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Abstract

We study mechanisms for environments in which only some of the agents are di-
rectly connected to a mechanism designer and the other agents can participate in a
mechanism only through the connected agents’ referrals. In such environments, the
mechanism designer and agents may have different interest in varying participants so
that agents strategically manipulate their preference as well as their network connec-
tion to avoid competition or congestion; while the mechanism designer wants to elicit
the agents’ private information about both preferences and network connections.

As a benchmark for an efficient mechanism, we re-define a VCG mechanism. It
is incentive compatible and individually rational, but it generically runs a deficit
as it requires too much compensation for referrals. Alternatively as a budget-surplus
mechanism, we introduce a multilevel mechanism, in which each agent is compensated
by the agents who would not be able to participate without her referrals. Under a
multilevel mechanism, we show that fully referring one’s acquaintances is a dominant
strategy and agents have no incentive to under-report their preference if the social
welfare is submodular.

keywords mechanism design; referral program; reward scheme; VCG mechanism;
multilevel mechanism; incentive compatibility; budget balancedness
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1 Introduction

In many social choice problems, the feasible allocations depend on who participates. As

the participants change, the desirable allocations also change accordingly and each partic-

ipant may have different interest in others’ participation. Thus individuals strategically

interact with each other by letting other potential participants join in or by preventing

them from participating, and hence desirable outcomes may be hindered.
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To analyze conflict of interests in varying participants, we adopt a mechanism design

approach to an environment in which agents’ network connections are their private infor-

mation. The environment with incomplete network information, which we consider, have

the following features:

i) A mechanism designer, or a planner, is directly connected to only some of the agents.

ii) The agents who are not directly connected to the designer can participate in the

mechanism only through a connected chain of others’ referrals.

iii) Feasible allocations that the designer can choose depend on the actual participants

induced by referrals.

iv) Each agent has two-folded private information; a preference over the feasible alloca-

tions, and a network connection which captures the agent’s acquaintances who can

be referred.

While taking preference as private information is standard in the mechanism design

literature, the novel part of this paper is considering agents’ network connection as another

dimension of private information. By private information about network connection,

we mean that the designer and the agents know about who are directly connected to

themselves, but do not know who are connected to others. Thus, agents may strategically

conceal their network connection particularly when congestion or competition adversely

impacts on the agents.

As a benchmark for an efficient mechanism, we first study a VCG mechanism, ini-

tially introduced by Vickrey (1961), Clarke (1971), and Groves (1973). While a VCG

mechanism is incentive compatible and individually rational; it turns out a VGC mech-

anism generically runs a deficit when the participants are endogenously determined by

referrals. We characterize the necessary and sufficient condition for a VCG mechanism

to yield a non-negative surplus to the mechanism designer. Roughly speaking, if agents’

marginal contribution to the society by referring others is greater than a certain level,

then the mechanism designer has to provide too much compensation to the agents who

contribute to other agents’ participation and the compensation dominates the agents’ to-

tal payments. We also provide an alternative condition for budget balancedness: if the

core of the network-restricted per-capita game1 is nonempty, then a VCG mechanism runs

a deficit.

It is well-known, due to Green and Laffont (1977), that no efficient mechanism is

incentive compatible, individually rational, and budget surplus at the same time. In

order to overcome the budget problem of a VCG mechanism, therefore, we propose an

alternative mechanism, namely a multilevel mechanism. Under this mechanism, each

1We define this later in Section 3 based on Myerson (1977).
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agent’s payment is based not only on his own marginal contribution but also on that

of other agents who are referred to the mechanism designer through himself; and he

receives some compensation from the referred agents. We show that fully referring one’s

acquaintances is a dominant strategy and agents have no incentive to under-report their

preference if the social welfare function is submodular. Although a multilevel mechanism

is not fully incentive compatible and agents may over-report ther preference, it boosts

competitions among the agents and it is good for the designer in terms of her budget. In

addition, we characterize agents’ beliefs in which truthfully reporting their preference is

their best response.

With a supermodular welfare function, agents may spontaneously refer other agents

without any explicit reward because an agent’s marginal contribution increases as pop-

ulation grows. As Sprumont (1990) shows, if a social welfare function is supermodular,

a population monotonic allocation scheme exists so that the planner can make all the

existing agents happy with new agents’ participation. However, there is no such alloca-

tion rule if the welfare function is submodular in which more participants causes severe

congestion and competition. Our main contribution is to find that multilevel mechanisms

have good incentive properties even in such environments with conflict of interests in

varying population.

Referral programs are prevalent phenomena in various markets and they have been

widely studied in the literature of marketing. Due to recent development of internet tech-

nology and social media, studying allocation problems in networks is a popular research

area in economics and computer science. Since Megiddo (1978), many papers, including

Ågotnes et al. (2009) and Bachrach and Rosenschein (2007), adopt cooperative game so-

lution concepts to allocation problems in networks and analyze incentive problems. In

particular, Hougaard and Tvede (2012) and Hougaard and Tvede (2015) study incentive

compatibility of allocation mechanisms in minimum cost spanning networks. In those

models, referring other agents is not a strategic consideration because a network is fixed

and its structure is commonly known.

Another strand of literature studies incentives for referrals. Lee and Driessen (2012)

study agents’ referral incentives in a variable population environment, proposing a new

cooperative solution, namely sequentially two-leveled egalitarianism, and comparing it to

Shapley value. Recently computer science literature, such as Yu and Singh (2003), Singh

et al. (2011), Emek et al. (2011), and Drucker and Fleischer (2012), deals with multi-

level mechanisms in which small rewards are allocated to mitigate free-riding problems or

Sybil attacks in peer-to-peer systems. However, those approaches study incentives given

a simple reward scheme, rather than fully analyzing direct mechanisms.

The paper is organized as follows. Section 2 describes a model with asymmetric
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information about networks in which agents can strategically refer others. In Section 3, we

define a VCG mechanism in an environment with varying population, as a benchmark for

an efficient mechanism, and characterize its properties related to incentive compatibility,

individual rationality, and budget balancedness. In Section 4, we propose a multilevel

mechanism, which guarantees a budget surplus, and characterize conditions for incentive

compatibility and individual rationality. Section 5 concludes this paper with a remark for

future research.

2 A model

Let N = {1, 2, · · · , n} be a set of agents and 0 be a mechanism designer (or a planner). For

any S ⊆ N , Γ(S) is a set of feasible allocations with the participation of S together with

0. Let Γ = ∪S⊆NΓ(S) be a set of all allocations. We assume free exclusion, which requires

S′ ⊆ S =⇒ Γ(S′) ⊆ Γ(S). Each agent i ∈ N has a preference over the allocations, which

is represented by a utility function vi : Γ → R. For any preference profile v ≡ {vi}i∈N
and any coalition S ⊆ N , a social welfare is defined by

W (v, S) = max
γ∈Γ(S)

∑
i∈S

vi(γ),

and a set of efficient allocations is:

Γ∗(v, S) =

{
γ ∈ Γ(S)

∣∣∣ ∑
i∈S

vi(γ) = W (v, S)

}
.

Each agent i ∈ N has a set ei ⊆ N \{i} of acquaintances or i’s connection, so that i can

refer j if j ∈ ei. The planner 0 also has a set e0 ⊆ N of agents who are directly connected

to her. Note that a connection profile {ei}i∈N∪{0} constitutes a directed network on

N ∪ {0}.
For each agent i ∈ N , his preference vi and his connection ei are his private infor-

mation. The mechanism designer, in practice, may sequentially approach agents based

on referrals in various ways. Due to the revelation principal (Myerson, 1981), however,

without loss of generality, we focus on a class of direct mechanisms, in which agents are

simultaneously asked to report their preference and connection. An agent whose private

information is (vi, ei) may report any (v′i, e
′
i) with a restriction of e′i ⊆ ei.

Given a reported (or referred) connection profile e, the set of participants N(e) is

determined endogenously:

N(e) = {0} ∪ e0 ∪ [∪i∈e0ei] ∪
[
∪i∈[∪j∈e0ej]ei

]
∪ · · · .

A connection profile e is trivial if N(e) = e0 = N . In a trivial connection profile, a

mechanism designer is directly connected to all the agents and hence any referral does

not affect either the participants or the set of feasible allocations.
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Let V × E be a profile space. A mechanism (g, P ) is a pair of an allocation rule

g : V × E → Γ such that g(v, e) ∈ Γ(N(e)); and a payment rule P : V × E → Rn such

that i 6∈ N(e) =⇒ Pi(v, e) = 0 An allocation rule g is efficient if, for all (v, e) ∈ V × E,

g(v, e) ∈ Γ∗(v,N(e)). Under a mechanism (g, P ), given others’ reports v−i and e−i, if agent

i with the preference of vi reports v′i and e′i, then he gets the payoff vi(g(v′i, v−i, e
′
i, e−i))−

Pi(v
′
i, v−i, e

′
i, e−i). When there is no danger of confusion, we denote v′ = (v′i, v−i) whereas

v = (vi, v−i), and similarly for e′ and e.

A mechanism (g, P ) is incentive compatible if, for all (v, e) ∈ V × E, all i ∈ N , all

v′i ∈ Vi, and all e′i ⊆ ei,

vi(g(v, e))− Pi(v, e) ≥ vi(g(v′, e′))− Pi(v′, e′).

An agent’s utility from not participating is normalized to zero. Hence, a mechanism (g, P )

is individually rational if, for all (v, e) ∈ V × E and all i ∈ N ,

vi(g(σ(v, e)))− Pi(σ(v, e)) ≥ 0,

where σ(v, e) is an equilibrium strategy profile given (v, e). Given a mechanism (g, P )

and (v, e), the sum of agents’ payments
∑

i∈N Pi(σ(v, e)) is the ex-post surplus to the

mechanism designer. A mechanism (g, P ) runs a deficit for (v, e), if the ex-post surplus

to the mechanism designer is negative.

Given e ∈ E and i ∈ N , the set of i’s outsiders, Oi(e), consists of agents who can be

involved without i, that is Oi(e) ≡ N(e−i)\{i}. Note that e is trivial if and only if Oi(e) =

N(e)\{i} for all i ∈ N . The agent i’s group, Gi(e), consists of agents who can not partici-

pate without i, that is Gi(e) ≡ N(e)\Oi(e). Note that e is trivial if and only if Gi(e) = {i}
for all i ∈ N . As G = {Gi(e)}i∈N0 forms a partial ordering, a connection profile e induces

a tree. Given e ∈ E, i is a predecessor of j if j ∈ Gi(e). Note that N(e) endowed with

this precedence relation is a tree and we call it a contribution tree. For all i ∈ N , the set

of i’s predecessors is Ri(e) ≡ {j ∈ N | i ∈ Gj(e)} and the set of i’s immediate followers is

Fi(e) ≡ {j ∈ N | Gi(e) ⊃ Gj(e) and (6 ∃k ∈ N \ {i, j}) Gi(e) ⊃ Gk(e) ⊃ Gj(e)} . Figure 1

shows how the contributions to new participants are recognized.

3 A VCG Mechanism

As a benchmark for an efficient mechanism, we re-define a VCG mechanism under in-

complete network information. A VCG mechanism consists of an efficient allocation rule

g and a payment rule P V which captures each agent’s marginal effect on the remaining

agents. Formally, a VCG payment rule P V is:

P Vi (v, e) = min
v′i,e
′
i

W (v′i, v−i, N(e′i, e
′
−i)) −

∑
j∈N(e)\{i}

vj(g(v, e))

= W (v,Oi(e))−
∑

j∈N(e)\{i}

vj(g(v, e)),
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Figure 1: A connection profile and the induced contribution tree.
Let N = {1, 2, 3, 4, 5} and e = {ei}i∈N0 with e0 = {1, 2}, e1 = {3, 4}, e2 = {4}, e3 = {4}, e4 = ∅, and
e5 = {2}. The set of participants is N(e) = {0, 1, 2, 3, 4} and the agents’ groups are G0(e) = {0, 1, 2, 3, 4},
G1(e) = {1, 3}, G2(e) = {2}, G3(e) = {3}, G4(e) = {4}, and G5(e) = ∅. As G = {Gi}i∈N0 forms a partial
ordering, it induces a tree. As none of the two referrers of agent 4 exclusively claims an contribution to the
agent 4’s participation, note that only the unique common predecessor can claim the contribution, that is,
4 6∈ e0 but 4 ∈ F0(e).

where the second equality comes from the free exclusion assumption, as for any v′i:

W (v′i, v−i, N(e′i, e
′
−i)) ≥W (v′i, v−i, N(e′−i)) = W (v,Oi(e)).

Under complete network information with e0 = N , it is standard that

P Vi (v, e) = W (v,N(e) \ {i})−
∑

j∈N(e)\{i}

vj(g(v, e)) = W (v,N \ {i})−
∑

j∈N\{i}

vj(g(v, e)).

In incomplete network information, however, agent i can lower W (v,N(e) \ {i}) by refer-

ring only part of his acquaintances e′i ( ei. Thus, the VCG payment can be decomposed

in two parts:

P Vi (v, e) =
[
W (v,N(e) \ {i})−

∑
j∈N(e)\{i}

vj(g(v, e))
]
−
[
W (v,N(e) \ {i})−W (v,Oi(e))

]
,

where the first part is the marginal effect on the others given fixed participants N(e),

which is equivalent to the usual VCG payment; and the second part is a reward for

effective referrals. If agent i’s referrals are not effective, that is Gi(e) = {i}, then the

second part is always zero.

The following example illustrates how a VCG mechanism deals with incomplete net-

work information in a simple auction setting. Remark that the VCG mechanism is dif-

ferent from the second-price auction which does not compensate agents for referrals.

Example 1. Consider a single-item auction with two existing buyers and one potential

buyer: N = {1, 2, 3}, e0 = {1, 2}, e1 = {3}, e2 = e3 = ∅. Thus, buyer 3 can participate
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in the auction only through buyer 1’s referral. Suppose the buyers’ valuations to the

auctioned item are x, y, and z, respectively, where the auctioneer’s valuation is zero.

First, consider a second-price auction in which bidding the true value is a dominant strat-

egy, for each buyer, no matter who the participants are. Buyer 1’s payoff from referring

buyer 3, that is, reporting e1 = {3}, is max{x−max{y, z}, 0}. However, his payoff from

not referring, or reporting e1 = ∅, is max{x−y, 0}. If buyer 3 wins, buyer 1 loses the item

without any compensation. Furthermore, even if buyer 1 still wins after referring buyer

2, particularly if the referred buyer 3’s value z is between x and y, he must pay more due

to the referral. Thus, not referring is a dominant strategy for buyer 1. In addition, the

second-price auction in this setting fails to obtain an efficient allocation: buyer 1 does not

refer buyer 3 and buyer 3 cannot participate in the auction although her valuation is the

highest among the three buyers.

Now consider a VCG mechanism which is different from the second-price auction. If buyer

1 wins, then his payment is y, no matter whether buyer 3 participates. If buyer 3 wins,

althought buyer 1 loses the item, his VCG payment is P V1 = W (v, {2}) − {v2(g(v, e)) +

v3(g(v, e)) = y−z, which is negative. That means, buyer 1 will be rewarded as a compen-

sation for referring buyer 3. Hence, referring buyer 3 is buyer 1’s dominant strategy.

We confirm that a VCG mechanism is incentive compatible and individually rational

in dominant strategies.

Proposition 1. A VCG Mechanism is incentive compatible and individually rational.

Proof. First, we show a VCG mechanism (g, P V ) is incentive compatible. Given v−i and

e−i, consider an agent i whose private information is vi and ei. Reporting v′i and e′i ⊆ ei,
the agent i’s payoff is

vi(g(v′, e′))− P Vi (v′, e′) = vi(g(v′, e′))−

W (v′, Oi(e
′))−

∑
j∈N(e′)\{i}

vj(g(v′, e′))


=

vi(g(v′, e′)) +
∑

j∈N(e′)\{i}

vj(g(v′, e′))

−W (v,Oi(e))

≤ W (v,N(e′))−W (v,Oi(e))

≤ W (v,N(e))−W (v,Oi(e))

= vi(g(v, e))− P Vi (v, e).

Oi(e) = Oi(e
′) The second equality is due to and W (v′, Oi(e

′)) = W (v,Oi(e)). The third

line is from the fact that vi(g(v′, e′)) +
∑

j∈N(e′)\{i} vj(g(v′, e′)) is maximized at v′i = vi.

The last inequality is from monotonicity of W . Thus truthfully reporting both vi and ei

is a dominant strategy for the agent i.
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Next, we show (g, P V ) is individually rational. Since reporting one’s private informa-

tion truthfully is a dominant strategy, it suffices to show that, for any profile (v, e) and

any i ∈ N ,

vi(g(v, e))− P Vi (v, e) ≥ 0. (1)

By definition of W , (1) is equivalent to W (v,N(e)) − W (v,Oi(e)) ≥ 0. Due to free

exclusion, W (v,N(e))−W (v,Oi(e)) is nonnegative as desired.

Remark. In a fixed population setting, it is well-known that a VCG mechanism satisfies

both incentive compatibility and individual rationality. When the population is endoge-

nously determined by the players’ referrals, on the other hand, those properties rely on

monotonicity of the underlying social welfare function. If an additional participant may

harm the social welfare, even in a VCG mechanism, the existing agents conceal their

network connections to prevent potential agents’ participation and the referred agents do

not want to participate because of high payments. Thus, the free exclusion assumption

is crutial for a VCG mechanism to be individually rational and incentive compatible.

Though a VCG mechanism has desirable properties in terms of eliciting agents’ private

information, it may not be useful in practice due to its budget problem. In environments

with a varying population, it turns out that a VCG mechanism tends to run a deficit

because the designer has to compensate referrers too highly. The following proposition

shows that a VCG mechanism runs a deficit if and only if the sum of the agents’ marginal

contributions through referrals is greater than the social welfare.

Proposition 2. Given (v, e) ∈ T × E, a VCG mechanism (g, P V ) runs a deficit if and

only if ∑
i∈N(e)

[W (v,N(e))−W (v,Oi(e))] > W (v,N(e)). (2)

Proof. We have that

∑
i∈N

P Vi (v, e) =
∑
i∈N(e)

W (v,Oi(e))−
∑

j∈N(e)\{i}

vj(g(v, e))


=

∑
i∈N(e)

W (v,Oi(e))−
∑

j∈N(e)\{i}

vj(g(v, e))− vi(g(v, e))


+
∑
i∈N(e)

vi(g(v, e))

=
∑
i∈N(e)

[W (v,Oi(e))−W (v,N(e))] +W (v,N(e)).

Thus, we have
∑

i∈N P
V
i (v, e) < 0 if and only if (2) holds.

The following example illustrates that a VCG mechanism runs a deficit particularly

when the new participant’s contribution is relatively large.
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Example 2. Consider a single-item auction as in Example 1. Due to Proposition 2, a

VCG mechanism runs a deficit if and only if

max{x, y, z} > y + max{x, y}.

To be specific, suppose x = 1 and y = 2.

• Suppose z = 3. Buyer 3 wins the item and pays P V3 = 2 which is the highest bid

among O3(e) = {1, 2}. Buyer 2 has no marginal effect on the welfare and hence

pays nothing. The payment of buyer 1 is the difference between the highest bid

y = 2 among O1(e) = {2} and the highest bids z = 3 among N(e)\{1}. Thus P V1 =

y − z = −1. That means the auctioneer must pay 1 to buyer 1 as a compensation

for the referral. The auctioneer’s net revenue is P V1 + P V2 + P V3 = −1 + 0 + 2 = 1:

it runs a surplus.

• Suppose z = 5. Buyer 3 wins the item paying P V3 = 2 and buyer 2 pays nothing

as before. The payment of buyer 1 is the difference between the highest bid under

his absence, which is y = 2 again same as before, and the highest bids among

N(e) \ {1}, which is now z = 5. Thus P V1 = −3 and the auctioneer must pay 3

to buyer 1 as a compensation for referral: it runs a deficit due to the negative net

payment, P V1 + P V2 + P V3 = −3 + 0 + 2 = −1.

Remark. Rearranging the terms, note that (2) is equivalent to

W (v,N(e)) >
∑
i∈N(e)

W (v,Oi(e))

|N(e)| − 1
.

This implies that a VCG mechanism runs a deficit if and only if the social welfare is

greater than the sum of the agents’ marginal contribution to the per-capita welfare.

The following corollary investigates the relation between the budget problem of a

VCG mechanism and the existence of a core allocation of the underlying environment.

According to the notion of network-restricted games proposed by Myerson (1977), given

(v, e), we define a network-restricted per-capita game (N(e), wv,e): for each S ⊂ N(e),

wv,e(S) =
W (v, S ∩N(eS))

|S ∩N(eS)|
.

Corollary 1. Given (v, e), if a VCG mechanism yields a strictly positive surplus, the

core of the network-restricted per-capita game (N(e), wv,e) must be empty.

Proof. We prove the contrapositive of the statement. Suppose that the core of (N(e), wv,e)

is nonempty. Due to Bondareva (1963) and Shapley (1967), for any probability measure

δ on 2N(e) \ {∅, N(e)},∑
S(N(e)

δ(S)wv,e(S) ≤ wv,e(N(e)) =
W (v,N(e))

|N(e)|
. (3)
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Now define δ by:

δ(S) =

{
1

|N(e)| if S = N(e) \ {i} and i ∈ N(e)

0 otherwise.

With this probability measure δ, the left hand side of (3) becomes∑
S(N(e)

δ(S)wv,e(S) =
∑
i∈N(e)

1

|N(e)|
W (v,Oi(e))

|N(e)| − 1

and it follows ∑
i∈N(e)

W (v,Oi(e))

|N(e)| − 1
≤W (v,N(e)). (4)

Due to Proposition 2, (4) implies that a surplus from a VCG mechanism must be less

than or equal to zero.

The following example shows how a budget problem could be significant under VCG

mechanisms.

Example 3. [Rivalry Good] A planner wants to provide a rivalry good, such as a small

swimming pool. Note that a set of allocations is Γ = 2N . All the agents, who do not like

congestion, have the same preference:

vi(S) =

{
6− |S| if i ∈ S
0 otherwise.

Suppose the agents are connected in a chain network, so ei = {i + 1} for each i ≥ 0.

Suppose only the private information of each agent is about his connection, but not his

preference. Under a VCG mechanism, agent 1 refers agent 2 and agent 2 refers agent

3, but agent 3 does not refer agent 4 and so on. Thus, three agents participate and the

allocation γ = {1, 2, 3} is socially optimal as W ({1, 2, 3}) = 3 × 3 = 9 > W (S) for any

|S| 6= 3. Each agent’s payment is:

• P1 = W (∅)− (v2(N) + v3(N)) = 0− 6 = −6

• P2 = W ({1})− (v1(N) + v3(N)) = 5− 6 = −1

• P3 = W ({1, 2})− (v1(N) + v2(N)) = 8− 6 = 2,

which means agent 3 pays 2, but agent 1 and agent 2 should be rewarded by 6 and 1 from

the planner as they have been positively contributed to the society through referrals. The

payoff for each agent is (3 + 6, 3 + 1, 3− 2) = (9, 4, 1), however, the sum of the payments

is −6− 1 + 2 = −5, which means the planner must run a deficit.
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Remark. In Example 3, it is important to note that the socially optimal participants are

endogenously determined under a VCG mechanism, without assuming free exclusion. If

a planner approaches the potential agents by public advertisements instead of sequential

referrals, any agent will join in as long as the current participants are less than 6. Thus

the allocation with public advertisements is suboptimal due to congestion.

4 A Multilevel Mechanism

This section introduces an alternative mechanism, namely a multilevel mechanism, which

guarantees a nonnegative surplus to the mechanism designer. As we have seen in the

previous section, under a VCG mechanism the mechanism designer provides too much

compensation to agents who contribute to new agents’ participation, and hence it gener-

ically runs a deficit. Under a multilevel mechanism, an agent is compensated with an

appropriate transfer not from the mechanism designer but from his referred agents, who

would not be able to participate without him.

Definition 1 (Multilevel Mechanism). A multilevel mechanism consists of an efficient

allocation rule g and a payment rule PM which satisfies, for all i ∈ N(e),

PMi (v, e) = PGi (v, e)−
∑

j∈Fi(e)

PGj (v, e),

where PGi (v, e) = W (v,Oi(e))−
∑

j∈Oi(e)

vj(g(v, e)).

Remark. Note that PGi (v, e) is the marginal effect of the agent i’s group on the society.

This is different from the VCG payment P Vi (v, e), which is the marginal effect of i alone.

Under a multilevel mechanism, an agent i pays PGi (v, e) to i’s immediate predecessor.

Only the agents in F0(e) pay to the mechanism designer. That is, each agent is responsible

for his group when he pays to his predecessor, but he is compensated by transfers from

his referred agents as they pays their group-wise payment to him.

The main benefit of such a simple multilevel mechanism is that it guarantees a non-

negative revenue to the designer. The following example illustrates how an auctioneer

makes a positive surplus with a multilevel mechanism; while an auctioneer runs a deficit

with a VCG mechanism.

Example 4 (VCG mechanism vs. Multilevel mechanism). Consider a single-item auction

with two existing buyers, A and B, and two potential buyers, C and D, who are connected

to A as shown in Figure 2. We first note that under both a VCG mechanism and a

multilevel mechanism, fully referring is a dominant strategy: hence, all four players are

supposed to participate in the mechanisms. To be specific, suppose they bid 5, 2, 7, and

10, respectively.

11
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Figure 2: A 4-buyer auction (Example 4)
Suppose A refers C and D and each buyer bids 5, 2, 7, and 10, respectively. Under both a VCG mechanism
and a multilevel mechanism, the item goes to D, who is the highest bidder. Under a VCG mechanism, the
winner D pays 7, which is the second highest bid, to the auctioneer, but the auctioneer must compensate the
referrer A by rewarding 10− 2 = 8, the marginal contribution of A; and hence the auctioneer runs a deficit by
−1. Under a multilevel mechanism, however, the winner D pays the price 7 to the referrer A, and the referrer
A pays the highest bid 2 among the outsiders of A to the auctioneer; thus the auctioneer’s net revenue is 2.

• A VCG mechanism: Buyer D wins the item and pays 7, which is the second highest

bid, to the auctioneer. However, buyer A’s payment, which is the difference between

the highest bid among OA(e) = {B} and the highest bid among N(e) \ {A} =

{B,C,D}, is 2 − 10 = −8. Thus the auctioneer must pay 8 to the buyer A as a

reward and her net revenue is 7− 8 = −1.

• A multilevel mechanism: Buyer D wins the item and pays 7 to his referrer A, rather

than paying to the auctioneer. Then buyer A pays 2, which is the highest bid among

OA(e) = {B}, to the auctioneer. Thus the auctioneer’s net revenue is 2.

The first main result for a multilevel mechanism is that it guarantees a nonnegative

surplus to the mechanism designer.

Proposition 3. A multilevel mechanism always runs a budget surplus.

Proof. First remark that, for any agent i, his group-wise payment PGi (v, e) is always

nonnegative, as

PGi (v, e) = W (v,Oi(e))−
∑

j∈Oi(e)

vj(g(v, e)) ≥ 0.

Then, for any (v, e), the sum of the payments from the agents must be nonnegative, as∑
i∈N(e)

PMi (v, e) =
∑

i∈F0(e)

PGi (v, e).

To further investigate incentive properties of a multilevel mechanism, Lemma 1 below

shows preliminary results on an agent’s payoff. For notational simplicity, define:

12



• for any agent i and any reported profile (v, e):

∆Wi(v
′, e′) =

[
W (v′, N(e′))
−W (v′, Oi(e

′))

]
−

∑
j∈Fi(e′)

[
W (v′, N(e′))
−W (v′, Oj(e

′))

]
,

which is the difference between the marginal contribution of i’s referrals and the

sum of the marginal contributions of i’s referred agents’ referrals.

• for any agent i with the preference of vi and any reported profile (v′, e′):

∆vi(g(v′, e′)) = v′i(g(v′, e′))− vi(g(v′, e′)),

which is the difference between agent i’s hypothetical value and his true value on

the proposed allocation g(v′, e′) by manipulation.

Lemma 1. Suppose that an agent i’s true type is (vi, ei) and others report (v−i, e−i).

Under the multilevel mechanism,

i) the agent i’s ex-post payment from truth telling is

PMi (v, e) = W (v,Oi(e)) +
∑

j∈Fi(e)

[W (v,N(e))−W (v,Oj(e))]−
∑

j∈N(e)\{i}

vj(g(v, e)));

ii) the agent i’s ex-post payoff from truth telling is,

vi(g(v, e))− PMi (v, e) = ∆Wi(v
′, e′).

iii) the agent i’s ex-post payoff from reporting (v′i, e
′
i) ∈ Ti × Ei is

vi(g(v′, e′))− PMi (v′, e′) = ∆Wi(v
′, e′)−∆vi(g(v′, e′));

Proof. Note that

PMi (v, e) = PGi (v, e)−
∑

j∈Fi(e)

PGj (v, e)

=

W (v,Oi(e))−
∑

j∈Oi(e)

vj(g(v, e))

− ∑
j∈Fi(e)

W (v,Oj(e))−
∑

k∈Oj(e)

vk(g(v, e))


=

W (v,Oi(e))−
∑

j∈Oi(e)

vj(g(v, e))


−
∑

j∈Fi(e)

[W (v,Oj(e))−W (v,N(e))]−
∑

j∈Fi(e)

∑
k∈Gj(e)

vk(g(v, e))

= −
∑

j∈N(e)\{i}

vj(g(v, e))) +W (v,Oi(e)) +
∑

j∈Fi(e)

[W (v,N(e))−W (v,Oj(e))] ,

13



where the third equality is due to
∑

k∈Oj(e) vk(g(v, e)) = W (v,N(e))−
∑

k∈Gj(e) vk(g(v, e))

and the last equality is from Oi(e) ∪
(
∪j∈Fi(e)Gj(e)

)
= N(e) \ {i}. This completes the

first part.

Using the first part, we have

vi(g(v, e))− PMi (v, e) = W (v,N(e))−W (v,Oi(e))−
∑

j∈Fi(e)

[W (v,N(e))−W (v,Oj(e))]

= ∆Wi(v, e),

which completes the second part.

When the agent i reports (v′i, e
′
i), his payoff is vi(g(v′, e′)) − PMi (v′, e′). Subtracting

and adding vi(g(v′, e′)), we have

vi(g(v′, e′))− PMi (v′, e′) = vi(g(v′, e′))− vi(g(v′, e′)) + vi(g(v′, e′))− PMi (v′, e′)

= ∆Wi(v
′, e′)−∆vi(g(v′, e′)),

which completes the last part.

Due to Lemma 1, Proposition 4 below is straightforward to show a multilevel mecha-

nism is individually rational.

Proposition 4. A multilevel mechanism is individually rational.

Proof. By Lemma 1, agent i’s payoff from reporting truth preference and referring ∅ is:

∆Wi(v, e−i) =

[
W (v,N(e−i))
−W (v,Oi(e−i))

]
−

∑
j∈Fi(e−i)

[
W (v,N(e−i))
−W (v,Oj(e−i))

]
= W (v,N(e−i))−W (v,N(e−i) \ {i}),

which is nonnegative, noting that Fi(e−i) = ∅. In equilibrium, therefore, a positive payoff

is guaranteed regardless others’ types and strategies.

If an agent’s marginal contribution increases as population grows, agents may want to

spontaneously refer other potential agents to increase the population or the designer can

align agents’ interest in the same direction to make all the existing agents happy with new

agents’ participation.2 However, we are mainly interested in environments with potential

conflict of interests among the mechanism designer and the agents on varying participants.

It turns out that multilevel mechanisms work well in submodular environments in which

each individual’s marginal contributions to the society get smaller as population grows.

Definition 2. A welfare function W is submodular if for all S′ ⊆ S and all v′ ≤ v:

W (v, S′)−W (v′, S′) ≥W (v, S)−W (v′, S)
2Sprumont (1990) shows that one can find a population monotonic allocation scheme in a supermodular

environment.
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Remark. A submodular welfare function requires that “a higher preference profile is worth

more in a smaller coalition than in a larger coalition” as well as that “increasing population

is worth more when they have a lower preference profile.” Note also that supermodularity

implies submodular in coalitions, that is, for all i 6∈ S′ ⊆ S:

W (v, S′ ∪ {i})−W (v, S′) ≥W (v, S ∪ {i})−W (v, S)

The following lemma characterizes submodularity of a general set function, namely

Exclusion-Inclusion Principal for Submodularity.

Lemma 2. A set function W defined on 2N is submodular if and only if, for all S, S′ ⊆ N
such that S′ ⊆ S and all partition P of S \ S′,

W (S)−W (S′) ≥
∑
P∈P

[W (S)−W (S \ P )] . (5)

Proof. First, we prove the ‘only-if’ part by mathematical induction. Let S be an arbitrary

subset of N . If S′ = S, then the claim is obvious. Suppose that S \ S′ is a singleton, say

S \ S′ = {k}. Then the claim (5) trivially holds. As an induction hypothesis, suppose

that, for all S′ ( S such that |S \S′| ≤ l, the statement (5) is true. Now consider a subset

S′ ( S such that |S \ S′| = l + 1 and a partition P of S \ S′. Pick any k ∈ S \ S′ and

let P1 ∈ P such that k ∈ P1. Define a new partition P̃ of S \ (S′ ∪ {k}) by replacing P1

with P̃1 ≡ P1 \ {k}, that is, P̃ = (P \{P1})∪{P̃1}. Note that P̃1 is possibly empty. Since

|S \ (S′ ∪ {k})| ≤ l, we have that

W (S)−W (S′ ∪ {k}) ≥
∑
P∈P̃

[W (S)−W (S \ P )] .

Subtracting W (S′)−W (S′ ∪ {k}) from the both side, we have that

W (S)−W (S′) ≥
∑
P∈P̃

[W (S)−W (S \ P )]− [W (S′)−W (S′ ∪ {k})]

=
∑

P∈P\{P1}

[W (S)−W (S \ P )]

+W (S)−W (S \ P̃1)− [W (S′)−W (S′ ∪ {k})]. (6)

On the other hand, by submodularity, we have

W (S′ ∪ {k}) +W (S \ P1) ≥W (S′) +W (S \ P̃1). (7)

Plugging (7) into (6), we have

W (S)−W (S′) ≥
∑
P∈P

[W (S)−W (S \ P )] ,

which implies that the claim (5) holds for S′ ⊂ S such that |S \ S′| = l+ 1 and the given

P. Since we have chosen S′ and P arbitrarily, we get the desired conclusion.
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Next, we prove the ‘if’ part. Pick any U, V ⊆ N . Let S′ = U ∩ V , S = U ∪ V , and

P = {U \ S′, V \ S′}. The condition (5) implies that

W (S)−W (S′) ≥ [W (S)−W (V )] + [W (S)−W (U)],

or equivalently, W (U) +W (V ) ≥W (S) +W (S′), as desired.

One of the good properties of a multilevel mechanism is that each agent has no in-

centive to under-report his preference. Although a multilevel mechanism is not fully

incentive compatible with truthfully reporting preference, this property is good at least

for a mechanism designer in terms of her budget.

Proposition 5. Suppose W is submodular. For all (v, e) and all i ∈ N(e), under-

reporting i’s preference is dominated by reporting his true preference.

Proof. Given (v, e) and i ∈ N(e), due to Lemma 1, the agent i’s from reporting v′i consists

of three parts:

vi(g(v′, e))− PMi (v′, e) = vi(g(v′, e)) +
∑

j∈N(e)\{i}

vj(g(v′, e))) (8)

−W (v′, Oi(e)) (9)

−
∑

j∈Fi(e)

[
W (v′, N(e))−W (v′, Oj(e))

]
. (10)

The first part (8) is maximized at v′i = vi and the second part (9) does not depend on

v′i. Since W is submodular, for all j ∈ Fi(e), if v′i < vi, then

W (v′, N(e))−W (v′, Oj(e)) ≥W (v,N(e))−W (v,Oj(e)).

Thus, if v′i < vi, then the last part (10) is less than or equals to

−
∑

j∈Fi(e)

[W (v,N(e))−W (v,Oj(e))] ,

which is from truth-telling.

Under multilevel mechanisms, under-reporting their preference is dominated, but they

may over-report their preference. The next proposition characterizes an agent’s belief

against which reporting his true preference is his best response. It turns out agents

should report their true preference if they have pessimistic beliefs about their referred

agents.

Proposition 6. For any player i ∈ N , reporting the true preference is a best response if

the player i believes that, for all v′i,

W (v′, N(e)) = W (v′, Oi(e) ∪ {i}). (11)
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Proof. It suffices to show (10) is zero. Since Oi(e)∪ {i} ⊆ Oj(e) ⊆ N(e) for all j ∈ Fi(e),
monotonicity of W implies that, for all t′i ∈ Ti,

W (v′, Oi(e) ∪ {i}) ≤W (v′, Oj(e)) ≤W (v′, N(e)).

However, the condition (11) yields that, for all j ∈ Fi(e),

W (v′, Oj(e)) = W (v′, N(e)),

as desired.

Remark. The condition (11) is implied by some particular situations. If an agent i has no

other agents to refer, it is clear that truthfully reporting is a dominant strategy. Though

i refers others, if she believes that they could also be referred by some other existing

agents, then i cannot claim a contribution from the new participants and Fi(e) = ∅ and

the condition (11) holds. Although she could exclusively refer new participants, if they

do not increase the actual social welfare then she has no incentive to tell a lie. Therefore,

if agents are both ambiguity-averse and they also cannot exclude such possibilities then

truthfully reporting their preference is a dominant strategy.

Now we study the incentive properties on revealing agents’ connection. Due to Lemma

1, incentive compatibility for an agent i on his connection is: for any v′ and any e′i ⊆ ei,

vi(g(v′, e))− PMi (v′, e) ≥ vi(g(v′, e′))− PMi (v′, e′),

or equivalently,

∆Wi(v
′, e)−∆vi(g(v′, e)) ≥ ∆Wi(v

′, e′)−∆vi(g(v′, e′)) (12)

As a preliminary result, we confirm that, for each agent, fully-revealing his connection

is his dominant strategy assuming he truthfully reports his preference.

Lemma 3. Suppose W is submodular. For any v, we have[
e′i ⊆ ei

]
=⇒ ∆Wi(v, e) ≥ ∆Wi(v, e

′)

Proof. Recall that

∆Wi(v, e) =

[
W (v,N(e))
−W (v,Oi(e))

]
−

∑
j∈Fi(e)

[
W (v,N(e))
−W (v,Oj(e))

]
and

∆Wi(v, e
′) =

[
W (v,N(e′))
−W (v,Oi(e

′))

]
−

∑
j∈Fi(e′)

[
W (v,N(e′))
−W (v,Oj(e

′))

]
.
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Take e′i ⊆ ei. Then it follows Fi(e
′) ⊆ Fi(e) and Oi(e) = Oi(e

′). Thus, ∆Wi(v, e) ≥
∆Wi(v, e

′) is equivalent to[
W (v,N(e))
−W (v,N(e′))

]
+

∑
j∈Fi(e′)

[
W (v,N(e′)) +W (v,Oj(e))
−W (v,N(e))−W (v,Oj(e

′))

]

≥
∑

j∈Fi(e)\Fi(e′)

[
W (v,N(e))
−W (v,Oj(e))

]
. (13)

Since N(e′) ∪Oj(e) = N(e) and N(e′) ∩Oj(e) = Oj(e
′) for all j ∈ Fi(e′), submodularity

of W implies: [
W (v,N(e′)) +W (v,Oj(e))
−W (v,N(e))−W (v,Oj(e

′))

]
≥ 0. (14)

Applying Lemma 2, submodularity of W implies:

W (v,N(e))−W (v,N(e′)) ≥
∑

j∈Fi(e)\Fi(e′)

[
W (v,N(e))
−W (v,Oj(e))

]
. (15)

(14) and (15) jointly implies (13), which completes the proof.

Proposition 7. Suppose W is submodular. For any agent, it is a dominant strategy to

fully reveal his connection, provided that he reports his true preference.

Proof. If agent i truthfully reports his true preference vi, then ∆vi(g(v, e)) = vi(g(v′e))−
vi(g(v′e)) = 0. Thus, the incentive compatibility condition (12) for fully revealing con-

nection is: for any i ∈ N(e) and e′i ⊆ ei,

∆Wi(v, e) ≥ ∆Wi(v, e
′). (16)

As W is submodular, Lemma 3 implies (16).

The following corollary is a direct consequence of Proposition 7.

Corollary 2. Suppose W is submodular. For any agent with no private information

about preference, it is a dominant strategy to fully reveal his connection.

Example 5. [Rivalry Good Revisited] Consider the rivalry good provision problem as in

Example 3. Fully revealing connection is a dominant strategy as long as it increases the

social welfare. Hence, as in Example 3, agent 1 refers agent 2 and agent 2 refers agent 3.

Under a multilevel mechanism, each agent’s group-wise payment is as follows:

• PG1 = W (∅)− 0 = 0− 0 = 0

• PG2 = W ({1})− v1(N) = 5− 3 = 2

• PG3 = W ({1, 2})− (v1(N) + v2(N)) = 8− 6 = 2
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which implies, agent 3 pays 2 to agent 2, agent 2 pays 2 to agent 1, and agent 1 pays

nothing to the planner. Thus their payoff is 3+2=5 for agent 1, 3-2+2=3 for agent 2, and

3-2=1 for agent 3. Now we confirm that agent 1 and agent 2 have no incentive not to

reveal their connection. Suppose agent 2 does not refer agent 3. Then agent 2’s value from

the allocation {1, 2} is 4 and he pays only W ({1})− v1({1, 2}) = 1 to agent 1. However,

he does not receive any reward from agent 3 and hence the payoff from not referring agnet

3 is 4-1=3, which is the same when he refers. Therefore, not referring is not profitable

for agent 2. Next, suppose agent 1 does not refer agent 2. His payoff from not referring

is 5, which is indifferent from referring. Thus, not referring is not profitable for agent 1.

Corollary 3. Suppose W is submodular. For any agent i ∈ N(e), it is a dominant

strategy to fully reveal his connection if for any v′ and any e′i ⊆ ei:

∆vi(g(v′, e)) ≤ ∆vi(g(v′, e′)). (M)

Remark. The condition (M) can be interpreted as Manipulation Monotonicity. Note that

∆vi(g(v′, e)) > 0 only when the manipulation by reporting v′i instead of vi is successful.

Then the condition (M) implies that a successful manipulation is harder in a larger coali-

tion. If a manipulation is successful in a larger coalition, however, it should also work in

a smaller coalition.

As a sufficient condition for the condition (M), we define submodularity of preference.

Submodular preference requires that agents’ preference is more sensitive in a smaller

coalition.

Definition 3 (Submodular Preference). An agent i’ preference is submodular (in coali-

tions), if for any vi, v
′
i, any v−i, any S, T with i ∈ S ⊆ T , and any γS ∈ Γ∗(v′, S),

γT ∈ Γ∗(v′, T ),

v′i(γS) ≥ vi(γS) =⇒ v′i(γS)− vi(γS) ≥ v′i(γT )− vi(γT )

Proposition 8. Suppose W is submodular. For any agent with submodular preference,

it is a dominant strategy to fully reveal his connection.

Remark. If an agent’s preference does not depend on the population, it automatically

satisfies submodularity. For instance in auctions without externalities, as an agent’s

valuation to the auctioned item does not depend on the other participants, referring all

the other conneted agents is a dominant strategy under a multilevel mechanism.

5 Concluding Remarks

In this paper, we considered agents’ asymmetric information about others’ connections

in mechanism design problems. Allowing asymmetric information about networks, each
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agent has an incentive not only to misreport his preference but also to conceal his con-

nection, and hence the participants are endogenously determined. In such generalized

environments, a VCG mechanism has good properties in terms of agents’ incentive prob-

lems, but it runs a deficit. Alternatively, a multilevel mechanism has been proposed and

it guarantees a nonnegative surplus.

The multilevel mechanism proposed in this paper is of course not the only one which

yields a nonnegative surplus to the mechanism designer. We can define a class of mecha-

nisms by generalizing the compensation rule. A multilevel mechanism admits an agent’s

contribution to increasing population only if it is exclusive; that is, if a new agent has

been referred by two or more existing agents, then none of them has a right to claim the

contribution of the new agent’s participation. Many other alternative rules are possible.

For instance, all agents who are related to the newcomer can split the contribution ac-

cording to a certain portion. These generalized mechanisms give agents more incentive

to refer other potential agents and still guarantee nonnegative payoffs.
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