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Abstract

We study how the structure of social media networks a�ects the degree of political po-

larization in society. We analyze a dynamic model of opinion formation in which individuals

have imperfect information about the true state of the world and su�er from bounded ra-

tionality. Key to the analysis is the presence of partisan agents that communicate extremely

biased opinions, interpreted as fake news. We characterize how the �ow opinions evolves

over time and evaluate the determinants of long-run disagreement among individuals in the

network. To that end, we simulate a large set of random networks with di�erent characteris-

tics and quantify how the degrees of centrality, connectedness, and in�uence from partisan

agents a�ect polarization in the long-run.
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1 Introduction

The United States has experienced an unprecedented surge in political polarization over the last

two decades. A recent survey conducted by The Pew Research Center indicates that Republicans

and Democrats are further apart ideologically than at any point since 1994 (see Figure 1).

What could be causing this increase in polarization? Traditional theories in economics and

political science point to the recent rise in income inequality, the in�uence of PACs through

campaign �nancing, party sorting among voters, re-districting (Gerrymanding), and changes in
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Figure 1: Political Polarization in the American Public (2014, Pew Research Center)

the media environment as potential determinants (see Barber and McCarthy, 2015 for an excel-

lent discussion). More recently, attention has focused to the internet as an alternative candidate

explanation. Cass Sunstein (2002) argues that the internet creates ‘echo chambers’ where indi-

viduals �nd their own biases and opinions endlessly reinforced, and writes that ‘people restrict

themselves to their own points of view—liberals watching and reading mostly or only liberals;

moderates, moderates; conservatives, conservatives; Neo-Nazis, Neo-Nazis’ (p. 5-6). This reduces

the ‘unplanned, unanticipated encounters central to democracy itself’ and signi�cantly increases

polarization (p. 9). With the dispersion of news through social media, and more generally the

internet, and given that a growing proportion of individuals, politicians, and media outlets are

relying more intensively on this networked environment to get information and to spread their

world-views, it is natural to ask whether and to what extent political polarization might be exac-

erbated by social media communication.

In this paper, we analyze how the structure of social media communication a�ects the de-

gree of polarization in society. To that end, we study a dynamic model of opinion formation in

the spirit of Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012, JMST henceforth) in which

individuals who are connected in a social network have imperfect information about the true

state of the world. The true state of the world can be interpreted as the relative quality of two

candidates competing for o�ce, the optimal size of the government, the degree of government in-

tervention (through the provision of public goods such as healthcare), etc. Individuals can obtain

information (e.g. signals) about the true state of the world from unbiased sources (reports from

non-partisan research institutions, mainstream media, etc.), but are unable process all the avail-

able information. They can also obtain information from their social neighbours (e.g. individuals

connected to them through the network) who are potentially exposed to other sources.
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Due to limited observability about the structure of the network and the probability distribu-

tion of signals observed by others, individuals would need to update opinions on the state of the

world as well as on the topology of the network. This makes Bayesian updating complex and im-

practical. We assume instead that individuals su�er from bounded rationality, and update their

opinions partly based on information obtained from their social network in an inhomogeneous

stochastic gossip model of communication based on JMST(2012) and Acemoglu, Como, Fagnati,

and Ozdaglar (2013, ACFO henceforth).

There are two types of individuals in this economy: regular agents and partisan agents. Reg-

ular agents receive signals from unbiased sources and are also in�uenced by the opinion of their

social neighbours. Partisan agents, on the other hand, restrict attention to biased media (e.g. news

sources supporting their preferred policy or candidate) and ignore the opinion of others.1 Because

their world-views are necessarily biased, they introduce mis-information into the network in the

form of fake news. The opinions generated from the exchange of information forms a Markov

process which never leads to consensus among regular agents. In such environment, it can be

shown that society’s beliefs fail to converge almost surely. Moreover, under some conditions, the

belief pro�le �uctuates in an ergodic fashion leading to polarization cycles.

The structure of the graph representing the social media network and the degree of in�uence

of partisan agents in it shape the dynamics of opinion and the degree of polarization in the long-

run. More speci�cally, long-run polarization depends on three factors: behavioral assumptions

(e.g. the updating rule), communication technology (e.g. the speed at which information �ows),

and the network topology (e.g. existence of echo chambers, the centrality of partisan agents, etc.).

Because a theoretical characterization of the relationship between the topology of the network

and the degree of polarization is unfeasible, we simulate a large set of random networks with

di�erent characteristics. We then quantify how the degrees of centrality, connectedness, and

in�uence a�ect long-run polarization, de�ned as in Esteban and Ray (1994) and Esteban (2007).

The arrival of the internet allowed individuals to access an extremely rich set of sources of

information. On the �ip side, the abundance of signals made it more di�cult for individuals to

process all the available information. We �nd that to the extent that agents rely more heavily

on the opinion of others (and less on incorporating signals from unbiased sources), polarization

rises. This happens because they are more likely to be in�uenced by fake news. The speed of

communication, on the other hand, reduces polarization. We interpret the rapid growth in social

media outlets as a technological change that allowed agents to share information at a faster rate.
1In that sense, they have similar characteristics to the ‘stubborn’ agents in ACFO (2013).
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On the one hand, this could exacerbate polarization, as fake news spread faster. On the other

hand, it is possible to aggregate information coming from unbiased signals more e�ciently. To

the extent that the partisan agents constitute a small share of the population, the second force

dominates. This is consistent with �ndings by Barbera (2015) who documents that the expansion

of Twitter resulted in lower political polarization. In terms of the e�ects of network structure, we

�nd that a higher degree of centrality of partisan agents exacerbates polarization. This e�ect is

mitigated by the degree of in�uence of their audience. The reason being that if a partisan agent

manages to obtain the exclusive attention of very in�uential nodes, it can in�uence the beliefs of

a large set of agents in the network. This reduces the in�uence of partisan agents at the other end

of the spectrum, hence reducing polarization. Even though long-run disagreement goes down,

the degree of misinformation (e.g. the distance between the society beliefs and the true state of

the world) can be signi�cant. Finally, we �nd that networks with a high degree of clustering tend

to exhibit larger polarization in the long run, as echo chambers are more likely observed.

Related Literature Our paper is related to a growing number of articles studying information

transmission in networks under both, bounded and fully rational agents.

The strand of the literature assuming that agents are fully rational typically considers a dy-

namic game where individuals interact sequentially and exchange opinions only once. Examples

are Banerjee (1992), Smith and Sorensen (2000), Banerjee and Fundenberg (2004), and Acemoglu

et. al (2011). Because the theoretical characterization of equilibria is complex, these papers re-

strict attention to very stylized networks. Moreover, they typically study environments in which

society eventually reaches consensus, implying that polarization arises only in the short-run.

The strand of literature focusing on bounded rational agents (also referred to as ‘De-Grootian’)

assumes that individuals follow simple heuristic rules to update beliefs. Examples are Ellison and

Fundenberg (1993, 1995), Bala and Goyal (1998,2001), De Marzo et al (2003), Golub and Jackson

(2010), and ACFO (2013). In these environments, long-run polarization arises in equilibrium be-

cause individuals receive information only once—at the outset of the initial period. There is no

sense in which new information (such as news) may arrive and modify regular agents’ opin-

ions. JMST (2012) show that when this assumption is relaxed, that is, when individuals receive a

constant �ow of information, polarization eventually disappears. This occurs even though indi-

viduals are not fully Bayesian, but requires the network to be strongly connected (i.e. no partisan

agents are present).

In this paper, we consider simultaneously the possibility of learning from the news and being
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exposed to partisan agents. As a result, our environment encompasses ACFO (2013) and JMST

(2012) as special cases. We �rst show that their results can be replicated by an appropriate choice

of parameters. That is, we can show that by shutting down the degree of in�uence of partisan

agents, individuals eventually learn the truth. But if partisan agents are in�uential, social me-

dia communication is not e�ective in aggregating information, and polarization persists in the

long run. Our main contribution relative to the existing literature is that we simulate a large

set of complex social networks and quantify the relative importance of behavioral assumptions,

technological characteristics, and network topology on long-run polarization.

There is a growing empirical literature analyzing the e�ects of social media in opinion for-

mation and voting behavior (Halberstam and Knight, 2016). Because individual opinions are

unobservable from real network data, these papers typically use indirect measures of ideology to

back-out characteristics of the network structure (such as homophyly) potentially biasing their

impact. By creating a large number arti�cial networks, we can directly measure how homophily

and other network characteristics a�ect opinion. Finally, our paper complements the literature on

the role of biased media (Campante and Hojman, 2013, Gentzkow and Shapiro, 2011 and Flaxman

et al. 2013) and social media (Weber at al 2013 and Barbera, 2016) on political polarization.

2 Baseline Model

Agents and Information Structure The economy is composed by a �nite number of agents

i ∈ N = {1, 2, . . . , n} interacting through a social network. Individuals have imperfect informa-

tion about the true state of the world θ belonging to a parameter space Θ = [0, 1]. This parameter

is interpreted as the relative quality of two candidates, L and R, competing for o�ce. A value of

θ = 0 implies that candidate L is better suited for o�ce, whereas θ = 1 implies that R is more

quali�ed.

Each agent starts with a prior belief θi,0 assumed to follow a Beta distribution,

θi,0 ∼ Be
(
αi,0, βi,0

)
.

This distribution or world-view is characterized by initial parameters αi,0 > 0 and βi,0 > 0. Note

that individuals agree upon the parameter space Θ and the functional form of the probability

distribution, but have di�erent world-views as they disagree on αi,0 and βi,0. Given their prior

beliefs, we de�ne her initial opinion yi,0 about the relative quality of the candidates as her best
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guess of θ given the available information,2

yi,0 = E[θ|Σ0] =
αi,0

αi,0 + βi,0

where Σ0 = {αi,0, βi,0} denotes the information set available at time 0.

Example 1. In the Figure below, we depict the world-views of two individuals (distributions) and

their associated opinions (vertical lines). The world-view that is skewed to the right is represented

by the distribution Be(α = 2, β = 8). The one skewed to the left is represented by the distribution

Be(α = 8, β = 2). The opinions are, respectively, 0.2 and 0.8.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θ

f
(θ

)

At each point in time t ≥ 1 regular agent i reads a series of mainstream newspapers and

reports from unbiased sources that are jointly informative about the relative quality of these

candidates. We formalize the information obtained from mainstream media as a draw si,t from a

Bernoulli distribution with parameter θ. This implies that the signal is unbiased, as signals are on

average equal to the true state. Partisan agents, on the other hand, disregard mainstream media

and focus on information provided by sources aligned with their political color. We formalize

their signals spi,t as draws from a Bernoulli distribution with parameter θp for p ∈ {L,R}, with

θL = 0 and θR = 1. Note that these signals are always biased, this could either be due to slant in

certain media sources or the production of fake news.
2Note thatE[θ/Σ0] is the Bayesian estimator of θ that minimizes the mean squared error given a Beta distribution.
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Social Network We assume that regular agents update their world-views and opinions based

not only on private signals si,t, but also through the in�uence of individuals connected to them

in a social network.

The connectivity among agents in the network at each point in time is described by a directed

graph Gt = (N, gt), where gt is a real-valued n × n adjacency matrix. Each regular element gtij
in the directed-graph represents the connection between agents i and j at time t. More precisely,

gtij = 1 if i is paying attention to (e.g. receiving information from) j, and 0 otherwise. Since the

graph is directed, it is possible that some agents pay attention to (e.g. receive information from)

others who are not necessarily paying attention to (e.g. obtaining information from) them, i.e.

gtij 6= gtji. The out-neighborhood of any agent i at any time t represents the set of agents that

i is receiving information from (e.g. i’s references), and is denoted by N out
i (gt) = {j|gtij = 1}.

Similarly, the in-neighborhood of any agent i at any time t, denoted by N in
i (gt), represents the

set of agents that are receiving information from i (e.g. i’s audience), N in
i (gt) = {j|gtji = 1}. We

de�ne a directed path in Gt from agent i to agent j as a sequence of agents starting with i and

ending with j such that each agent is a neighbour of the next agent in the sequence. We say that

a social network is strongly connected if there exists a directed path from each agent to any other

agent.

In the spirit of Acemoglu, Ozdaglar, and ParandehGhebi (2010) and ACFO (2012), we allow

the connectivity of this graph gtij to change over time stochastically. This structure captures

rational inattention, incapacity of processing all information, or impossibility to pay attention to

all individuals in the agent’s social clique. More speci�cally, for all t ≥ 1, we associate a clock to

every directed link of the form (i,j) in the initial adjacency matrix g0 to determine whether the

link is activated or not at time t. The ticking of all clocks at any time is then dictated by i.i.d.

samples from a Bernoulli Distribution with �xed and common parameter ρ ∈ [0, 1], meaning

that if the (i,j)-clock ticks at time t (realization 1 in the Bernoulli draw), then agent i receives

information from agent j. The Bernoulli draws are represented by the n × n matrix ct, with

regular element ctij ∈ {0, 1}. Thus, the adjacency matrix of the network evolves stochastically

across time according to the following equation3:

gt = g0 ◦ ct, (1)

where the initial structure of the network, represented by the initial adjacency matrix g0, remains
3The notation ◦ denotes the Hadamard Product, or equivalently, the element-wise multiplication of the matrices.
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unchanged.

Example 2 (Bernoulli Clock). In this example we intend to illustrate the network dynamics. The

�gure in Panel 2a represents the original network and its adjacency matrix, whereas the �gure in

Panel 2b depicts a realization such that agent 1 does not pay attention to agents 2 and 4 in period 1.

Agents 2 and 3, on the other hand, pay attention to agent 1 in both periods.

1

2 3

4

g0 =


0 1 0 1

1 0 0 0

1 0 0 0

0 0 0 0


(a) Original Network at t = 0

1

2 3

4

g1 =


0 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0


(b) Potential Network at t = 1

Figure 2: Bernoulli Clock and Network Dynamics

Evolution of Beliefs Before the beginning of each period, agent i meets individuals in her

out-neighbourhoodN out
i (gt), a set determined by the realization of clock. These neighbors share

their world-views, summarized by αj,t and βj,t for all j ∈ N out
i (gt). At the beginning of period t,

a signal pro�le is realized and the signal si,t is privately observed by agent i.

Regular agents

After observing this signal, regular agent i computes her Bayesian posterior conditional on

si,t. We assume that parameters αi,t+1 and βi,t+1 are convex combinations between her Bayesian

posterior and the weighted average of the information obtained from her neighbors.

αi,t+1 = bi,t[αi,t + si,t] + (1− bi,t)
∑

j∈Nout
i (gt)

ĝtijαj,t (2)

βi,t+1 = bi,t[βi,t + 1− si,t] + (1− bi,t)
∑

j∈Nout
i (gt)

ĝtijβj,t, (3)
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where

bi,t = 1{∑j ĝ
t
ij=0}1 +

(
1− 1{∑j ĝ

t
ij=0}

)
b (4)

denotes the reliance weight given to mainstream media and 1 − bi,t captures the in�uence of

friends through social media. The parameter bi,t ∈ [0, 1] captures the attention span: a regular

agent’s full attention span is split between processing information from unbiased sources (e.g.

reading the news from mainstream media, technical and scienti�c reports, etc.) and that provided

by their friends in the network (e.g. reading a Facebook or Twitter feed). If no friends are found in

the neighborhood of agent i, then this agent attaches weight 1 to the signal received. Conversely,

if at least one friend is found, this agent uses a common weight b ∈ [0, 1]. The term ĝti,j =
gti,j

|Nout
i (gt)|

represents the weight given to the information received from her out-neighbor j. When bi,t = 1

for some t agent i fully relies on her private signal behaving like a standard Bayesian agent. As

bi,t approaches zero, she is more in�uenceable by social media, as more weight is given to her

friends’ opinions.

Finally, note that this updating rule implies that the posterior distribution determining world-

views of agent i will also be a Beta distribution with parameters αi,t+1 and βi,t+1. Hence, an

agent’s opinion regarding the true state of the world at t can be computed as

yi,t =
αi,t

αi,t + βi,t
.

Our heuristic rule resembles the one in JMST (2012), but there are two important distinctions.

First, their adjacency matrix is �xed over time, whereas ours is stochastic (an element we bor-

rowed from ACFO, 2012). Second, we restrict attention to a speci�c family of distributions (e.g.

Beta) and assume that individuals exchange parameters that characterize this distribution (e.g.

αi,t and βi,t). So the heuristic rule involves updating these parameters, whereas JMST (2012)’s

heuristic rule involves a convex combination of the whole distribution. The latter implies that

posterior distributions may not belong to the same family as the prior distribution.

Partisan agents

We assume that there are two types of partisan agents, L-wing partisan and R-wing partisan,

with extreme views. They disregard information from other agents in the network, implying

bi,t = 1 for all t and only based their beliefs on the information obtained from the biased signal
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spi,t, for p ∈ {L,R}

αpi,t+1 = αpi,t + spi,t

βpi,t+1 = βpi,t + 1− spi,t,

where sLi,t is drawn from a Bernoulli with parameter θL = 0 and sRi,t is drawn from a Bernoulli

with parameter θR = 1. To the extent that they are in�uential (e.g. that their in-neighborhood

is large), their presence in the network will be key for the persistence of polarization over time.

This is due to the fact that they will consistently communicate biased signals (i.e., fake news) to

other agents in the network.

3 Polarization and network structure

We base our notion of polarization on the seminal work by Esteban and Ray (1994), adapted

to the context of this environment. At each point in time, we partition the [0, 1] interval into

K ≤ n segments. Each segment represents signi�cantly-sized groups of individuals with similar

opinions. We let the share of agents in each group k ∈ {1, ..., K} be denoted by πk,t, with∑
k πk,t = 1.

Esteban and Ray (1994)’s polarization measure aggregates both ‘identi�cation’ and ‘alien-

ation’ across agents in the network. Identi�cation between agents captures a sense of political

alignment: an individual feels a greater sense of identi�cation if a large number of agents in

society shares his or her opinion about the relative quality of the candidate. In this sense, identi-

�cation of a citizen at any point in time is an increasing function of the share of individuals with

a similar opinion. The concept of identi�cation captures the fact that intra-group opinion ho-

mogeneity accentuates polarization. On the other hand, an individual feels alienated from other

citizens if their opinions diverge. The concept of alienation captures the fact that inter-group

opinion heterogeneity ampli�es polarization. Mathematically, we have the following representa-

tion.

De�nition 1 (Polarization). Polarization Pt aggregates the degrees of ‘identi�cation’ and ‘alien-

ation’ across groups at each point in time.

Pt =
K∑
k=1

K∑
l=1

π1+a
k,t πl,t |ỹk,t − ỹl,t| (5)
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where a ∈ [1, 1.6] and ỹk,t is the average opinion of agents in group k and πk,t is the share of

agents in group k at time t.

We are interested in understanding how the existence of partisan agents and the structure of

the network a�ect the evolution of polarization.

Polarizationwithout partisan agents The following two results show conditions under which

polarization vanishes in the limit. The �rst one is analogous to Sandroni et al (2012), whereas the

second one extends it to a network with dynamic link formation as in Acemoglu et al (2010).

Proposition 1. If the network G0 = (N, g0) is strongly connected and if the directed links are

activated every period (e.g., gt = g0), all agents eventually learn the true θ

max
i
| plim
t→∞

yi,t − θ| < ε

As a consequence, polarization converges to zero,

plim
t→∞

Pt = 0.

Proof. See Appendix A.

When the network is strongly connected all opinions and signals eventually travel through

the network allowing agents to perfectly aggregate information. Note that strong connectedness

precludes the existence of partisan agents, as these agents do not internalize other people’s opin-

ions. The proposition shows that the society reaches consensus (e.g. there is no polarization) and

uncovers the true relative quality of the political candidates, θ. We refer to this as a ‘wise’ society,

as de�ned below.

De�nition 2 (Wise Society). We say that a society is wise if

max
i
| plim
t→∞

yi,t − θ| < ε.

The result in Proposition 1 is in line with the �ndings in JMST (2012) despite the di�erence

in heuristic rules being used. Proposition 2 shows that the assumption of a �xed listening matrix

can be relaxed. In other words, even when gt is not constant, polarization vanishes in strongly

connected networks.
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Proposition 2. If the network G0 = (N, g0) is strongly connected, even when the edges are not

activated every period, polarization still converges to zero, plimt→∞ P
a
t = 0.

Proof. See Appendix B.

Polarizationwith partisan agents The presence of partisan agents breaks the strong connec-

tivity in the network, but this does not necessarily imply that the society will exhibit polarization.

The following example depicts two networks, with three regular agents (2, 3, and 4) and one par-

tisan agent—left-winged in panel (a) and right-winged in the panel (b)—.

L

24

3

(a) Society with L-partisan

R

24

3

(b) Society with R-partisan

Figure 3: Two societies with partisan agents

Polarization in both societies converges to zero in the long-run. However, neither society is

wise. This illustrates that the in�uence of partisan agents may generate mis-information in the

long run, preventing agents from uncovering θ, but does not necessarily create polarization. This

insight is formalized in Proposition 3

Proposition 3. A wise society experiences null social polarization. However, not all societies that

experience null social polarization are wise.

Proof. If perfect information aggregation is reached at any particular time t̄, then we know that

yi,t̄ = θ for all i ∈ G, thus all alienation terms in the polarization function are zero because

|yi,t̄− yj,t̄| = |θ− θ| = 0, for all i and j in N . Therefore, Polarization Pt̄ is zero for any particular

choice of parameter a. Conversely, if polarization at time t̄ is zero, then all alienation terms are

necessarily zero, since the measure of groups is non-negative. This means that |yi,t̄ − yj,t̄| = 0

implies yi,t̄ = yj,t̄ and, therefore, any opinion consensus of the form yi,t̄ = yj,t̄ = θ̃, such that

θ̃ ∈ Θ = [0, 1] and θ̃ 6= θ, meets this requirement.
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In other words, it is possible for a society to reach consensus (i.e. experience no polarization

of opinions) to a value of θ that is incorrect. In order for a society to be polarized, individuals

need to be exposed to partisan agents with opposing views.

L 2 3 R

(a) Society with both L and R-wing partisans
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(b) Cycles

Figure 4: Two societies with partisan agents

Consider the social network depicted in Figure 4a, in which both L-partisan and R-partisan

agents are present. Even though agents 2 and 3 receive unbiased signals and communicate with

each other (e.g. update their beliefs according to eqs. 2 and 3), this society exhibits polarization

in the long run. This happens because partisan agents subject to di�erent biases (e.g. left-wing

and right-wing) are in�uential.

Another noticeable characteristic of the evolution of Pt over time is that rather than settling

at a constant positive value, it �uctuates in the interval [0.2,0.4]. The example illustrates that

polarization cycles are possible in this environment. In the simulation analysis of Section 4 we

will discuss what determines the presence or absence of such cycles.
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Figure 5: Di�erent polarization levels

Finally, we want to point out that whether polarization increases, decreases, or �uctuates

over time depends importantly on the topology of the network, the number and degree of in-

�uence of partisan agents, the frequency of meetings between individuals (e.g. the clock) and

the degree of rationality of agents. Figure 5 depicts the behavior of Pt over time for a series of

larger random networks (e.g. there are 100 nodes, an arbitrary number of partisan agents, and

di�erent rationality levels). The next section is devoted to uncovering what drives these di�erent

dynamics.

4 Simulation and Regression Analysis

One of the biggest challenges when using network analysis is to ascertain analytical closed forms

and tractability. The combinatorial nature of social networks that exhibit a high degree of hetero-

geneity makes them very complex objects, imposing a natural challenge for theoretical analysis.

In our work, limiting properties can be characterized only when we assume strong connectivity

(absence of partisan agents). As we drop this assumption, we observe that di�erent networks

might experience di�erent limiting polarization levels, even if the initial characteristics are rela-

tively similar.

We resort to computer simulations where a large number of random networks are generated

according to classical random network models. Besides emulating real-world networks charac-

teristics, these models allow us to create a variety of initial networks with di�erent characteristics

(e.g. degree of centrality, presence of partisan agents, partisan agents’ in�uence, homophily, etc)

and learning standards (i.e., exposition to signals from mainstream and/or social media). The
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simulation exercise helps us to better understand the relative importance of the network topol-

ogy and other social characteristics in driving polarization by producing enough variability in a

controlled environment.

4.1 Random networks models

We will run the simulation for random networks generated from three basic models: the Erdos-

Renyi model, the Barabasi-Albert model, and a Combo model which includes characteristics of

the other two.

Erdos-Renyi model. Erdos and Renyi (1960) is a seminal study exploring purely random net-

works formation. In their canonical model, they �x a set of nodes n and assume that each link

between two agents (possibly directed or undirected) is formed with a given probability. The link

formation is independent across links, implying that the probability p that a node has k edges

follows a Poisson distribution. A particular feature of this model is that the probability of �nd-

ing a highly connected node (a large k) decreases exponentially with k. Thus, nodes with large

connectivity are practically absent. An example is presented in Figure 6, in which we observe an

absence of in�uential agents and a relatively high degree of connectivity among individuals.

Even after the upsurge of topological information of real-world networks, this model remains

very popular and useful to understand properties of connected and unconnected networks due

to its simplicity. Moreover, since this is a very mature model, many useful mathematical regu-

larities are well established, providing a strong basis for basic understanding, comparisons, and

extensions.

In contrast to this random network model, most real-world networks exhibit preferential con-

nectivity, a common characteristic of business and social networks. This is a feature produced by

the following random network model proposed by Barabasi and Albert (1999).

Barabasi-Albert model. Barabasi and Albert were mainly motivated by the emergence of the

World Wide Web and the evolution of popularity of some web pages. They noted that popular web

pages would show a tendency to get more popular over time. The popularity of web pages in this

context refers to the number of other web pages pointing a direct link to them. This characteristic

means that new entrant nodes (web pages) tend to link themselves to already existent nodes that

are very well connected (popular web pages), indicating that the probability with which a new
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node connects to the existing nodes is not uniform. Contrarily, there is a higher probability that

it will be linked to a node that already has a large number of connections. An implication of this

characteristic is that a few nodes in the network are very well connected while most of the other

nodes are not as well connected and “hubs” will be formed.

In this context, Barabasi and Albert (1999) developed an algorithm to generate random net-

works with such characteristics using a process called preferential attachment. In this process,

starting with a small number n0 of nodes, at every time step a new node with m(≤ n0) edges

is added to the network. Thus, the new node links to m di�erent nodes already present in the

system. To incorporate preferential attachment, they assume that the probability Π that a new

node will be connected to node i depends on the connectivity ki (in-degree, or the number of

nodes pointing to them) of that node, so that Π = ki∑
j kj

. After t periods, this protocol leads to a

random network with t + n0 nodes and mt edges. Figure 7 illustrates a random network gener-

ated following this procedure. In it, there is a small subset of agents in the center of the network

with a relatively large audience. In our context, each node represents an agent. Individuals with

a larger audience are more in�uential.

While this model allow us to introduce in�uential agents, it rules out reciprocity. That is, if

agent i pays attention to agent j, agent j never pays attention to agent i. In other words, agents

do not exchange information as in the Erdos and Renyi model. Because social media networks

exhibit both characteristics, namely in�uential individuals and exchange of information, we will

consider a combo model which combines both properties.
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Figure 6: Barabasi-Albert
n = 28, Power= 1.5,
Out Dist = G(3, 1)
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n = 28, p =

log(n)
n

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 8: Combo
n = 28, Power= 1.5
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Combo model. We implement a small variant in the mechanism to produce Barabasi-Albert

random network in order to produce heterogeneity of connections. In each step, instead of al-

lowing only a �xed number m(≤ n0) of links to be formed, the number of edges of an entrant

node at any time t will be the realization of a draw from a pre-speci�ed distribution de�ned

over the potential number of edges to add in each time step. If this rule is not implemented, we

would implicitly assume that every regular agent would be paying attention to exactly m(≤ n0)

agents. Figure 8 illustrates the network generated from the Combo model. In it, we can see that

information �ows in both directions and that some agents are more in�uential than others. This

speci�cation constitutes the benchmark case of our study.

4.2 Simulation: generating the dataset

Our arti�cial dataset is created as follows. We �x the true state of the world, θ = 0.5, the number

of agents (or nodes) n = 35, the number of partisan agents, and the average degree of polar-

ization P 0 across simulations. We restrict attention to networks with a symmetric number of

L-wing and R-wing partisan agents. Given these parameters, we draw M = 575 initial random

networks G0 following the Combo model.4 We then assign initial conditions and other charac-

teristics that vary across simulations. More speci�cally, we vary the speed of communication

through the clock parameter ρ, the weight given to unbiased sources b, the location of partisan

agents in the network, the degree of initial homophily, clustering, and reciprocity. This produces

the basic structure for social communication and determines the initial dispersion of beliefs about

θ. Finally, we simulate social media communication for t ∈ T = {1, . . . , 2000} periods given the

network structure, and use the resulting opinions to compute the evolution of polarization. We

only consider the last 1000 periods to compute average polarization.

Network heterogeneity: For each network m, we �x the initial distribution of opinions so

that the same mass of the total population lies in the middle point of each one of the 7 groups.

This rule basically distributes our agents evenly over the political spectrum [0, 1] such that each

of the 7 groups contains exactly 1
7

of the total mass of agents, as shown in Figure 9.
4The results for the simulations from the Erdos Reni and Barabasi-Albert model are presented in the appendix.
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Figure 9: Initial distribution of opinions in all simulations

Moreover, we set the same variance for each agent world-view to be σ2 = 0.03. With both

opinion and variance, we are able to compute the initial parameter vector (α0 , β0) 5. Among

the agents populating our network, a predetermined number of agents is chosen, uniformly at

random among those nodes with in-degree of at least one, to be partisan in each simulation. In

the benchmark estimation, we consider only one partisan agent of each type, but we then analyze

the robustness of our �ndings to a larger share of partisan agents (2, 3, and 4 of each type). 6

The location and degree of in�uence of partisan agents, which are key to determining polar-

ization, vary randomly across simulations. The only restriction imposed is that partisan agents

must have at least one individual in their in-neighborhood at t = 0.

We also allow the degree of rationality b and the parameter ρ of the Bernoulli distribution

determining the ticking of the clock (e.g. the persistence of connections) to vary across networks.

We draw bm and ρm from discrete Uniform distributions de�ned over the interval [0, 1] (with

band-with 0.05) for each network m ≤M .

This approach is able to emulate many initial con�gurations, each one representing a potential

society with signi�cant variability in terms of connections, beliefs, exposure to social media,

homophily, etc.

Simulation: For each network m, we draw a signal smi,t for individual i ∈ N at time t ∈ T
from a Bernoulli distribution with parameter θ = 0.5 for regular agents, or parameters θp ∈ {0, 1}
for partisan agents. We also draw the n×nmatrix ct at each period t from a Bernoulli distribution

with parameter ρm, which determines the evolution of the network structure according to eq.

(??). Together, the signals and the clock determine the evolution of world-views according to

eqs. (2) and (3). Polarization Pm,t is computed according to eq. (5) at each point in time. Our

variable of interest is the level of polarization in the long-run, P̄m. This is de�ned as the average
5In this case, we only need to use the relationships µ = α

α+β and σ2 = αβ
(α+β)2(α+β+1) to fully determine α and

β. Algebraic manipulation yields α = −µ(σ
2+µ2−µ)
σ2 and β = (σ2+µ2−µ)(µ−1)

σ2 .
6The initial beliefs (α, β) for both L-winged and R-winged partisan agents are given by the rule described above.

These imply that the initial opinions about the relative quality of candidates, θ, are not extreme in the very beginning
of the interactions, however, it becomes relatively extreme after a few rounds once they update their parameters using
the biased update rule.
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value of Pm,t for t larger than a threshold t̄, which in our simulations is set to be t̄ = 1000. We

chose this threshold because simulations converge after about 1000 periods to an ergodic set.

Mathematically,

P̄m ≡
∑
t>t̄

1

T − t̄− 1
Pm,t

The advantage of this approach with respect to others that use real-world networks is that we

can combine any network structure with any initial belief structure. Moreover, we can guarantee

that all variability is statistically independent. On the other hand, as with any form of analysis,

this approach has its disadvantages as well. There are important considerations in terms of how

sensitive our conclusions are to the number of simulations performed M , the length of each sim-

ulation in T , the size of the society n, and the values that other variables capturing heterogeneity

can take. We will perform some robustness to these results. Finally, the curse of dimensionality

is a challenging aspect of this approach due to its e�ects on computation time.

4.3 Regression analysis

We are interested in estimating the e�ect of network characteristics on long-run polarization. To

assess the quantitative importance of each explanatory variable, we estimate the coe�cients of a

simple ordinary least squares linear model,

P̄m = Xmβ + εm.

where the m × 1 vector P̄m denotes long-run polarization obtained from simulation m ∈
{1 . . .M}, Xm denotes m × k matrix of network characteristics (where k is the number of ex-

planatory variables described ahead), and the m× 1 vector εm is the error term.

The set of explanatory variables can be split in three categories: behavioral, technological,

and topological. On the behavioral dimension, we consider the e�ect of changing the extent that

agents rely more heavily on the opinion of others (and less on incorporating signals from unbi-

ased sources) by varying the parameter b on the updating rule. A higher value of b gives more

weight to the Bayesian posterior from unbiased signals. The initial conjecture is that the higher

the value of this parameter is, the lower the polarization in any society is: agents “mute” the net-

work channel through which fake news permeate and restrict attention to the unbiased signal,

facilitating information aggregation and reducing polarization.

The main parameter capturing communication technology is ρ, which controls the speed at
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which links are activated. A higher value of ρ could be interpreted as higher speed of information

�ow, i.e. the easiness to access all friends opinions. The overall e�ect of a higher ρ is a priori

ambiguous: on the one hand, it is more likely hat a regular agent will (indirectly) incorporate

fake news from those paying attention to the extreme views of partisan agents; on the other

hand, a faster �ow of information makes it more likely to form consensus among regular agents.

In terms of the network topology we consider i) the degree of popularity of partisan agents,

capturing the number of ‘followers’ in real-life social media (such as Facebook or Twitter) and

proxied by their in-degree centrality; ii) the degree of in�uence of the partisan agents’ follow-

ers, proxied by the Google PageRank centrality, iii) average clusteringing, i.e. the presence of

“triangles” in the social network, measuring the tendency that friends of my friends are also my

friends), iv) reciprocity, measured as the percentage of the relationships that are mutual, and v)

initial homophily, measured by the degree to which initial nodes with similar beliefs are mutu-

ally tied7. The last three characteristics jointly capture echo chambers e�ects, interpreted as the

tendency that people �nd their biases con�rmed and augmented in social networks.

Our initial conjectures regarding the e�ect of the topology over polarization are that i) larger

number of partisan followers increase polarization, since they will spread the extreme fake news

among agents; ii) partisan followers centrality is most likely negative since the more central these

agents are, the easier it is to nudge other agents to the their political position, reducing alienation

and increasing identi�cation; iii) average clustering is a priori ambiguous: on one hand, it might

reinforce biases and on the other hand it increases the degree of connectivity of the society; iv)

reciprocity is likely to reduce polarization since it facilitates consensus between any two agents

communication; and �nally v) initial homophily in opinions is expected to increase polarization

or be neutral, if its e�ect vanishes in the long run.

The estimated parameters using a standard linear model are summarized in Table 18. The �rst

column shows the result of a linear regression using data of societies with one partisan agent of

each type, whereas the second to fourth columns show results for networks including 2, 3, and 4

partisan agents of each type, respectively.
7In political science and economic networks literatures, homophily is a characteristic that drives link formation.

In our case, initial homophily is simply a statistic of assortativity computed over opinions after the initial random
network is fully characterized and populated with di�erent agents and beliefs. The degree of homophily in the long-
run is endogenously determined. In an environment with no partisan agents, for example, all agents converge to the
same opinion.

8Since polarization level is a variable bounded between zero and one, the e�ect of any explanatory variables tends
to be non-linear and regular linear models are limited to account for this feature. In this situation, it is appropriate
to use a either a logit/probit (link) of a binomial family or a generalized beta regression models.
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Table 1: Linear regression results

Dependent Variable: Average Polarization [1000,2000]
2 partisans (1:1) 4 partisans (2:2) 6 partisans (3:3) 8 partisans (4:4)

(1) (2) (3) (4)

Bayes λ −0.019∗∗∗ −0.021∗∗∗ −0.037∗∗∗ −0.029∗∗∗

(0.005) (0.004) (0.004) (0.004)

Clock p −0.047∗∗∗ −0.042∗∗∗ −0.052∗∗∗ −0.047∗∗∗

(0.005) (0.004) (0.004) (0.004)

Audience of Both (% of nodes) 0.133∗∗∗ 0.207∗∗∗ 0.294∗∗∗ 0.382∗∗∗

(0.041) (0.028) (0.026) (0.023)

Audience of Both × PageRank −0.103∗∗ −0.246∗∗∗ −0.244∗∗∗ −0.255∗∗∗

(0.049) (0.033) (0.030) (0.028)

Audience of L (% of nodes) 0.144∗∗∗ 0.246∗∗∗ 0.378∗∗∗ 0.427∗∗∗

(0.028) (0.025) (0.025) (0.025)

Audience of L × PageRank −0.142∗∗∗ −0.184∗∗∗ −0.202∗∗∗ −0.157∗∗∗

(0.029) (0.025) (0.025) (0.026)

Audience of R (% of nodes) 0.115∗∗∗ 0.232∗∗∗ 0.393∗∗∗ 0.467∗∗∗

(0.028) (0.023) (0.026) (0.025)

Audience of R × PageRank −0.110∗∗∗ −0.168∗∗∗ −0.220∗∗∗ −0.199∗∗∗

(0.029) (0.023) (0.025) (0.026)

Initial Homophily −0.013 −0.029 0.013 −0.015

(0.029) (0.023) (0.020) (0.017)

Average Cluster 0.203∗∗∗ 0.206∗∗∗ 0.156∗∗∗ 0.080∗∗∗

(0.011) (0.011) (0.013) (0.012)

Reciprocity −0.147∗∗∗ −0.058∗ −0.023 −0.039

(0.035) (0.031) (0.033) (0.034)

Observations 575 850 868 824
Adjusted R2 0.817 0.890 0.928 0.957
Residual Std. Error 0.037 (df = 564) 0.036 (df = 839) 0.034 (df = 857) 0.030 (df = 813)
F Statistic 233.702∗∗∗ (df = 11; 564) 625.679∗∗∗ (df = 11; 839) 1,016.950∗∗∗ (df = 11; 857) 1,661.630∗∗∗ (df = 11; 813)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

From the �rst column, we can see that if agents place more weight on the unbiased signal
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(and less on the social media friends’ opinions), polarization falls. On average, a one percentage

point (p.p.) increase in this parameter leads to a 1.9 p.p. reduction in polarization. The speed of

communication, as measured by the ticking persistence of our clock, reduces polarization by 4.7

p.p. for every 1 p.p. increase. This result suggests that the e�ect of internalizing a larger number

of opinions outweighs the e�ect of higher fake news exposure. Moreover, the marginal e�ect of

this parameter seems to be very stable across all 4 cases.

As the popularity of partisan agents rises — measured by the number of their followers — po-

larization is exacerbated. The marginal e�ect of an additional follower on polarization depends

on the popularity of the follower itself. To capture this non-trivial e�ect, we introduce an inter-

action term between followers (quantity centrality) and in�uence (quality centrality, as measured

by Google PageRank centrality). The coe�cient on the interaction term is negative, con�rming

the conjecture that if the partisan agent’s audience is su�ciently in�uential, the average opinion

in society may be nudged towards the partisan’s political point. This happens through a reduction

in alienation and an increase in identi�cation (see De�nition 1 for a description of these terms).

The net e�ect of increasing the number of partisan’s followers on polarization can be computing

by evaluating PageRank centrality at its sample mean. The resulting coe�cients are presented in

the �rst column of Table 2 in Appendix C. We �nd that on average, a higher number of followers

rises polarization.

When comparing these parameters across experiments we �nd that the net marginal e�ect

increases as the percentage of partisan agents increases: in the case with 2 fanatics, if the audience

of both partisan agents increase by 1 p.p., polarization increases 5.9 p.p. However, when the

percentage of partisan agents present in the network increases, this marginal e�ect becomes 18.4

p.p. (last column in Table 2). A similar e�ect is observed when the number of followers of just

one partisan agent increases. Finally, we �nd that an increase in the number of followers of just

one partisan agent rises polarization more that an increase in the number of followers paying

attention to both types of partisan agents (see Table 2).

Finally, the e�ects of initial homophily on polarization vanish over time, as seen by the fact

that the coe�cient is statistically insigni�cant. Average clustering and reciprocity play oppo-

site roles. Average clustering increases polarization, which suggests that the higher connectivity

reached with higher clustering is not su�ciently strong to countervail the bias reinforcement

associated to it. When there are 2 partisan agents present, the e�ect of increasing average clus-

tering by 1 p.p. leads to an increase of 20.3 p.p. in polarization. The marginal e�ect of this

parameter, however, decreases signi�cantly as the percentage of partisan agents increases (e.g.
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it is just 8.0 p.p. when there are 8 partisan agents present). Reciprocity reduces polarization in

networks populated by a small number of partisan agents (by 14.7 p.p. and 5.8 p.p. for every

increase of 1 p.p., when there are 2 and 4 partisans), but loses signi�cance after some threshold

of partisans present in the network is reached. These last three parameters increase polarization

on average. This evidence is consistent with Sunstein’s theory (2002, 2009) that echo chambers

increase polarization.

5 Conclusions

We simulated a large number of social media networks by varying their characteristics in order

to understand what the most important drivers of polarization are. A premise in all of them is

the presence of partisan agents with opposite extreme views who purposely spread fake news

(i.e. biased signals) aligned with their political color. To the extent that regular agents can be

partially in�uenced by these signals—directly by ‘following’ the partisan agent, or indirectly by

following friends who are themselves in�uenced by fake news—, this generates polarization in

the long run. In other words, fake news prevent information aggregation and consensus in the

population. An important assumption is that the links in the network evolve stochastically. It

would be interesting to extend the model to consider a case in which links are endogenously

determined. That is, in which agents could choose to ‘unfollow’ friends who provide mostly

biased information.

Our preliminary results suggest that the recent increase in polarization could be associated

with the radical shift in communication technology experienced in the last twenty years. Even

though the internet expanded the access to raw information and allowed individuals to share it

at a faster speed, it also provided a channel for partisan agents with extreme views to manipulate

information via fake news, factually inaccurate facts, and/or slanted and misleading rhetoric. The

popularity of social media networks such as Facebook and Twitter has exacerbated this problem

even further, as individuals may be exposed to fake news through their friends opinions. This

results from the inability of regular agents to �lter out the sources of information that shape

their friends opinions. Two other characteristic of social media networks may have contributed

to increased polarization. First, they tend to be highly clustered. Second, they make it costless

for partisan agents to strengthen their in�uence by simply increasing their number of followers.

Social media networks allow partisan agents to by-pass mainstream media, and communicate

their un�ltered message directly to followers.
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Having identi�ed the main determinants of polarization, it would be interesting to parame-

terize a real-life social media network (e.g. calibrate it) in order to quantify what percentage of

the increase in polarization can be explained by these channels. In addition, it is possible to carry

forward a key-player analysis to better understand what is the most e�cient way to reduce polar-

ization. Finally, as can be noticed from the random networks simulation, polarization cycles are

a strong regularity. Analyzing their determinants could be a fruitful avenue for future research.
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A Proof of Proposition 1

Lemma 1. The matrix Wt = Bt + (In −Bt) ĝt is row-stochastic in any period t, where Bt =

diag(b1,t, b2,t, . . . , bn,t).

Proof. It is su�cient to show that Wt111 = Bt111 + (In −Bt) ĝt111 = 111. For that we can show that the

vector Wt111, for every t, has all entries equal to

bi,t + (1− bi,t)ĝti,∗111 =

bi,t = 1{ĝti,∗111=0}1 +
(

1− 1{ĝti,∗111=0}

)
b = 1 , if ĝti,∗111 = 0

1 , if ĝti,∗111 = 1

, where ĝti,∗ is the i-th row of matrix ĝt.

Lemma 2. The iteration of the row-stochastic matrixW is convergent and therefore there exists a

threshold τ̄ ∈ N such that |W τ+1
ij −W τ

ij| < ε for any τ ≥ τ̄ and ε > 0

Proof. In order to see how W τ behaves as τ grows large, it is convenient to rewrite W using

its diagonal decomposition. In particular, let v be the squared matrix of left-hand eigenvectors

of W and DDD = (d1, d2, . . . , dn)′ the eigenvector of size n associated to the unity eigenvalue

λ1 = 19. Without loss of generality, we assume the following normalization 1′D1′D1′D = 1. Therefore,

W = v−1Λv, where Λ = diag(λ1, λ2, . . . , λn) is the squared matrix with eigenvalues on its

diagonal, ranked in terms of absolute values. More genreally, for any time τ we write

W τ = v−1Λτv.

Noting that v−1 has ones in all entries of its �rst column, it follows that

[W τ ]ij = dj +
∑
r

λτrv
−1
ir vrj,

for each r, where λr is the r-th largest eigenvalue of W . Therefore, limτ→∞ [W τ ]ij = D1′D1′D1′, i.e.

each row of W τ for all τ ≥ τ̄ converge to DDD, which coincides with the stationary distribution.

Moreover, if the eigenvalues are ordered the way we have assumed, then ‖W τ−D1′D1′D1′‖ = o(|λ2|τ ),

i.e. the convergence rate will be dictated by the second largest eigenvalue, as the others converge

to zero more quickly as τ grows.
9This is a feature shared by all stochastic matrices because having row sums equal to 1 means that ‖W‖∞ = 1

or, equivalently, W111 = 111, where 111 is the unity n-vector.
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With these two auxiliary lemmas, we start by considering the parameter update process de-

scribed in the Section (XX). Since the network’s edges are activated every single period, ĝt = ĝ

and Bt = Bn×n = B = diag(b, b, . . . , b), where b ∈ [0, 1], since
∑

j g
t
ij 6= 0 for any i and t. Thus,

the update process for the parameter-vector α of size n is

αt+1 = B(αt + st+1) + (In −B)ĝαt

= [B + (In −B)ĝ]αt +Bst+1.

We de�ne the matrix inside the squared bracket as W for any t. We re-write the update

process above as follows

αt+1 = Wαt +Bst+1

When t = 0,

α1 = Wα0 +Bs1

When t = 1,

α2 = Wα1 +Bs2

= W (Wα0 +Bs1) +Bs2

= W 2α0 +WBs1 +Bs2

When t = 3,

α3 = Wα2 +Bs3

= W
(
W 2α0 +WBs1 +Bs2

)
+Bs3

= W 3α0 +W 2Bs1 +WBs2 +Bs3

So on and so forth, resulting in the following expression for any particular period τ

ατ = W τα0 +
τ−1∑
t=0

W tBsτ−t (6)

Similarly for the parameter β, we have

βτ = W τβ0 +
τ−1∑
t=0

W tB(1− sτ−t). (7)
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where 1 is the vector of ones of size n. From Equations (6) and (7), the sum of this two

parameter-vectors is given by the following expression

ατ + βτ = W τ (α0 + β0) +
τ−1∑
t=0

W tB1

= W τ (α0 + β0) +
τ−1∑
t=0

W tb

= W τ (α0 + β0) + τb. (8)

Therefore, at any point in time τ , the opinion of any agent i is given by yi,τ =
αi,τ

αi,τ + βi,τ
.

From equation (6), we write

αi,τ = W τ
i∗α0 +

τ−1∑
t=0

W t
i∗bsτ−t

= W τ
i∗α0 + τb

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= W τ
i∗α0 + τbθ̃i(τ), (9)

where the symbol W τ
i∗ is used to denote the i-th row of matrix W τ and W 0 = In. From

equations (9) and (8), we write yi,τ as

yi,τ =
W τ
i∗α0 + τbθ̃i(τ)

W τ
i∗(α0 + β0) + τb

=
τ

τ

(
1
τ
W τ
i∗α0 + bθ̃i(τ)

1
τ
W τ
i∗(α0 + β0) + b

)
, (10)

From Equation (10), we have that the limiting opinion (in probability) of any agent i, at any

point in time τ , is described as

plim
τ→∞

yi,τ = plim
τ→∞

θ̃i(τ)

= plim
τ→∞

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ̄∑
t=0

W t
i∗sτ−t + plim

τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t. (11)

From Lemma 2, we can split the series in Equation (12) into two parts. The �rst term describes

a series of τ̄ terms that represent the “most recent” signals coming in to the network. Notice that
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every weight-matrix W t in the interval from t = 0 to t = τ̄ is di�erent from one another, since

the matrix W t does not converge to a row-stochastic matrix with unity rank for low t. It is

straight-forward to see that this term converges to zero as τ → ∞. The second term represents

describes a series of τ − τ̄ terms that represent the“older signals” that entered in the network and

fully reached all agents. As τ →∞, this term becomes a series with in�nite terms. From the i.i.d.

property of the Bernoulli signals, we can conclude that

plim
τ→∞

yi,τ = plim
τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ∑
t=τ̄+1

WWW i∗sτ−t (by Lemma 2)

= plim
τ→∞

WWW i∗
1

τ

τ∑
t=τ̄+1

sτ−t

asy
= plim

τ→∞
WWW i∗

1

τ − τ̄

τ∑
t=τ̄+1

sτ−t

asy
= WWW i∗θθθ

∗ = θ∗, (i.i.d. Bernoulli signals) (12)

where WWW = D1′D1′D1′. From equation (12), we conclude that society is wise and because of that,

plimt→∞ |ỹk,t−ỹl,t| = 0, i.e. theK groups reach consensus, impliying plimt→∞ Pt = |θ∗−θ∗| = 0.

(Q.E.D.)
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B Proof of Proposition 2

Consider again the update process described in the Section (XX)

αt+1 = Bt(αt + st+1) + (In −Bt)ĝtαt

= [Bt + (In −Bt)ĝt]αt +Btst+1.

Notice that Bt is not �xed over time now. We re-write the stochastic matrix (see lemma 1)

inside the squared bracket as

αt+1 = Wtαt +Btst+1.

When t = 0,

α1 = W0α0 +B0s1.

When t = 1,

α2 = W1α1 +B1s2

= W1 (W0α0 +B0s1) +B1s2

= W1W0α0 +W1B0s1 +B1s2.

When t = 2,

α3 = W2α2 +B2s3

= W2(W1W0α0 +W1B0s1 +B1s2) +B2s3

= W2W1W0α0 +W2W1B0s1 +W2B1s2 +B2s3.

So on and so forth and similarly for the parameter vector β.

Following Chaterjee and Seneta (1977), Seneta (2006) and Tahbaz-Salehi and Jadbabaie (2008),

we let {Wk}, for k ≥ 0, be a �xed sequence of stochastic matrices (see lemma 1), and let Ur,k be

the stochastic matrix de�ned by the following backward product

Ur,k = Wr+k ·Wr+(k−1) . . .Wr+2Wr+1Wr, (13)

where Wk = {wij(k)}, Ur,k = {u(r,k)
ij }10.

10Our backward product has last term equals toWr , rather thanWr+1. This is because our �rst period is 0, rather
than 1. This notation comes without costs or loss of generality.
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Then, the update process of both parameters can be represented in the following form for any

period τ

ατ = U0,τ−1α0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1sr

)
+Bτ−1sτ (14)

βτ = U0,τ−1β0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1 (111− sr)

)
+Bτ−1 (111− sτ ) (15)

From equation (14), we write its entries as

αi,τ =
∑
j

u
(0,τ−1)
ij αj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

=
∑
j

u
(0,τ−1)
ij αj,0 + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

]
=
∑
j

u
(0,τ−1)
ij αj,0 + τ θ̃i,1(τ) (16)

Each entry of the parameter vector β is written in a similar way

βi,τ =
∑
j

u
(0,τ−1)
ij βj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1(1− sj,r)

)
+ bi,τ−1(1− si,τ ).

The sum of both parameters αi,τ and βi,τ yields

αi,τ + βi,τ =
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

=
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

]
=

∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ) (17)

In which
∑

j u
(r,(τ−1))
ij = 1, for all r ≥ 0 since Ur,k is a stochastic matrix. Therefore, the

opinion of each agent i in this society, at some particular time τ , is yi,τ =
αi,τ

αi,τ+βi,τ
, where each

entry of the parameter vectors can be written as follows:

yi,τ =

∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)
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Asymptotically we have:

plim
τ→∞

yi,τ = plim
τ→∞

( ∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

)

= plim
τ→∞

τ

τ

 ∑
j u

(0,τ−1)
ij αj,0

τ
+ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0+βj,0)

τ
+ θ̃i,2(τ)


= plim

τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
(18)

Our main concern in order to prove that equation (18) converges in probability to θ∗ is the

behavior of Ur,k when k → ∞ for each r ≥ 0. For that, we need to de�ne two concepts of

ergodicity. The sequence {Wk} is said to beweakly ergodic, as k →∞, if for all i, j, s = 1, 2, . . . , n

and r ≥ 0

|u(r,k)
i,s − u

(r,k)
j,s | → 0

On the other hand, we say that this very same sequence is strongly ergodic for all r ≥ 0, and

elementwise, if:

lim
k→∞

Ur,k = 1D′r

Where 1 is a size n vector of ones and Dr is a probability vector in which Dr ≥ 0 and D′r1 = 1.

Both weak and strong ergodicity describe a tendency to consensus. In the strong ergodicity

case, all rows of the stochastic matrix Ur,k are becoming the same as k grows large and reaching a

stable limiting vector, whereas in the weak ergodicity case, every row is converging to the same

vector, but each entry not necessarily converges to a limit.

The three following lemmas are auxiliary helps to conclude the proof. Lemma 1 do xxx,

Lemma 2 do yyy, whereas Lemma 3 do zzz.

Lemma 3. For the backward product (13), weak and strong ergodicity are equivalent.

Proof. Following Seneta (1977)’s Theorem 1, we only need to prove that weak ergodicity implies

strong ergodicity. Fix r ≥ 0 and ε > 0. Then, by weak ergodicity, we have

−ε ≤ u
(r,k)
i,s − u

(r,k)
j,s ≤ ε⇐⇒ u

(r,k)
i,s − ε ≤ u

(r,k)
j,s ≤ u

(r,k)
i,s + ε

for k ≥ τ̄ for all i, h, s = 1, . . . , n. Since Ur,k+1 = Wr+k+1Ur,k,

n∑
j=1

whj(r + k + 1)(u
(r,k)
i,s − ε) ≤

n∑
j=1

whj(r + k + 1)u
(r,k)
j,s ≤

n∑
j=1

whj(r + k + 1)(u
(r,k)
i,s + ε).
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The inequality above shows that for any h and k ≥ τ̄

u
(r,k)
i,s − ε ≤ u

(r,k)
h,s ≤ u

(r,k)
i,s + ε.

Thus, by induction, for any i, h, s = 1, 2, . . . , n, for any k ≥ τ̄ and for any integer q ≥ 1

|u(r,k+q)
h,s − u(r,k)

i,s | ≤ ε.

By setting i = h, it is clear that uk,ri,s is a Cauchy sequence that aproaches a limit as k →∞.

De�nition 3. The scalar function µ(·) continuous on the set of n × n stochastic matrices W and

satisfying 0 ≤ µ(W ) ≤ 1 is called a coe�cient of ergodicity. It is said to be proper if µ(W ) = 1⇔
W = 1v′1v′1v′, where v′v′v′ is any probability vector (i.e. wheneverW is a row-stochastic matrix with unity

rank).

In particular, we will focus on the proper coe�cient of ergodicity µ(W ) = 1− a(W ), where

a(W ) =
1

2
max
i,j

n∑
s=1

|wis − wjs|.

Therefore, weak ergodicity is then equivalent to µ(Ur,k)→ 1 as k →∞ and r ≥ 0.

Lemma 4. Suppose that 1 − a(·) and µ(·) are both proper coe�cients of ergodicity. Then {Wk},
k ≥ 0, is ergodic if and only if there exists a strictly increasing subsequence {ij}, j = 1, 2, . . . of the

positive integers such that
∞∑
j=1

µ
(
Uij ,ij+1−ij

)
=∞

Proof. Soon

Lemma 5. The weak ergodicity of the sequence {Wk}, k ≥ 0 is a trivial event when gt follows

equation (1).

Proof. Soon
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With the results of these three lemmas, we can proceed with

plim
τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
= plim

τ→∞

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1sj,r

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1

(by lemma 5)

= plim
τ→∞

∑
j ūij

1
τ

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1
τ

∑τ−τ̄
r=1 bj,r−1

(by lemma 4)

asy
≡ plim

τ→∞

∑
j ūij

1
τ−τ̄

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1

τ−τ̄
∑τ−τ̄

r=1 bj,r−1

=

∑
j ūijE(bjsj)∑
j ūijE(bj)

(by weak law of large numbers)

=

∑
j ūijE(bj)E(sj)∑

j ūijE(bj)
(by independence of bj and sj)

=
θ∗
∑

j ūijE(bj)∑
j ūijE(bj)

= θ∗ (since E(sj) = θ∗,∀j ) (19)
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C Regression analysis: alternative speci�cations

Table 2: Linear regression results: Interaction terms in Table 1 evaluated at the average level of
PageRank

Dependent Variable: Average Polarization [1000,2000]
2 partisans (1:1) 4 partisans (2:2) 6 partisans (3:3) 8 partisans (4:4)

(1) (2) (3) (4)

Bayes λ −0.019∗∗∗ −0.021∗∗∗ −0.037∗∗∗ −0.029∗∗∗

(0.005) (0.004) (0.004) (0.004)

Clock p −0.047∗∗∗ −0.042∗∗∗ −0.052∗∗∗ −0.047∗∗∗

(0.005) (0.004) (0.004) (0.004)

Audience of Both (% of nodes) 0.059∗∗∗ 0.031∗∗∗ 0.110∗∗∗ 0.184∗∗∗

(0.016) (0.010) (0.009) (0.009)

Audience of L (% of nodes) 0.024∗∗ 0.084∗∗∗ 0.192∗∗∗ 0.272∗∗∗

(0.010) (0.011) (0.011) (0.012)

Audience of R (% of nodes) 0.026∗∗ 0.083∗∗∗ 0.192∗∗∗ 0.272∗∗∗

(0.011) (0.010) (0.011) (0.012)

Initial Homophily −0.013 −0.029 0.013 −0.015

(0.029) (0.023) (0.020) (0.017)

Average Cluster 0.203∗∗∗ 0.206∗∗∗ 0.156∗∗∗ 0.080∗∗∗

(0.011) (0.011) (0.013) (0.012)

Reciprocity −0.147∗∗∗ −0.058∗ −0.023 −0.039

(0.035) (0.031) (0.033) (0.034)

Observations 575 850 868 824
Adjusted R2 0.817 0.890 0.928 0.957
Residual Std. Error 0.037 (df = 564) 0.036 (df = 839) 0.034 (df = 857) 0.030 (df = 813)
F Statistic 233.702∗∗∗ (df = 11; 564) 625.679∗∗∗ (df = 11; 839) 1,016.950∗∗∗ (df = 11; 857) 1,661.630∗∗∗ (df = 11; 813)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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