still a tendency for expanding globalization
by opening international borders to allow the movement of goods and services, inputs in
production and …nancial capital.
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Figure 2.4: Proof of Lemma 3 (cii)

2.2. Ex Ante E¢ciency vs Ex Post Systemic Losses

Up to this point we have been focusing on the types of network structures that are more
likely to form. Now we turn our attention to relative performance. For the types of
networks that we are interested there are two potentially interesting ways of measuring
performance. The …rst one is having a measure of ex ante performance as in Jackson
and Wolinsky (1996) who used the sum of expected utilities of network participants. The
second way to measure performance is related to the very nature of these networks where
the potential systemic losses after a shock can be signi…cant. Clearly, these losses are
minimized by not having any links, that is all agents are isolated, j()j = . Instead, we
are going to identify among all stable networks the one that minimizes ex post losses.

De…nition 2 A network ¤ is e¢cient if it maximizes the sum of the payo¤s of all agents:10

¤ = argmax


P
=1 ( ) = argmax

P
02()

P
20 (

0 )¡ j()j





Proposition 4 E¢cient networks are such that every 0 2 () is complete.

Proof The payo¤ of an agent  belonging to one of the complete subgraphs of size  is
given by (3). Subtracting ¡ 


 and dividing by ¡ 1 we get

¡
1¡ 



¢
¡ 


 which

10Notice that the expected payo¤ of each  2 () is equal to ¡ 
. This expression cancels in all our

derivations but the ones in the last section were we introduce aggregate externalities. For this reason we
opted to keep it rather making an ad hoc introduction later in the paper.
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is equal to each agent’s net expected payo¤ from each node. We need to consider
two cases:

(a)
¡
1¡ 



¢
¡ 


 ¸ 0: Next, consider any other connected subgraph of cardinality 

that is not complete. From each directly linked node an agent gets exactly the same
expected payo¤ as the one derived form being a member of a complete subgraph. The
expected payo¤ derived form nodes not directly linked is negative due to connectivity.
Thus the total payo¤ is maximized when the subgraph is complete.

(b)
¡
1¡ 



¢
 ¡ 


  0: In this case net expected payo¤ received form each node in

the complete graph is negative and clearly the payo¤s of all agents would have been
higher had they been isolated. ¤

Corollary 3 The e¢cient network is stable.

Proof As we argued above an agent cannot achieve a higher payo¤ by breaking a single
link. It is also the case that cannot achieve a higher payo¤ by forming a link.
Suppose that this is not the case and can achieve a higher payo¤ by connecting with
an isolated agent. But the new payo¤ would be exactly the same as the one that the
agent would obtain form being in a complete subgraph of size +1. This would also
be true for any other agent contradicting the assumption that the original network
was e¢cient. ¤

By maximizing (3) with respect to  we can …nd the size of a completely connected
subgraph ̂ that o¤er the maximum expected payo¤ to it members. Given that ̂ is
probably not an integer we compare the payo¤s of subgraphs of sizes equal to the …rst
integer higher than ̂ and the …rst integer lower than ̂. From now on we ignore this
complication. Setting the f.o.c. equal to 0 and solving for  we get:

̂ =

µ

1 +



¡





¶

2

Notice that for any given size of the network, , the higher the probability that the network
will hit by a shock the lower the size of the optimal subgraph. If mod = 0 then clearly
the network consisting of completely connected subgraphs of size ̂ maximizes ex ante
e¢ciency. If mod  0 then not all agents will be receiving the same payo¤ and the
most e¢cient network might not feature subgraph of size ̂. However, for high values ,
 and  or low values of , ̂ will be small relatively to  in which case it is more likely
that the e¢cient network mainly consists of subgraphs of size ̂.

Next, we consider the relationship between stability and systemic losses. Clearly, the
smaller the size of subgraphs is the lower will be the size of systemic losses following a
shock. Therefore, we are looking for the smallest fully connected subgraph that is stable
when all other subgraphs have the same size.11 Denote the size of such subgraph by ·.

11Once more, we need to do a bit more work when  is not divisible by that particular size.

15



An agent belonging to a fully connected subgraph of size · would prefer not to link with
another agent belonging to another similar graph if the following inequality holds:

µ

1¡




¶

( ¡ 1) ¡



 (1 + (¡ 1)) 

µ

1¡
2



¶

 ¡




¡
1 + + ( ¡ 1)2

¢

The left-hand side is the expected payo¤ from being part of a completely connected sub-
graph of size  as given by (3). If the agent links with an agent in another similar subgraph
the size of the new network will double and thus the probability that the subgraph will be
hit by a shock doubles. There is the additional bene…t  from the extra link but also there
are additional costs. There is an additional expected cost 


 related to the new link and

an additional expected cost 

( ¡ 1)2 from the new indirect links. · is the smallest

value of  such that the above inequality is satis…ed. In that case a network consisting of
fully connected subgraphs of size · is stable.

Example 2 Let  = 6,  = 1,  = 1,  = 7, and  = 1
2
. Then ̂ = 3. The above inequality

is satis…ed for  = 2 but not for  = 1 and thus we have · = 2. Notice that this example
also trivially satis…es the stability condition for the complete network.

The above example identi…es a tension between stability, e¢ciency and the size of
systemic losses. It is not surprising that if to minimize systemic losses we need very
low connectivity as in this case we have completely ignored the bene…ts from having the
network. The observation that stability can be satis…ed with networks that are much
larger than those that maximize e¢ciency, as we discuss in more detail in section 4, is not
necessarily due to the notion of stability that we use. When agents make decisions about
forming or breaking a link they ignore the negative impact that these decisions have on
the payo¤s of other agents.12

3. Directed Networks

Up to this point we have treated symmetrically two agents forming a link. In our general
model the paths formed by the links of the network capture the contagion ‡ows following
a shock. Thus far we have allowed the ‡ows to follow both directions de…ned by a link.
After a link is formed when any one of the two agents is hit by a shock then the other agent
also su¤ers losses. However, in many applications contagion ‡ows only in one direction
which depends on the nature of the relationship between the two agents. For example, for
any two linked banks in banking networks there is a lender bank and a borrower bank.
When the borrower bank is hit by a shock and is unable to meet its obligations to the
lender bank the latter also su¤ers a loss. The lender bank might also play the role of a
borrower bank in another link in which case the shock can be further transmitted.

We will use directed links to capture these one way ‡ows. In what follows  captures
not only the fact that agents  and  are linked but also that shocks are transmitted from
agent  to agent . Graphically, there will be an arrow between nodes  and  pointing at

12As Acemoglu et al. (2014) show in …nancial markets ignoring this exteral e¤ect leads to overlending.
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node . Using the new interpretation of  we can de…ne, directed walks, directed paths and
directed cycles using the de…nitions for walks, paths and cycles o¤ered in the last section.
() now denotes the shortest directed path from  to ,13  () = f : () = g and
we let denote the set of agents with a shortest distance to agent  equal to  and  ()
= f : () = g denote the set of agents with a shortest distance from agent  equal to
. Notice that the cardinality of these sets for  = 1 are the in-degree and the out-degree
of node , respectively. For all agents such that there are no paths leading to them from
agent  we set () ¼ 1. Lastly, a Hamiltonian path is a directed path that visits each
node exactly once while a Hamiltonian cycle is a Hamiltonian path with an additional link
from the last node to the original node.

Next, we de…ne the bene…ts and costs from participation in directed networks. As
above, with probability  one of the agents of the network is hit by a shock. Conditional
on the occurrence of the shock all agents are hit by the shock with equal probability. Thus,
the unconditional probability that an agent is hit by a shock is equal to 


. As long as

there is no agent hit by a shock each agent obtains a bene…t  form each direct link in
either direction. As above, an agent hit by a shock su¤ers cost . Other agents of the
network will su¤er losses only if they are connected to the agent who is hit by the shock
by a directed path. Say agent  is hit by a shock. For any agent  connected to agent 
this indirect cost is given by (), where 0    1; thus, as above the cost is declining
with the number of links in the shortest path between the two agents, however, now we
restrict our attention to directed paths beginning from agent  who is hit by the shock
and reaching other agents. The loss of bene…ts that each agent su¤ers following any shock
it will depend on the connectedness of the network. When agent  is hit by a shock all
links located on directed paths beginning with agent  are a¤ected and the corresponding
bene…ts are lost to both agents of each link. Then consider the network 0() obtained
from the original network  after we have eliminated all a¤ected links. Then each agent
will keep the bene…ts from all their remaining direct links in either direction. Then we can
write the expected payo¤ function of agent  from participating in the original network 
as:

( ) =

µ

1¡
jj 



¶
¯
¯ 
1

¯
¯  ¡





³
 ¡

¯
¯ 
1

¯
¯
0()

+
P

( 6=)20()

³
() ¡

¯
¯ 
1

¯
¯
0()


´´

where j 
1j = j ()1j + j ()1j and j 

1j0() is de…ned in a similar way for the network
obtained after agent  is hit by a shock. The costs are calculated as in the case for
undirected networks but know only those paths leading to  are included. Notice that for
all agents such that there is no directed path leading from them to agent , () ¼ 0.

The following example describes the expected net payo¤s obtained from being part of
a complete directed networks of size 3. Understanding these simple networks is crucial for
the general analysis of directed networks of any size greater than 3.

Example 3 Suppose that  = 3 (  ). There are two possible types of complete directed
networks (see, Figure 3.1)

13Keep in mind that () 6= ().
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Figure 3.1: (a)  = 3 Cycle; (b)  = 3 Complete Order

(a) Cycle: The links are , , . The network is symmetric as all agents have exactly
the same net expected payo¤ given by:

( 3) = (1¡ ) 2¡


3

¡
+ + 2

¢

In this case when any agent is hit by a shock all bene…ts are lost any all agents will su¤er
losses.

(b) Complete Order:14 The links are , , . The net expected payo¤s are given by:

( 3) = (1¡ ) 2¡


3
( ¡ 4)

( 3) = (1¡ ) 2 ¡


3
( +  ¡ 3)

( 3) = (1¡ ) 2¡


3
(+ 2 ¡ 3)

When agent  is hit by a shock all links are a¤ected, when agent  is hit by a shock only
link  is a¤ected and when when agent  is hit by a shock none of the links are a¤ected.
Remember that agents keep receiving bene…ts from links that are not a¤ected.

The above example illustrates how small changes in connectivity can have large aggre-
gate and distributional e¤ects.

14A complete directed graph of size  is a complete order if we can label the nodes 1   such that
there is a link form  to  , link , if and only if   . Noptice there are links form  to all other nodes
and there are links to 1 from all other nodes. A complete directed graph is also known as a tournament.
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3.1. Stability

De…nition 3 A network, , is stable if no agent  prefers to severe a link, and no pair of
agents  and  prefer to form either link  or link .

The de…nition of stability is similar as that used in the case of undirected networks.
The only di¤erence is that now it requires that any pair of agents not linked do not want
to form any of the two types of directed links.

Lemma 4 Suppose that (1¡ ) + (¡1)


  

. Then the empty network is not stable.

Proof Consider two isolated agents  and . It su¢ces to consider the expected payo¤
of creating the link  for agent  who su¤ers losses when any of the two agents is
hit by a shock. The …rst term of the left-hand side of the inequality shows agent
’s expected payo¤ from creating the link in the absence of any shock. Agent  will
lose the bene…t of the link only when agent  is hit by a shock and therefore even
when there is a shock with probability (¡1)


the link is intact and obtains bene…t .

The right hand side shows the net expected cost from creating the link conditional
on one of the two agents is hit by a shock. Keep in mind that an isolated agent is
also hit by a shock with probability 


and su¤ers a loss . After the creation of the

link this cost is still there, however, with probability 


agent  is hit by the shock
and the expected loss to agent  equal to 


. Thus, when the inequality holds both

agents prefer to create the link. ¤

When the empty network is not stable a link  is always bene…cial to agent  (the
origin of the link). In contrast, whether the link is bene…cial to agent  it will depend on
the distribution of shortest paths that include link . If any agent along these paths is
hit by a shock agent  will also su¤er a loss. In contrast, the only bene…t that agent 
obtains from such paths is from the link to agent . Below we will show that small changes
in this trade-o¤ can have large consequences for the structure of the network and, hence,
for aggregate losses due to shocks. For making these comparisons we de…ne an agent as
critical if being hit by a shock implies that all links of the network are a¤ected. We begin
by looking at the extreme case where a path of two links pointing in the same direction is
unstable.

Proposition 5 Suppose that the empty network is not stable and (1¡ )  + (¡2)


 


 (1 + ) . Then the only stable network is a complete order tournament.

Proof Consider three agents    and links  and . The left-hand side of the inequality
is equal to the expected payo¤ of agent . Agent  will lose the bene…t  from link
 when either agent  or agent  is hit by a shock (but not agent ). Thus, agent
 will bene…t from the link if either there is no shock (probability 1¡ ) or there is

a shock but it does not a¤ect the link (probability (¡2)


). The right-hand side of
the inequality is equal to the net expected cost to agent  from keeping the link who
su¤ers losses when either agent  or agent  is hit by a shock.
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Lemma 5 A directed cycle of three agents is not stable.

Proof The expected net payo¤ of any agent who is part of a directed cycle of three
agents is equal to

(1¡ ) 2+
( ¡ 3)


2 ¡




(1 +  (1 + )) 

Each agent bene…ts from two links as long as none of the three agents is hit
by a shock. They su¤er losses when any of the three agents is hit by a shock.
Next, consider the bene…t from breaking a link. Clearly, an agent who does
that would break the incoming link. The expected payo¤ after the break of the
link is given by

(1¡ ) +
( ¡ 1)


 ¡






As long as the agent is not hit by a shock the link remains intact. Moreover,
there is a loss only when the agent is hi by a shock. Then, for the agent to
prefer to keep the link the following inequality must hold:

(1¡ ) +
( ¡ 5)


 >




 (1 + )  (6)

which by supposition is false. ¤

Lemma 6 All incomplete connected subgraphs are not stable.

Proof Suppose that this is not the case. Consider an incomplete connected subgraph
where there is no agent who prefers to severe a link. We will show that there
exists at least one pair of agents that would like to form a link. From the above
lemma we know that the only way to fully connect three agents together is by
a complete order. We also know that we cannot have links  and  without
link  (if this is not the case then agent  would prefer to severe link ). To
complete the proof we need to demonstrate that any group of three agents is
fully connected by a complete order. We need to examine two cases:

(a) Consider three agents    and links  and . Thus, both links are directed to
agent . Without any loss of generality, consider the creation of link . Agent
 should agree to form the link unless there is another agent  and link , but
not link , in which case agent  will end up at the end of the path created
by links  and . (notice that given that, by supposition,  did not prefer to
severe the link  this also implies the existence of link ). But then consider
the formation of the link . The only reason that agent  would prefer not to
form this link is because there is another agent  and link . Given that the
subgraph has a …nite size we conclude that there is always a link that agent 
would like to form and given that the proposed links are directed to agent  we
have a contradiction.
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(b) Consider three agents    and links  and . Thus, both links are directed
from agent . Without any loss of generality, consider the creation of link .
Agent  should agree to form the link unless there is another agent  and link
, but not link , in which case agent  will end up at the end of the path
created by links  and . But then consider the formation of the link . The
only reason that agent  would prefer not to form this link is because there
is another agent  and link . Given that the subgraph has a …nite size we
conclude that there is always a link that agent  would like to form and given
that the proposed links are directed to agent  we have a contradiction.

The above results imply that any group of three agents in the subgraph form a
complete order and thus the subgraph must be complete. ¤

Harary and Moser (1966) have shown that any complete graph that does not have a
three-agent cycle is a complete order. This implies that there is one agent who is
critical for the subgraph. In order to complete the proof we are going to show that
any complete subgraph of size less than  is not stable. There are two cases to
consider:

(a) Isolated agents: Suppose that there exists an isolated agent and a complete order
subgraph. A link directed from the isolated agent to the critical agent would increase
the expected payo¤ of both agents.

(b) A disconnected group of complete order subgraphs: A link, in any direction, between
the two critical agents would increase the expected payo¤ of both agents.

Thus, the only stable network is a complete order tournament. ¤

In the case of the above proposition there is a single critical agent associated with
the single Hamiltonian path (see, Figure 3.2) For the above result, we have imposed the
constraint that directed paths of length two are not stable. Next, we relax the constraint
by allowing directed paths of length two but not directed paths of length three. The
following result identi…es conditions such that there exists a Hamiltonian cycle; that is
every agent is critical.15

Proposition 6 Suppose that (a) the empty network is not stable, (b) (1¡ ) + (¡2)


 


 (1 + ) , (c) (1¡ )  + (¡3)


  


 (1 +  (1 + )) , and (d)   2

2
. Then for odd

values of  there exist stable tournaments where every agent is critical and for even values
of  there exist stable tournaments where  ¡ 1 agents are critical.

Proof Inequality (b) states that the net expected payo¤ of an agent at the end of a
directed path of length two is positive. Inequality (c) states that the net expected

15There is quite a lot of work trying to establish the maximum number of hamiltonial paths and
hamiltonian cycles in tournaments (e.g. Adler et al., 2001). It is well known that the number can be very
large. Here, we are interested in the existence of such paths and cycles when we impose restrictions on
the maximum allwable shortes path.
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Figure 3.2: A Complete Order for  = 5

payo¤ of an agent at the end of a directed path of length three is negative. From
Lemma 7 we know that inequality (b) is not su¢cient for the existence of cycles of
length three. Lemma 7 also identi…es (6) as a necessary condition for such cycles.
Then as long as inequalities (c) and (6) are jointly satis…ed then cycles of length
three are stable. This will be the case when inequality (d) holds. We will prove the
proposition by construction:

(a)  is odd: Consider the complete directed network (tournament) where the in-degrees
and the out-degrees of all nodes are equal to ¡1

2
. The adjacency matrix is given by

1 2 3  ¡1
2

¡1
2
+ 1 ¡1

2
+ 2   ¡ 2  ¡ 1 

1 0 1 1  1 1 0  0 0 0
2 0 0 1  1 1 1  0 0 0
3 0 0 0  1 1 1  0 0 0
           
¡1
2

0 0 0  0 1 1  1 1 0
¡1
2
+ 1 0 0 0  0 0 1  1 1 1

¡1
2
+ 2 1 0 0  0 0 0  1 1 1

           
 ¡ 2 1 1 1  0 0 0  0 1 1
 ¡ 1 1 1 1  0 0 0  0 0 1
 1 1 1  1 0 0  0 0 0
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Thus, if we arrange the agents around a circle, there are links from each agent to
the next ¡1

2
agents. There are also links directed to each agent from the previous

¡1
2

. Given that there exists a link directed from each agent to the next one moving
clockwise there is a Hamiltonian cycle (there are many). We also need to show that
the shortest path between any two agents  and  does not exceed two. Consider the
shortest path from  to . There are two possibilities: If the link is  the shortest
path is equal to one; if the link is  then, by construction, there exists an agent 
and links  and , so that the shortest path is equal to two.

(b)  is even: Consider any set of  ¡ 1 agents and construct a completed subgraph as
above. Next, create links directed form each agent in the subgraph to the isolated
agent.

The only agent who is not critical is the agent who was isolated. This completes the
proof. ¤

According to Proposition 5 when chains (shortest path greater than one) are too costly
the only stable network is the complete order tournament where there is exactly one critical
player. In Proposition 6 we have shown that when we allow for shortest paths equal to two
then the conclusions dramatically change. There are stable tournaments where every agent
is critical because there exists a Hamiltonian cycle (see, Figure 3.3). Any shock will a¤ect
all agents. Of course, the complete order tournament is still stable as there are many other
tournaments with the number of critical agents ranging from one to . In fact, it might
be possible to construct stable networks that are not connected but which are comprised
of sets of disjoint complete subgraphs. The reasoning behind this argument is based on
what we know from our results related to undirected networks. However, there is a crucial
di¤erence. When the networks are directed the only network with isolated agents that
can be stable is the empty network. As long as the empty network is not stable then any
agent belonging to a connected subgraph would prefer to link with an isolated agent (in
either direction but an outgoing link would be preferable) and any isolated player would
de…nitely prefer to link with a connected subgraph as long as the link is outgoing (the
agent might also prefer an incoming link).

The last observation suggests that the formation of stable networks that are not con-
nected are less likely. Furthermore, our results for undirected networks also suggest that
the only stable networks are complete. We have already shown that this is the case when
the shortest path cannot exceed one. It follows that relaxing this constraint should not
alter our conclusion that incomplete networks are not stable. However, the real-life di-
rected economic networks that have the general structure of our model (e.g. input-output
and …nancial) are connected but incomplete. Below we consider a simple extension of our
basic model that will restrict the connectivity of stable structures.

3.2. Aggregate Externalities

Up to this point, we have assumed that the cost  is independent of the number of agents
that are a¤ected by the shock. However, both the macroeconomics and the …nancial eco-
nomics literatures suggest that there exist mechanisms generating aggregate externalities
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Figure 3.3: Hamiltonian Cycle for  = 5

that exacerbate the impact of shocks on each market participant. We capture these ex-
ternalities by allowing the cost associated with a shock to be increasing in the number
of a¤ected agents, ̂. Thus, we now write  (̂), where (1)  0 and 0  0. It is clear
that, other things equal, the likelihood that the complete network is stable declines with
the size of the network. O¤ering a complete characterization of stable networks is a very
complex problem and beyond the scope of this work. Nevertheless, the following results
identify some of the properties of stable networks.

Proposition 7 Suppose that there exists a positive integer  such that

µ

1¡




¶

( ¡ 1)¡



()  0 (7)

Then for  ¼ 1 the expected net payo¤s of all agents belonging to any connected network
of size  >  that is complete are negative.

Proof The left-hand side of the inequality is equal to the expected payo¤ of the central
agent of a size  star network where all the links are outgoing form the central node.
As long as the central agent is not hit by a shock the links remain intact and when
the central agent is hit by the shock the cost depends on the size of the network.
The expected cost of belonging to any network of size  that has a Hamiltonian
path must be at least 


(). Completeness implies the existence of a Hamiltonian

path which in turn implies that the expected cost of any critical agent is at least
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Figure 3.4: A connected but incomplete network,  = 4



() (much higher if there is a Hamiltonian cycle where everyone is critical). For all

other agents the expected cost depends on the length of the shortest paths separating
them from other agents. They also su¤er losses when other agents are hit by a shock,
however, unless the agent who fails is critical the number of agents a¤ected will be
less than , and thus () will be lower. However, for relatively high values of  the
additional costs will exceed the gain. Then, the expected bene…t of belonging to
any network of size  that has a Hamiltonian path must be at most

¡
1¡ 



¢
( ¡ 1)

which corresponds to the case where the agent is linked to all other agents. ¤

The above result does not imply that these complete networks are not stable as breaking
a link might not necessarily increase the expected payo¤. However, as we explain in Section
4, this will not be the case if we introduce a stronger notion of stability. Moreover, any
network with isolated agents cannot be stable. This is because creating a link directed
from the isolated agent to any agent in the network will increase the payo¤ of both agents.
Thus, stable networks are very likely to be connected but incomplete (see, Figure 3.4). In
this example, if (4) is su¢ciently high then agents  and  will prefer not to link in either
direction as in that case a failure of the agent from where the link originated would a¤ect
the whole network thus increasing the cost to (4). As the network stands the maximum
number of agents that will be a¤ected after a shock is 3 in which case the cost will be
equal to (3).

The general e¤ect of aggregate externalities is to decrease the average number of agents
that can be a¤ected by a shock. However, that number can be small even in networks that
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are connected but not completely so.

4. Final Remarks

In this section, we consider the implications for our main results of changing some of the
main assumptions of our model.

Stability The notion of pairwise stability that we have used throughout this paper is
weak. In some cases , it allows for stable networks that would not survive a stronger notion
while in other cases has complicated proofs. Below we discuss a couple of alternative
notions of stability one related to the break of links and the other two the formation of
new links.

Following Jackson and Wolinsky (1996) we have assumed that agents cannot break
more than one link. Alternatively, consider the case where agents can break as many
links as they like. One implication of this change is that the proof of part (cii) of Lemma
3 can be greatly simpli…ed. While all other steps of the proof are straightforward, this
particular case is not and only arises because our stability notion does not allow agent 
to break both links on the cycle. Even if the expected payo¤ from retaining these two
links is negative there is no bene…t in severing only one of them. However, agent  by not
accepting link  avoids the losses. Under the alternative notion of stability  would break
both of these links thus violating the supposition that the subgraph is stable thus leading
to a contradiction.

The notion of pairwise instability might allow stable networks where each agent’s next
expected payo¤ is less that ¡ 


. In contrast, such networks would not be stable had

we allowed agents to break more than one link. We identify such a case above when
we considered the impact of aggregate externalities on network formation. By breaking
a single link an agents loses the bene…t of having the link without reducing the cost
signi…cantly as the probability that the network is hit by a shock has remained the same.

Lastly, our notion of stability does not allow as deviations the simultaneous formation
and breaking of links by groups of more than two agents. Consideration of such deviations
would require the consideration of stronger equilibrium concepts such as coalition-proof
Nash equilibrium.

Discounting We have introduced discounting (decay) in our model to capture the possi-
bility that costs related to shocks are decreasing in the shortest distance from the agent hit
by the shock. Further, to keep the exposition simple we have followed other examples in
the literature (see, Jackson and Wolinsky, 1996; Watts, 2002) and have assumed geometric
discounting. Our results still hold if we allow for a weakly decreasing decay function.

Distribution of shocks We have only allowed shocks that directly a¤ect only one
agent. Allowing for multiple shocks, either independent or correlated, would de…nitely
a¤ect quantitatively our results but not qualitatively. In all cases multiplicity of shocks
would increase the parameter space within which the empty network is stable. For the
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case of undirected graphs it would also decrease the size of stable disjoint fully connected
subgraphs. For the case of directed graphs without aggregate externalities, it would make
more likely the formation of networks that are not fully connected while when aggregate
externalities are present it would decrease the average number of agents that are a¤ected
by a shock.

Nodes and links In many interesting applications of directed graphs links van be bidi-
rectional. For example, in …nancial networks two institutions can hold claims against each
other. Generally, bankruptcy procedures do not allow the bilateral clearance of such claims
after the failure of one institution which would violate priority rules (Eisenberg and Noe,
2001). Allowing for bidirectional links would not a¤ect our analysis. We only observe that
as the number of such links increases the network behaves more as an undirected one.

Further, in many applications of directed graphs (…nancial and macroeconomic net-
works) links and nodes can be weighted. Weights on links would capture the size of the
transaction while weights on nodes would capture the size of the institution and thus
potentially the probability of being hit by a shock.

Dynamics In the present work, we have concentrated on the properties of networks that
in principle could be formed but we have ignored the dynamics of network formation and
thus potentially the likelihood of these networks being formed. Our main objective has
been to show that when we consider the formation of networks that transmit shocks we
need to take into account the direction of the links. The main message of the paper does
not depend on any particular dynamics. However, such dynamics can be important when
we consider particular applications.16 Moreover, we might be able to eliminate some of
the less appealing stable networks (e.g. those where each agent’s expected net payo¤ is
negative) as dynamically unstable.

References

[1] Acemoglu, D., Carvalho, V., Ozdaglar, A., Tahbaz-Salehi, A., 2012. The network
origins of aggregate ‡uctuations. Econometrica 80, 1977-2016

[2] Acemoglu, D., Carvalho, V., Ozdaglar, A., Tahbaz-Salehi, A., 2014. Sys-
temic risk in endogenous …nancial networks. Columbia Business School Re-
search Paper No. 15-17. Available at SSRN: https://ssrn.com/abstract=2553900 or
http://dx.doi.org/10.2139/ssrn.2553900

[3] Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., 2015. Systemic risk and stability in
…nancial networks. American Economic Review 105, 564-608

16Predictions will not only depend on the structure of the dynasmic model but also on the tradeo¤
beween a more detailed characterization of equilibrium networks when agents are myopic (e.g. Bala and
Goyal, 2000) and a less detailed characterization with farsighted agents (e.g. Dutta et al., 2005).

27



[4] Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., forthcoming-a. Networks, shocks,
and systemic risk. In Bramoulle, Y., Galeotti, A., Rogers, B., (eds.) The Oxford
Handbook on the Economics of Networks, (eds.), Oxford University Press, NY

[5] Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., forthcoming-b. Microeconomic orig-
ings of macroeconomic fat tail risks. American Economic Review

[6] Adler, I., Alon, N., Ross, S., 2001. On the maximum number of Hamiltonian paths in
tournaments. Random Structures and Algorithms 18, 291–96

[7] Babus, A., 2016. The formation of …nancial networks. Rand Journal of Economics 47,
239-72

[8] Babus, A., Allen, F., 2009. Networks in …nance. In Kleindorfer, P., Wind, J., (eds.)
Network-Based Strategies and Competencies, Wharton School Publishing, Up-
per Saddle River, 367-82

[9] Bala, V., Goyal, S., 2000. A noncooperative model of network formation. Economet-
rica 68, 1181-229

[10] Blume, L., Easly, D., Kleinberg, J., Kleinberg, R., Tardos, E., 2013. Network forma-
tion in the presence of contagious risk. ACM Transactions on Economics and Com-
putation 1 (2), Article 6

[11] Bougheas, S., Kirman, A., 2015. Complex …nancial networks and systemic risk: A
review. In Commendatore, P., Kayam, S., Kubin, I., (eds.) Complexity and Geo-
graphical Economics: Topics and Tools. Springer, Heidelberg, 115-39

[12] Caballero, R., Simsek, A., 2013. Fire sales in a model of complexity. Journal of Finance
68, 2549–87

[13] Carvalho, V., 2014. From micro to macro via production networks. Journal of Eco-
nomic Perspectives 28, 23-48

[14] Chai, S.-K., 1993. An organizational cconomics theory of antigovernment violence.
Comparative Politics 26, 99-110

[15] Cohen-Cole, E. Patacchini, E., Zenou, Y., 2010. Systemic risk and network formation
in the interbank market. CAREFIN Research Paper No. 25/2010. Available at SSRN:
https://ssrn.com/abstract=1799925

[16] Cooper, R., John, A., 1988. Coordinating coordination failures in Keynesian models.
Quarterly Journal of Economics 103, 441-63

[17] Diamond, D., Rajan, R., 2011. Fear of …re sales, illiquidity seeking, and credit freezes.
Quarterly Journal of Economics 126, 557-91

[18] Diamond, P., 1982. Aggregate demand management in search equilibrium. Journal of
Political Economy 90, 881-94

28



[19] Dutta, B., Ghosal, S., Ray, R., 2005. Farsighted network formation. Journal of Eco-
nomic Theory 122, 143 – 64

[20] Dutta, B., Mutuswami, S., 1997. Stable networks. Journal of Economic Theory 76,
322-44

[21] Eisenberg, L., Noe, T., 2001. Systemic risk in …nancial systems. Management Science
47, 236–49

[22] Elliott, M., Golub, B., Jackson, M., 2014. Financial networks and contagion. American
Economic Review 104, 3115-53

[23] Erol, S., Vohra, R., 2014. Network formation and systemic risk. PIER Work-
ing Paper No. 15-001. Available at SSRN: https://ssrn.com/abstract=2546310 or
http://dx.doi.org/10.2139/ssrn.2546310

[24] Gabrieli, S., Georg, C., 2014. A network view on interbank mar-
ket freezes. Available at SSRN: https://ssrn.com/abstract=2542162 or
http://dx.doi.org/10.2139/ssrn.2542162

[25] Glasserman, P., Young. P., 2016. Contagion in …nancial networks. Journal of Eco-
nomic Literature 54, 779-831

[26] Hamilton, M., Milne, B., Walker, R., Burger O., Brown, J., 2007. The complex struc-
ture of hunter–gatherer social networks. Proceedings of the Royal Society B 274, 2195-
222

[27] Harary, F., Moser, L., 1966. The theory of round robin tournaments. The American
Mathematical Monthly 73, 231-246

[28] Jackson, M., 2008. Social and Economic Networks, Princeton University Press,
Princeton

[29] Jackson, M., Watts, A., 2002. The evolution of social and economic networks. Journal
of Economic Theory 71, 44-74

[30] Jackson, M., Wolinsky, A., 1996. A strategic model of social and economic networks.
Journal of Economic Theory 71, 44-74

[31] Imbs, J., 2004. Trade, …nance, specialization, and synchronization. Review of Eco-
nomics and Statistics 86, 723-34

[32] Kiyotaki, N., 1988. Multiple expectations equilibria under monopolistic competition.
Quarterly Journal of Economics 103 , 695-714

[33] Kose, A., Prasad, E., Terrones, M., 2003. How does globalization a¤ect the synchro-
nization of business cycles? American Economic Review P&P 93, 57-62

[34] Morselli, C., Gigu‘ere, C., Petit, K., 2007. The e¢ciency/security trade-o¤ in criminal
networks. Social Networks 29, 143-53

29



[35] Murphy, K., Shleifer, A., Vishny, R., 1989. Industrialization and the big push. Journal
of Political Economy 97, 1003-26

[36] Newman, M., 2010. Networks: An Introduction, Oxford University Press, NY

[37] Shleifer, A., Vishny, R., 1992. Liquidation values and debt capacity: A market equi-
librium approach. Journal of Finance 47, 1343–66

[38] Shleifer, A., Vishny, R., 2011. Fire sales in …nance and macroeconomics. Journal of
Economic Perspectives 25, 29-48

[39] Watts, A., 2002. A dynamic model of network formation. Games and Economic Be-
havior 34, 331-41

30


