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The spread of a novel behavior due to individual agency, as represented by a
potential function, is compared to the spread of novel behavior due to the collective
agency of those with strategic complementarities. An autonomous set of players is one
which might be reasonably expected to adopt the novelty irrespective of the choices
of those outside the set. Two forms of autonomy are compared. These are potential
autonomy and agency autonomy, which relate to the graph theoretic quantities of
close-knittedness (Young, 2011) and cohesion (Morris, 2000), respectively. Necessary
and sufficient conditions for potential autonomy to imply agency autonomy and vice
versa are given and related to different classes of coordination game.
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1. INTRODUCTION

In 18th century Paris, a boulevardier decides whether to adopt the latest fash-
ion. In 21st century Philadelphia, an economist decides whether to vote in the
AEA elections. In Seoul, a university student decides which mobile phone to pur-
chase. In each of these situations, the individuals concerned will be influenced
by the choices of those with whom they associate and interact. The diffusion
of novel behaviors in such models has been extensively studied. Two important
findings have been that insular groups of individuals who interact mainly with
one another (i) can be relatively stubborn when it comes to changing their be-
havior due to external influence (Morris, 2000), but (ii) can exhibit ‘autonomy’
(Young, 2011) in adopting innovative behaviors ahead of others. Now consider
the following situations. Two best friends go to the mall together and decide
which next generation games console to buy. A group of colleagues working in
a factory discuss and decide whether to join a strike. Some classmates decide
which social platform, say WhatsApp or WeChat, to use to organize their study
programme. These situations are similar to the previous situations but have one
important difference – they are instances of collective agency. That is, the indi-
viduals concerned are getting together and asking the question ‘what should we
do?’ rather than asking ‘what should I do?’ in isolation. Recent work in develop-
mental psychology suggests that such collaborative thinking and problem solving
is a basic human trait, manifesting itself in human infants at ages as early as 14
months (Tomasello, 2014; Tomasello and Rakoczy, 2003, and citations therein).
Therefore, the question of whether and how such behavior affects the diffusion
of innovation is of great importance.
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Institute of Economic Research, which hosted J.N. while the paper was written.
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In the current paper, we compare the spread of novel behavior due to individual
agency, as represented by a potential function, to the spread of novel behavior
due to the collective agency of those with strategic complementarities. To do
this, we use notions of autonomy. A set of players is said to be autonomous if,
for whatever reason, they can be expected to adopt a novel behavior regardless
of the strategies of players outside of the set. Potential autonomy is defined by
means of a potential function (Monderer and Shapley, 1996) that aggregates
individual incentives in a manner consistent with individual agency. A set of
players is potential autonomous if, for any fixed strategy profile of players outside
of the set, potential is maximized when all the players in the set adopt the novel
behavior. Young (2011) showed that potential autonomy depends in a positive
way on the graph theoretic property of the close-knittedness of a set of players.
Agency autonomy, introduced here, is defined by collective agency. A set of
players is agency autonomous if, for any fixed strategy profile of players outside
of the set, the payoff of every player in the set is increased by collective adoption
of the novel behavior. Agency autonomy depends in a positive way on the graph
theoretic property of the cohesion of a set of players (Morris, 2000). For the class
of symmetric 2x2 coordination games, we give necessary and sufficient conditions
for inclusion relations between the set of potential autonomous sets and the set
of agency autonomous sets for every possible network of interactions between
players. This allows us to classify games according to which form of autonomy
leads to wider adoption of the novel behavior. Furthermore, the conditions for our
inclusion relations show that the concepts of close-knittedness and cohesion are
related via some very natural boundaries between different types of coordination
game (e.g. flight to safety, stag hunt, zero off-diagonal, mammoth hunt).

Members of highly cohesive sets interact relatively little with those outside of
the set. Such sets are thus likely to be agency autonomous. That is, cohesion
can facilitate the spread of novel behavior. However, the concept of cohesion
was introduced by Morris (2000) as something that prevented contagion of a
set from the outside. How do these observations relate to one another? It has
already been remarked in Newton and Angus (2015) that while cohesion of a
set makes it resilient to external contagion, cohesion of its subsets makes it
prone to self-contagion via collective agency. Here we generalize that observation,
introducing coalitional cohesion, a generalization of cohesion. Roughly speaking,
the coalitional cohesion of a set of players is increasing in its cohesion, but
decreasing in the cohesion of any of its subsets that can exhibit collective agency.
A set of players is then robust to contagion, irrespective of the strategies of
players outside of the set, if and only if it is sufficiently coalitionally cohesive.

The paper is arranged as follows. Section 2 gives the model and defines poten-
tial autonomy and agency autonomy. Section 3 analyzes the relationship between
these concepts. Section 4 applies the concepts to trees (graphs without cycles),
sparse random graphs and the complete graph. Section 5 provides a characteri-
zation of the robustness of groups of players to contagion when the underlying
game is any symmetric 2x2 coordination game. Proofs are left to the appendix.
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A B
A 1 + β 0
B β − α 1

Figure 1.— For each combination of A and B, entries give payoffs for the
row player. α, β ∈ R, α > 0. This parameterization covers all two player, two
strategy symmetric coordination games up to affine transformation of the payoff
matrix.

2. MODEL

Consider a simple, finite graph Γ = (V,E). The vertex set V represents a
set of players. The edge set E, consisting of unordered pairs of elements of V ,
represents connections between players. If two vertices share an edge they are
said to be neighbors. The number of neighbors of a vertex i ∈ V is the degree of
i. For S ⊆ V , denote by d(S) the sum of the degrees of vertices in S. Assume
that each i ∈ V has at least one neighbor, so that d(S) > 0 for all S ⊆ V . For
T, S ⊆ V , denote by d(T, S) the number of edges (i, j) ∈ E such that i ∈ T and
j ∈ S. For notational convenience we write d({i}) as d(i) and d({i}, S) as d(i, S).

A strategy profile σ is a function σ : V → {A,B} that associates each player
with one of two strategies, A or B. Strategy B can be thought of as a status
quo and strategy A can be thought of as some novel behavior. As is standard,
let σS , σ−S denote σ restricted to the domains S and V \ S respectively. Let
σA, σB be the strategy profiles such that for all i ∈ V , σA(i) = A, σB(i) = B.
Denote by VA(σ) ⊆ V the set of players who play strategy A at profile σ and by
VB(σ) ⊆ V the set of players who play strategy B at profile σ. The payoff of a
player at profile σ is the sum of his payoffs when he plays his strategy against
each of his neighbors on the graph in the game in Figure 1. Formally, player i’s
payoff at σ is

(2.1) πi(σ) =

{
(1 + β) d(i, VA(σ)) if σ(i) = A

(β − α) d(i, VA(σ)) + d(i, VB(σ)) if σ(i) = B
.

Note that this specification admits an exact potential function (Monderer and
Shapley, 1996) given by

(2.2) Potential (σ) = (1 + α) d(VA(σ), VA(σ)) + d(VB(σ), VB(σ)).

The potential function aggregates information from the game in a way that
retains information on the incentives of players under individual agency. Specif-
ically, if we adjust the strategy of any single player, the change in his payoff
equals the change in the potential function.

However, the potential function does not retain information on the incentives
of players under collective agency. For example, a group of players may be able
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Legend

σ(i) = Bσ(i) = A

area(S) = d(S, S)

contaged perimeter(S) = d(S, VA(σ) \ S)

uncontaged perimeter(S) = d(S, VB(σ) \ S)

S

VB(σ) \ S

VA(σ) \ S

Figure 2.— Illustration of graph theoretic properties. Stars and circles
represent players playing A and B respectively. Lines (solid, dashed, dotted)
represent edges between neighboring players. In this example, d(S, S) = 7,
d(S, VA(σ) \ S) = 2 and d(S, VA(σ) \ S) = 3.

to adjust their strategies together in such a way that every member of the group
gains payoff yet potential decreases. To make this clear, it helps, as in Young
(2011), to think of d(S, S) as the area of S and of d(S, V \ S) as the perimeter
of S. Specifically, for a strategy profile σ, we can think of d(S, VA(σ) \ S) as the
contaged perimeter of S and d(S, VB(σ) \ S) as the uncontaged perimeter of S
(see Figure 2). Then, from σ such that S ⊆ VB(σ), if we switch all players in S
from B to A, the change in potential equals

α · area(S)︸ ︷︷ ︸
Internal potential

+ (1 + α) · contaged perimeter(S)− uncontaged perimeter(S)︸ ︷︷ ︸
External potential

,

whereas the change in the sum of payoffs of players in S is

2β · area(S)︸ ︷︷ ︸
Internal coordination

+ (1 + α) · contaged perimeter(S)− uncontaged perimeter(S)︸ ︷︷ ︸
Contagion

.

The contagion effect is the effect of the behavior of players outside of S on the
payoffs of S. This effect is perfectly mirrored by the potential function. Where
the expressions differ is in the generation of potential and payoffs within S itself.
The analysis of individual agency corresponds to S being a singleton, in which
case area(S) = 0 and neither potential nor payoffs are internally generated.

Potential is independent of β, so from the perspective of individual strategic
motivations, the game in Figure 1 does not change when β is varied. For example,
the set of Nash equilibria, including those in mixed strategies, is independent of
β. When collective agency is considered, this is clearly no longer the case, and
different values of β give very different incentives. If β < 0, then coordinating on
strategy B provides higher payoffs than coordinating on strategy A, so collective
agency should work towards retaining strategy B even as differences in potential
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Co(S)

− 1
Upper bound for N.T.U.

d(S,V \S)
2 d(S,S)

Upper bound for T.U.

1− 1

C̃o(S)

Lower bound for N.T.U.

− d(S,V \S)
2 d(S,S) Lower bound for T.U.

d(S,V \S)
d(S,S)

1
CK(S)

− 2
d(S,VB(σ)\S)−d(S,VA(σ)\S)

d(S,S)+d(S,VA(σ)\S)

d(S,VB(σ)\S)−d(S,VA(σ)\S)
2 d(S,S) T.U. Constraint

maxi∈S
d(i,VB(σ)\S)−d(i,VA(σ)\S)

d(i,S)

N.T.U. Constraint

distance = 0
iff S is balanced

(Lemma 2)

distance = 0
iff VA(σ) \ S = ∅

distance = 0
iff S is homogeneous

(Lemma 2)

Agency Autonomous Area
(Remark 2)

Potential
Autonomous

Area
(Remark 1)

plays Aplays B
Potential higher when S

Figure 3.— Fixing strategies of players outside S, if all players in S switch
from B to A, the sum of their payoffs (resp. the payoff of each player in S)
increases if and only if (α, β) lies above TU Constraint (resp. NTU Constraint)
which is weakly decreasing and linear (resp. weakly decreasing, piecewise linear,
convex). Upper (lower) bounds for these constraints are attained when all players
outside S play B (A). Areas in which such a switch increases (decreases) potential
are illustrated, as are conditions for autonomy.

promote the adoption of strategy A. If β > 0, then agency and potential work
in the same direction to promote the spread of strategy A. The expressions
above indicate that potential change and the sums of payoff changes are precisely
aligned when β = α/2. However, this does not consider that an increase in the
sum of payoffs of a set of players is not enough to guarantee that every player in
the set gains. Collective choice by a set of players will be constrained by those
who do worst out of any anticipated change.

This last point is illustrated in Figure 3, which uses the expressions given above
to illustrate the conditions on α and β under which a switch by S from B to A will
(i) increase the sum of the payoffs of players in S and so be a rational coalitional
move under transferable utility (TU) constraints, (ii) increase the payoff of every
player in S and so be a rational coalitional move under non-transferable utility
(NTU) constraints, (iii) increase potential. For now, the reader should ignore the
elements of Figure 3 that are as yet undefined.
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2.1. Autonomy

To compare individual and collective agency we shall use ideas of autonomy.
A set of players S is autonomous if there is some reasonable expectation that
players in the set will come to play A regardless of the choices of players outside
of S. There are different ways in which such a reasonable expectation might
arise. We examine two of them. Potential autonomy considers the behavior of a
group as determined by an aggregation of individual incentives in a way that is
consistent with individual agency.

Definition 1 S ⊆ V is potential autonomous if, for all σ such that σS 6= σAS ,

Potential (σAS , σ−S) > Potential (σ).

That is, S is potential autonomous if, for any strategies played by players out-
side of S, a higher potential is attained when players in S all play A than when
they play any other strategies. It is known that, under asynchronous log-linear
learning dynamics, potential maximizing strategy profiles are observed more fre-
quently than other strategy profiles in the long run (Blume, 1993). Moreover, if
S is potential autonomous then the hitting time for strategy profiles such that
σ(i) = A for all i ∈ S can be bounded above independently of the rest of the
network. Convergence to A is fast for potential autonomous sets (Young, 2011).

Young (2011) shows that potential autonomy depends on the graph theoretic
property of close-knittedness, which measures how well integrated each subset
of a group of players is with the rest of the group. The close-knittedness of a set
S ⊆ V is given by

CK(S) := min
S′⊆S

d(S′, S)

d(S′)
.

Remark 1 [Young, 2011] S is potential autonomous if and only if CK(S) > 1
2+α .

Our second concept of autonomy is agency autonomy. Agency autonomy does
not require aggregation of incentives but instead considers collective agency. If,
given the choice, all members of S would like to play A, conditional on others in
S also playing A, regardless of what players in V \S do, we say that S is agency
autonomous.

Definition 2 S ⊆ V is agency autonomous if, for all σ, for all i ∈ S,

πi(σ
A
S , σ−S) > πi(σ

B
S , σ−S).

Similarly to potential autonomy, agency autonomy can be related to a graph
theoretic concept, cohesion (Morris, 2000), which measure how well integrated
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into S is the least well integrated member of S. The cohesion of a set S is given
by

Co(S) := min
i∈S

d(i, S)

d(i)
.

As we consider coordination games, the inequality in the definition of agency
autonomy is hardest to satisfy when σ = σB . Then, for all i ∈ S, we have
πi(σ

A
S , σ

B
−S) = (1 + β)d(i, S) and πi(σ

B
S , σ

B
−S) = d(i), so the condition in the

definition of agency autonomy becomes (1 + β)d(i, S) > d(i). Rearranging and
taking the minimum over all i ∈ S, we have

Remark 2 S is agency autonomous if and only if Co(S) > 1
1+β .1

Remarks 1 and 2 are illustrated in Figure 3, the shaded areas in the Figure
showing which values of α and β correspond to S being potential autonomous
and agency autonomous respectively.

The reader may note that potential autonomy is defined by individual agency
but depends on close-knittedness, which measures the integration of the least well
integrated group within S. In contrast, agency autonomy is defined by collective
agency but depends on cohesion, which measure the integration of the least well
integrated individual within S. This contrast arises because agency autonomy
does not aggregate individual incentives, so that each individual in S holds a veto
with regard to collective changes in strategy. If we were to instead consider the
change in the sum of payoffs of S, then Co(S) would be replaced by 2d(S, S)/d(S)

in Remark 2.

3. RELATIONS BETWEEN POTENTIAL AUTONOMY AND AGENCY AUTONOMY

In order to examine the relationship between potential autonomy and agency
autonomy, we shall first establish some foundational results that link close-
knittedness and cohesion. That Co(.) is bounded below by CK(.) is remarked in
Young (2011). We show that it is also bounded above by 2CK(.).

Lemma 1 For given Γ = (V,E), S ⊆ V , 0 ≤ CK(S) ≤ Co(S) ≤ 2CK(S) ≤ 1.

1As Co(S) is nonnegative, by Remark 2, agency autonomy is only possible when β > 0.
It is possible to define a concept of reverse-agency autonomy under which sets wish to play
B, regardless of the choices of those outside of the set. This is only possible for β < 0. The
upward sloping boundaries (in α-β space) for inclusion relations between potential autonomy
and agency autonomy that we obtain in Propositions 1,2,3 are instead downwards sloping
boundaries for inclusion relations between potential autonomy and reverse-agency autonomy.
The analysis repeats much of what we do for agency autonomy and so is omitted from the
current exposition.
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We say that a set of players S is homogeneous if no subset of S is less well
integrated with S than S is with itself. That is, S is homogeneous if

CK(S) =
d(S, S)

d(S)
.

By Remark 1, to check whether a homogeneous set is potential autonomous only
requires us to check whether d(S, S)/d(S) > 1/(2 + α).

Define anti-cohesion as how well integrated into S is the most well integrated
member of S.

C̃o(S) = max
i∈S

d(i, S)

d(i)
.

When cohesion equals anti-cohesion, Co(S) = C̃o(S), then every member of
S is equally well integrated into S and we say that S is balanced. It follows
immediately from this definition that S is balanced if and only if d(i, S)/d(i) is
constant across all i ∈ S. For sets with a given proportion of within-set interac-
tions, homogeneous sets maximize close-knittedness and balanced sets maximize
cohesion.

Lemma 2 CK(S) ≤ d(S,S)
d(S) , with equality if and only if S is homogeneous.

Co(S) ≤ 2d(S,S)
d(S) , with equality if and only if S is balanced.

The bounds in Lemma 2 (illustrated in Figure 3) can then be used to show that
when S is balanced it must also be homogeneous, and that the ratio of cohesion
to close-knittedness attains its upper bound. This is useful, as balance is defined
by equality between d(i, S)/d(i) for |S| possible i ∈ S, whereas homogeneity is
defined by 2|S| possible S′ ⊆ S, so balance will usually be easier to check than
homogeneity.

Lemma 3 For given Γ = (V,E), if S ⊆ V is balanced, then S is homogeneous
and Co(S) = 2CK(S).

We are now in a position to compare potential autonomy and agency auton-
omy. The first proposition concerns a condition on α and β under which, for
every graph Γ = (V,E), every potential autonomous set is agency autonomous.

Proposition 1 β ≥ 1 + α if and only if for all Γ = (V,E), every potential
autonomous S ⊆ V is also agency autonomous.

That is to say, when β ≥ 1 + α, collective agency can contribute at least
as much, possibly more, to the spread of novel behavior (strategy A) as can
individual agency combined with the perturbations necessary to attain local
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Figure 4.— Propositions 1, 2, 3 illustrated in α-β space. The ordinal ranking
of payoffs in the game changes at β = 1 + α, β = α, β = 0, β = −1. At β = α/2,
if σS changes, then the consequent change in the sum of the payoffs of players
in S exactly equals the change in potential.

potential maximizing profiles. Considering our games in α-β space (Figure 4),
we see that β ≥ 1 +α corresponds to the area bounded below by the ‘mammoth
hunt’ game, which is similar to a ‘stag hunt’, but with the payoff for stag-stag
increased to make stag-stag the potential maximizing profile and hence the risk-
dominant Nash equilibrium. In Figure 4, in the area below the mammoth hunt
the ordinal payoff ranking of the game changes, so Proposition 1 tells us that
the area of Figure 4 in which potential autonomy implies agency autonomy
corresponds exactly to the area in which the payoff ranking of our game has
(A,A) preferred to (B,A) to (B,B) to (A,B).

To understand why the bound in Proposition 1 is β = 1 + α, consider a set
T ⊆ V that is sufficiently well integrated to be both potential autonomous and
agency autonomous. Let the set S = T ∪ {i} consist of T together with a single
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player i /∈ T . We can think of i as the least well integrated member of S. Now,
given that T is potential autonomous, a necessary and sufficient condition for S
to be potential autonomous is that, starting from (σAT , σ

B
−T ), potential increases

when player i switches to strategy A. From (2.2), this condition is

(3.1) (1 + α) d(i, T )− d(i, V \ T ) = (2 + α) d(i, T )− d(i) > 0.

Given that T is agency autonomous, we have (see Footnote 1) that β > 0. This
implies that strategy pair (A,A) gives a higher payoff than (A,B), so players in
T will never be deterred from switching to A by the prospect of player i switching
with them. Therefore, a necessary and sufficient condition for S to be agency
autonomous is that, starting from σB , the payoff of player i increases when all
of the players in S switch to A. From (2.1), this condition is

(3.2) (1 + β) d(i, T )− d(i) > 0.

Comparing (3.1) and (3.2), we see that the conditions are equivalent only when
β = 1 + α. In all other cases, one of the conditions is easier to satisfy than the
other.

In the above discussion, the threshold β = 1+α arises because, by considering
general values of d(i, T ), d(i, V \ T ), we allow player i to be arbitrarily well
integrated in S, and thus Co(S) to be arbitrarily low. At the other extreme,
we can mandate that S be balanced so that every member of S is equally well
integrated in S. As a consequence of balance, the individual incentives of each
player in S are perfectly aligned with the goal of maximizing the sum of payoffs
over all of the players in S. As we found in Section 2, this corresponds to a
threshold of β = α/2.

Proposition 2 β ≥ α/2 if and only if for all Γ = (V,E), every balanced,
potential autonomous S ⊆ V is also agency autonomous.

For balanced sets, Proposition 2 expands the implications of Proposition 1 to
a larger class of games, such as when β = α and the game is a coordination game
with zero payoffs off the main diagonal.

Next consider the reverse problem, to find conditions under which agency
autonomy implies potential autonomy. The bounding case will be when the con-
dition for agency autonomy (Remark 2) is as easy as possible to satisfy relative
to the condition for potential autonomy (Remark 1). This case arises when S is
balanced. To see this, consider that Co(S) = 2CK(S) for balanced S (Lemma
3), but Co(S) ≤ 2CK(S) for all S (Lemma 1), so for given α, β, the condition
for agency autonomy is easiest to satisfy relative to the condition for potential
autonomy when S is balanced. So we must consider balanced S. As discussed
before Proposition 2, this makes the problem simple, and we once again have
β = α/2 as a bound.
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Proposition 3 β ≤ α/2 if and only if for all Γ = (V,E), every agency au-
tonomous S ⊆ V is also potential autonomous.

So, for low values of β, any behavioral process that works towards potential
maximization can contribute at least as much, possibly more, to the spread of
novel behavior (strategy A) as can collective agency. Proposition 3 is trivially
true for β ≤ 0, as in this case there exist no agency autonomous sets. This class
includes β = 0, where neither Nash equilibrium of the game Pareto dominates
the other, and β = −1, the stag hunt. For the latter case, we would actually
expect any collective agency to work against the adoption of strategy A, as
when β = −1, any individual’s payoff from strategy A is independent of whether
or not others play A.

So we have completed a simple comparison of potential autonomy and agency
autonomy. Both forms of autonomy would seem to be important, giving contrast-
ing ways of considering the behavior of groups. Potential autonomy aggregates
individual incentives in a way that is consistent with individual agency. Agency
autonomy leaves individual incentives as they are, but aggregates agency. We
now move to consider these concepts for a particular class of graphs, in the
process proving some results that are of independent graph theoretic interest.

4. EXAMPLES

4.1. Trees

In this section we relax the assumption that Γ = (V,E) be finite and require
only that there be a finite upper bound on the degree of vertices in Γ. For
finite S ⊆ V , CK(S), Co(S), homogeneity, balancedness and agency autonomy
remain well defined. We extend the definition of potential autonomy by saying
that finite S ⊆ V is potential autonomous if it is potential autonomous on any
finite subgraph of Γ that includes S and all adjacent edges (i, j) ∈ E, i ∈ S.

A tree is a connected graph that contains no cycles. An n-regular tree is the
unique (up to isomorphism) tree where each vertex has degree n, where n is a
positive integer. For given Γ = (V,E) and S ⊆ V , we say that S is connected if
the induced subgraph with vertex set S and edge set ES = {(i, j) ∈ E : i, j ∈ S}
is connected. For an n-regular tree, any finite, connected S, |S| ≥ 2, will always
include at least one vertex with precisely one neighbor in S. Therefore, Co(S) =
1/n. To find CK(S), we first prove a result on homogeneity.

An n-quasiregular tree is a connected component of any graph constructed by
removing up to n edges from the n-regular tree. In particular, all except for at
most n vertices of an n-quasiregular tree have degree n, and no vertices have
a degree larger than n. A quasiregular tree is an n-quasiregular tree for some
n ∈ N. The n-star is the tree with n+ 1 vertices where one vertex is adjacent to
all of the others.
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(n -star for n ≥ 3)

Figure 5.— Exceptional trees

Proposition 4 Let Γ = (V,E) be a tree. Every finite, connected S ⊆ V is
homogeneous if and only if Γ is quasiregular or is one of the exceptional trees
illustrated in Figure 5.

One implication of this result is that every finite, connected S on an n-regular
tree is homogenous and

CK(S) =
d(S, S)

d(S)
=
|S| − 1

|S|n
.

So CK(S) is increasing in |S|. For |S| = 2, CK(S) = 1/2n and as |S| → ∞,
CK(S) → 1/n. Given that, for |S| ≥ 2 , Co(S) = 1/n, these are, according to
the bounds in Lemma 1, the lowest and highest values that CK(S) could take.
Notice that Co(S) = 2CK(S) only when |S| = 1 or 2, so by Lemma 3, if |S| > 2,
then S cannot be balanced. We have

Lemma 4 Let Γ = (V,E) be an n-regular tree. Let S ⊆ V be finite and con-
nected. Then S is balanced if and only if either |S| = 1 or |S| = 2.

Although Lemma 4 concerns n-regular trees,2 it can be used to prove the
analogue of Proposition 4 for the balance property on general trees.

Proposition 5 Let Γ = (V,E) be a tree. Every finite, connected S ⊆ V is
balanced if and only if Γ is the (unique) tree with |V | = 2.

2For general trees, finite, connected S ⊆ V , |S| ≥ 2, there will always be some i ∈ S such
that d(i, S) = 1. Let n := d(i). By definition of balancedness, we then have that S is balanced
if and only if d(j, S)/d(j) = 1/n for all j ∈ S. If the tree is regular, then d(j) = n for all j ∈ S,
so this condition reduces to d(j, S) = 1 for all j ∈ S. This is only possible when |S| = 2 and is
thus an alternative proof of Lemma 4.
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Turning our attention once more to n-regular trees, Remarks 1, 2 and our
expressions for Co(S), CK(S) combine to show that for potential autonomy to
imply agency autonomy for given finite, connected S, |S| ≥ 2, we require

(4.1) β ≥ 1 + α− 2 + α

|S|
.

As the right hand side of (4.1) is increasing in |S| and approaches 1 + α as
|S| → ∞, it follows that if we wish potential autonomy to imply agency autonomy
for any finite, connected S, we require β ≥ 1 + α. That is, for n-regular trees,
the bound in Proposition 1 is attained. In contrast, if |S| = 2, then, by Lemma
4, S is balanced, so by Proposition 2, we only require β ≥ α/2.

4.2. Random Graphs

An ensemble of random graphs is a probability measure over a set of graphs.
Popular random graph ensembles include Erdös-Renyi graphs, random regular
graphs and the Configuration Model (for definitions, see Bollobás, 2001). For
the named ensembles, if in addition to randomly choosing a graph, we randomly
choose a vertex within the graph, then the probability that the neighborhood
of the chosen vertex is a random tree approaches one as the number of vertices
increases. For a precise definition of this convergence, see Dembo and Montanari
(2010), whose definition of random tree we adapt as follows.

Let P = {Pn : n ∈ N} be a probability measure on vertex degrees, with
finite, positive first moment, and denote by ρn = nPn/

∑∞
l=0 lPl its size-biased

version. Let P0 = P1 = 0, so that every vertex has degree at least two. Let
>(P,m) denote the ensemble of random trees (V,E) generated as follows. Start
from a root vertex i1 ∈ V . Choose an integer n according to P , then add edges
between i1 and n new vertices that we add to V . These n vertices constitute the
next generation. Continue recursively as follows. For each vertex in the previous
generation, generate an integer n independently according to ρ, and connect the
vertex to n− 1 new vertices. Repeat m times.

Let Pm give probabilities over pairs (Γ, S), where Γ = (V,E) and S ⊆ V ,
|S| = m. Let Pm be determined by the following rule. First, randomly choose
Γ according to >(P,m). Denote the root vertex by i1 ∈ V and let S1 = {i1}.
Then, iterating for r = 2, . . . ,m, uniformly at random choose j ∈ Sr−1 such that
j has at least one neighbor who is not in Sr−1. Uniformly at random choose a
neighbor of j, say k, who is not in Sr−1 and let Sr = Sr−1 ∪ {k}. Thus Pm gives
probabilities over sets S, the neighborhoods of which are given by random trees.

Consider Pm as m becomes large. Either there exists a maximum degree of a
vertex, say n̂, in which case, with high probability, Co(S) and CK(S) approach
1/n̂; or there exists no maximum degree, in which case Co(S) and CK(S) ap-
proach zero. In either case, with high probability, Co(S) and CK(S) take similar
values, and we have the following lemma.
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Lemma 5 For all ε > 0,

lim
m→∞

Pm
[ {

(Γ, S) : Co(S)− CK(S) > ε
} ]

= 0.

When Co(S) ≈ CK(S), if β < 1 +α, then the condition in Remark 1 is easier
to satisfy than the condition in Remark 2. Consequently, we can use Lemma 5
to show that if β < 1 + α, then, as S becomes large, the probability of S being
agency autonomous but not potential autonomous approaches zero.

Proposition 6 For given Γ, let Tα,β,Γ be the set of all S ⊆ V that are agency
autonomous but not potential autonomous. If β < 1 + α, then

lim
m→∞

Pm
[ {

(Γ, S) : S ∈ Tα,β,Γ
} ]

= 0,

So for large, connected S, β = 1 +α provides a tight bound between potential
autonomy implying agency autonomy (Proposition 1) and vice versa (Proposition
6). Thus (random) trees are amongst the graphs least susceptible to contagion
driven by collective agency as compared to contagion driven by differences in
potential.

4.3. Complete Graphs

Γ = (V,E) is complete if {i, j} ∈ E for all i, j ∈ V , i 6= j. For all S ⊆ V , i ∈ S,
we have d(i, S) = |S| − 1, d(i) = |V | − 1. Therefore, for all S ⊆ V , i ∈ S,

d(i, S)

d(i)
=
|S| − 1

|V | − 1
= Co(S),

so S is balanced. Furthermore, the relationship between completeness and bal-
ance goes in both directions. The complete graph is the unique graph for which
every (connected) S ⊆ V is balanced.

Lemma 6 Γ is complete if and only if every connected S ⊆ V (alternatively,
every S ⊆ V ) is balanced.

For balanced S, β = α/2 is a tight bound between potential autonomy imply-
ing agency autonomy (Proposition 2) and vice versa (Proposition 3). Thus the
complete graph is amongst the graphs most susceptible to contagion driven by
collective agency as compared to contagion driven by differences in potential.
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5. ROBUSTNESS TO CONTAGION

Let Ω, a set of finite subsets of V , be a set of feasible coalitions. Assume that if
S is a feasible coalition (S ∈ Ω), then any subset of S is also a feasible coalition
(T ⊆ S =⇒ T ∈ Ω). A set S is robust to contagion by strategy A if, no matter
the strategies of players outside of S, given that all i ∈ S are playing B, no
feasible coalition within S will want to switch to A.

Definition 3 S ⊆ V is robust to contagion if, for all σ, there does not exist
T ⊆ S, T ∈ Ω such that for all i ∈ T ,

(5.1) πi(σ
A
T , σ

B
S\T , σV \S)− πi(σBS , σV \S) > 0.

Consider the binding case when all players outside of S are already playing
strategy A. Whether a feasible coalition T ⊂ S will switch to strategy A depends
on the incentives of the member of T who has the least to gain from the switch.
This will be a player in T who is well integrated in S but not too well integrated
in T . If this player is sufficiently integrated in S relative to T then he will veto
any switch by T to strategy A. For S to be robust to contagion, all T ⊆ S, T ∈ Ω
must contain such a pivotal player. Of these pivotal players, there will exist one
who is least integrated in S relative to T . The feasible coalition in which this
player is pivotal would be the first domino to fall. The level of integration of this
player in S relative to T is the coalitional cohesion of S.

CoCo(S, α, β) := min
T⊆S
T∈Ω

max
i∈T

d(i, S)

d(i)
− 1 + β

2 + α

d(i, T )

d(i)
.

Proposition 7 S is robust to contagion if and only if CoCo(S, α, β) ≥ 1+α
2+α .

Roughly speaking, S must be cohesive enough to avoid contagion from the
outside, but not contain subgroups which are sufficiently cohesive themselves
to wish to switch to A together (see Figure 6). Note that if Ω is just the set
of singletons, then CoCo(S, α, β) = Co(S) and we have Co(S) ≥ 1+α

2+α as the
condition in Proposition 7, which is effectively the threshold in Proposition 1 of
Morris (2000). Similarly, for the class of ‘panic’ games (β ≤ −1) bounded above
by the stag hunt in Figure 4, the minimum in CoCo(S, α, β) is attained when T
is a singleton and we again have that coalitional cohesion equals cohesion.

Note that CoCo(S, α, β) is, in general, not independent of the game parameters
α and β. However, it is indeed independent for several salient values of β, such
as β = −1 (stag hunt), β = α/2 (potential change = change in sum of payoffs),
and β = 1 + α (mammoth hunt). This characterization extends Proposition 3
of Newton and Angus (2015), which effectively deals with the case β = α (zero
payoff off-diagonal). When β = 1 +α (mammoth hunt), the weightings of d(i, S)
and d(i, T ) in the expression for CoCo(S, α, β) are identical. This is the case of
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S

T

T ′ = S′

Co(S) = 2
3

= Co(S′)

CoCo(S, α, β) = 2
3
− 1+β

2+α
1
3

CoCo(S′, α, β) = 2
3
− 1+β

2+α
2
3

Figure 6.— Let Γ = (V,E) contain the subgraphs on vertex sets S and S′

shown above. Let Ω be the set of cliques, sets T ⊆ V such that every member of
T is a neighbor of every other member of T . If β > −1, then values for cohesion
and coalitional cohesion are as given above. Note that although S and S′ are
equally cohesive, more integrated coalitions are possible within S′ than within S
(d(i, T ′)/d(i) = 2/3 for i ∈ T ′, whereas d(i, T )/d(i) = 1/3 for i ∈ T ). Consequently, S′

is less coalitionally cohesive than S. If β ≤ −1, then coalitional cohesion equals
cohesion as discussed in the text.

a status quo strategy that gives a constant payoff, so that Proposition 7 in this
case is effectively Lemma 1 of Reich (2016).

Unions of robust sets are not necessarily robust. Consider S, S′ that are robust
to contagion. Let i ∈ S, j ∈ S′ and T = {i, j} ∈ Ω. If i and j switch from B to
A together, each will gain additional payoff β from the edge that they share. If
i had already switched to A, then, by switching to A, j would gain additional
payoff 1 + α from his edge shared with i. Therefore, if β > 1 + α, the incentive
for j to participate in a joint switch together with i is greater than the incentive
for j to switch after i has already switched. Consequently, it is possible that
S∪S′ is not robust to contagion. If β ≤ 1+α, then this logic is reversed, so that
robustness of S, S′ implies robustness of S ∪ S′.

Proposition 8 Let α be a rational number. Then β ≤ 1 + α if and only if for
all Γ = (V,E), Ω, any S, S′ ⊆ V which are robust to contagion have a union
S ∪ S′ which is also robust to contagion.

It is possible to build on Proposition 8 and the intuition behind it to give
results on dynamic processes of strategic updating. For example, when V is
finite and β ≤ 1 + α, there exists a largest set that is robust to contagion. One
might then expect that, starting from σB , a myopic coalitional updating rule
would eventually converge to a profile at which all players outside of this set
play A and all players inside the set play B. The approach of the current paper
has been to abstain from discussion of any particular rule for strategy updating,
so we leave such analysis to other work.
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APPENDIX A: PROOFS

Proof of Lemma 1:

2CK(S) = 2 min
S′⊆S

d(S′, S)

d(S′)
= 2 min

S′⊆S

∑
i∈S′ d(i, S \ S′) + 1

2
d(i, S′)∑

i∈S′ d(i)

≥ 2 min
S′⊆S

∑
i∈S′

1
2
d(i, S \ S′) + 1

2
d(i, S′)∑

i∈S′ d(i)
= min
S′⊆S

∑
i∈S′ d(i, S)∑
i∈S′ d(i)

≥︸︷︷︸
by mediant
inequality

min
S′⊆S

min
i∈S′

d(i, S)

d(i)
= min
i∈S

d(i, S)

d(i)︸ ︷︷ ︸
=Co(S)

≥ min
S′⊆S

d(S′, S)

d(S′)
= CK(S).

Q.E.D.

Proof of Lemma 2: The result for CK(S) follows by definition. For Co(S),

Co(S) = min
i∈S

d(i, S)

d(i)
≤︸︷︷︸

by mediant
inequality

∑
j∈S d(j, S)∑
j∈S d(j)

=
2 d(S, S)

d(S)
,

and

S balanced⇔ min
i∈S

d(i, S)

d(i)
= max

i∈S

d(i, S)

d(i)
⇔ ∀ i, j ∈ S,

d(i, S)

d(i)
=
d(j, S)

d(j)

⇔︸︷︷︸
by mediant
inequality

∀ i ∈ S,
d(i, S)

d(i)
=

∑
j∈S d(j, S)∑
j∈S d(j)

=
2 d(S, S)

d(S)
⇔ Co(S) =

2 d(S, S)

d(S)
.

Q.E.D.

Proof of Lemma 3:

CK(S) ≥︸︷︷︸
by Lemma 1

1

2
Co(S) =︸︷︷︸

by Lemma 2

d(S, S)

d(S)
≥ min
S′⊆S

d(S′, S)

d(S′)
= CK(S)

Q.E.D.

Definition 4 Let P(Γ, α) denote the set of potential autonomous sets and A(Γ, α) denote
the set of agency autonomous sets.

Proof of Proposition 1: If β ≥ 1 + α, S ∈ P(Γ, α), then

Co(S) ≥︸︷︷︸
by Lemma 1

CK(S) >︸︷︷︸
by Remark 1

1

2 + α
≥︸︷︷︸

as β≥1+α

1

1 + β
.

so by Remark 2, we have that S ∈ A(Γ, β).
To show that the bound on β is tight, for any β < 1 + α we construct a graph Γ = (V,E)

which includes a set S ⊆ V such that S ∈ P(Γ, α) but S /∈ A(Γ, β). Consider Γ that includes a
clique S ⊆ V . Let i ∈ S be the only vertex in S which has any neighbors outside of S. Denote
T = S \ {i}.

Note that Co(T ) = C̃o(T ) = (|T | − 1)/|T |, so T is balanced and, by Lemma 3, Co(T ) =
2CK(T ). So as |T | → ∞, Co(T ) → 1 and CK(T ) → 1/2, implying that for large enough |T |,
T is agency autonomous and potential autonomous.

If T is potential autonomous, then S is potential autonomous if and only if, from (σAT , σ
B
−T ),

potential increases when player i switches to A. Using (2.2), this condition is

|T | (2 + α)− d(i) > 0.(A.1)
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If T is agency autonomous, then S is agency autonomous if and only if, from σB , the payoff
of player i increases when S switches to A. Using (2.1), this condition is

|T | (1 + β)− d(i) > 0.(A.2)

Therefore, for any β < 1 + α, |T | and d(i) can be chosen such that |T | is large enough that
T is potential autonomous, and the ratio of |T | to d(i) is such that (A.1) holds but (A.2) does
not. So S is potential autonomous but not agency autonomous. Q.E.D.

Proof of Proposition 2: If β ≥ α/2, S ∈ P(Γ, α), S is balanced, then

Co(S) =︸︷︷︸
by balance

and Lemma 3

2CK(S) >︸︷︷︸
by Remark 1

2

2 + α
≥︸︷︷︸

by β≥α/2

1

1 + β
,

so by Remark 2, we have S ∈ A(Γ, β).
Now assume β < α/2. Let Γ = (V,E) be complete. It follows that the induced subgraph on

any set of vertices S is also complete. Therefore, for any S ⊆ V ,
d(i,S)
d(i)

=
|S|−1
|V |−1

= Co(S) for

all i ∈ S, so S is balanced.
If β ≤ 0, then by Remark 2 and Lemma 1, A(Γ, β) = ∅. However, as any S ⊆ V is balanced,

V is balanced and

CK(V ) =︸︷︷︸
by balance

and Lemma 3

1

2
Co(V ) =︸︷︷︸

by balance
and Lemma 2

d(V, V )

d(V )
=

1

2
>︸︷︷︸

as α>0

1

2 + α
,

hence, by Remark 1, we have that V ∈ P(Γ, α) and the inclusion fails.
If 0 < β < α/2, then we have 2

2+α
< 1

1+β
. Choose |V |, S ⊆ V , such that 2

2+α
< Co(S) <

1
1+β

. By Remark 2 we have that S is not agency autonomous. As S is balanced, by Lemma

3 we have Co(S) = 2CK(S). Therefore CK(S) > 1
2+α

and by Remark 1 we have that S is

potential autonomous. Q.E.D.

Proof of Proposition 3: If β ≤ α/2, S ∈ A(Γ, β), then

CK(S) ≥︸︷︷︸
by Lemma 1

1

2
Co(S) >︸︷︷︸

by Remark 2

1

2

1

1 + β
≥︸︷︷︸

by β≤α/2

1

2 + α

so S ∈ P(Γ, α) by Remark 1.
If β > α/2, similarly to the proof of Proposition 2, let Γ = (V,E) be complete so that any

S ⊆ V is balanced and Co(S) =
|S|−1
|V |−1

. Choose |V |, S ⊆ V , such that 2
2+α

> Co(S) > 1
1+β

.

By Remark 2 we have that S is agency autonomous. As S is balanced, by Lemma 3 we have
Co(S) = 2CK(S). Therefore CK(S) < 1

2+α
and by Remark 1 we have that S is not potential

autonomous. Q.E.D.

Proof of Proposition 4: Let n be the maximal degree of any vertex in Γ. By the assumption
of the model that every vertex has at least one neighbor, we have n > 0. Observe that an n-
quasiregular tree is always infinite if n > 2.

(=⇒) Assume that Γ is an infinite tree that is not quasiregular. We construct a pair of subsets
S′ ⊂ S of the vertex set of Γ as follows, depending on whether Case (i) or Case (ii) holds.

Case (i). There exist only finitely many vertices {v1, ..., vN} in Γ of degree strictly less than
n. By definition of n-quasiregularity, we must have d({v1, ..., vN}) < nN − n. Let P be the
smallest subtree in Γ containing all vertices in the set {v1, ..., vN}. Let v be any vertex in ΓrP
that is a neighbor of some vertex in P . Let S be the smallest subtree in Γ containing both P
and v.

Case (ii). There exist infinitely many vertices in Γ of degree strictly less than n. Let v be
any vertex in Γ of maximal degree n. Since Γ is infinite, there exists at least one connected
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component C0 of Γ r {v} that contains infinitely many vertices of degree strictly less than n.
Take any n + 1 of these vertices in C0, denote them {w1, ..., wn+1}. Let S be the smallest
subtree in Γ containing all vertices in the set {v, w1, ..., wn+1}.

In both cases, denote the vertex set of S by S, and let k := |S|. By construction, we have the
inequality d(S) < nk − n. Let S′ be the singleton set consisting only of v. Recall that v ∈ S
has maximal degree n and is adjacent to precisely one other vertex in S. Then we have

d(S, S)

d(S)
>

k − 1

nk − n
=

1

n
=
d(S′, S)

d(S′)

and so S is not homogeneous.

Now assume that Γ is a finite tree that is not quasiregular and that every finite, connected
S ⊆ V is homogeneous. Let v be any vertex in Γ of maximal degree n, with adjacent edges
{e1, ..., en}. Consider the set of connected components {C1, ...,Cn} of the graph Γr{v, e1, ..., en}.
For all i ∈ {1, ..., n}, let Ci denote the vertex set of Ci and let ci := |Ci|. If d(Ci) < nci − n
for some i ∈ {1, ..., n} then the result follows from the same arguments as in Case (ii) where
Γ is infinite, taking S to be Ci ∪ {v} and S′ to be {v}.

Now consider the case of d(Ci) ≥ nci−n for all i ∈ {1, ..., n}. This greatly limits the possibilities
for what Γ can be. Since each Ci is a finite tree, at least one vertex in each Ci must have
degree 1 in Γ. Hence, for all i ∈ {1, ..., n}, d(Ci) must equal either nci − n or nci − (n − 1).
What possible finite trees Ci and Γ satisfy this condition?

If n = 3 then the only valid possibility for such a Ci is either a single vertex or the unique
tree on two vertices, and hence the only possibilities for Γ are exceptional trees as displayed
in Figure 5. If n > 3 then the only valid possibility for such a Ci is a single vertex, and hence
the only possibility for Γ is the n-star graph (also an exceptional tree displayed in Figure 5).
Since all finite trees with n < 3 are quasiregular (they are all subtrees of the 2-regular tree)
we may ignore the case n < 3.

(⇐=) Assume Γ is quasiregular (so it must be n-quasiregular). Let T be any finite subtree of Γ,
with vertex set T , and let T ′ be any proper subset of T . Denote l := |T | and l′ := |T ′|. Observe
that d(T, T ) = l − 1 and d(T ′, T ) ≥ l′ (since T is a tree and l′ < l). Moreover, d(T ) ≥ nl − n
(by definition of n-quasiregularity) and d(T ′) ≤ l′n. Summarising, we have

d(T, T )

d(T )
≤

l − 1

nl − n
=

1

n
=

l′

l′n
≤
d(T ′, T )

d(T ′)

and so T is homogeneous.

It remains to check that every possible coalition in each exceptional tree in Figure 5 is indeed
homogeneous. We check this for the n-star, and leave it as an easy exercise to the reader to
check the remaining exceptional trees.

Let U , with vertex set U , be any subtree of the n-star, where n ≥ 3. If U consists of only
a single vertex then it is trivially homogeneous, so without loss of generality assume that U
contains the unique vertex v of degree n and u ≥ 0 vertices of degree 1. Let U ′ be any subset
of U . Say U ′ contains u′ ≤ u vertices of degree 1. If v /∈ U ′ then d(U ′, U) = d(U ′) = u′ and if
v ∈ U ′ then d(U ′, U) = d(U,U) = u and d(U ′) = u′ + n. In either case, we have

d(U,U)

d(U)
=

u

u+ n
≤
d(U ′, U)

d(U ′)

and so U is homogeneous. Q.E.D.

Proof of Lemma 4: Immediate from discussion in the text. Q.E.D.

Proof of Proposition 5: Let Γ = (V,E) be a tree such that every finite, connected S ⊆ V
is balanced. Let i and j be any two vertices in V and let their respective degrees be k1 and k2.
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Let S be the smallest subtree in Γ containing both vertices i and j. Since S is balanced, we
have 1/k1 = d(i, S)/d(i) = d(j, S)/d(j) = 1/k2, therefore k1 = k2 =: n. So Γ must be an n-regular
tree. However, by Lemma 4, any finite, connected S ⊆ V , |S| > 2, in an n-regular tree is not
balanced. Hence Γ must be the tree on two vertices. Q.E.D.

Proof of Lemma 5: Consider P2 = 1, so ρ2 = 1. In this case, the ensemble >(P,m) only
includes a single graph, the line Γ = (V,E). By construction, Pm then puts all probability on
connected sets S ⊂ V that do not include the two vertices with degree 1 at opposite ends of
the line Γ. Co(S) = 1/2 and CK(S) = (m− 1)/(2m). Therefore, Co(S)−CK(S)→ 0 as m→∞
and we are done.

For the rest of the proof, assume that P2 < 1, so ρ2 < 1. For given (Γ, S), denote

L(S) = {i ∈ S : d(i, S) = 1}.
As a first step, we show that for any r0 ∈ N,

lim
m→∞

Pm
[ {

(Γ, S) : |L(S)| < r0
} ]

= 0.(A.3)

To see this, consider any given sequence {S1, . . . , Sk}, k < m, constructed as described in the
main body of the text prior to the statement of the lemma. Note that L(·) is weakly increasing
on such sequences and |L(S1)| = 0, |L(S2)| = 2. It must be that |L(Sk)| = r for some r ∈ N.

Consider continuations of S1, . . . , Sk to obtain {S1, . . . , Sk, . . . , Sm}, with m−k an even num-
ber. Consider {S1, . . . , Sm} for which |L(Sm)| = r. This implies that |L(St)| = r for all
k ≤ t ≤ m. Let m̄ = (k +m)/2. There are two cases to consider.

Case A. There does not exist t, k ≤ t ≤ m̄, i ∈ St, such that i /∈ L(St), d(i, St) 6= d(i).

For k ≤ t ≤ m̄ − 1, under Case A, vertices in L(St) are the only vertices in St that have any
neighbors in Γ that are outside of St. Therefore, St+1 is obtained from adding a neighbor, say
j, of some i ∈ L(St), to St. Consequently, i /∈ L(St+1) and j ∈ L(St+1). Furthermore, it must
be that d(i) = 2 or otherwise Case A would be contradicted (as i would then have more than
1, but fewer than d(i) neighbors).

Consequently, if St+1 = St ∪ {j} and d(j) > 2, then j ∈ L(St+1) but St+1 cannot be further
extended by adding a neighbor of j, as doing so would contradict Case A. As |L(St)| = r on
{Sk, . . . , Sm̄}, the addition of j with d(j) > 2 can therefore occur at most r times before it
becomes impossible to extend St without contradicting either |L(St)| = r or Case A.

As a consequence of the above, the probability of Case A is bounded above by the probability
that r or fewer vertices of degree strictly greater than 2 are added on {Sk, . . . , Sm̄}. The
probability under >(P,m) that any vertex added to St, t ≥ 1, has degree strictly greater than
2 is (1− ρ2), so the probability of r or fewer such additions on {Sk, . . . , Sm̄} is

r∑
µ=0

(m̄− k
µ

)
(ρ2)m̄−k−µ(1− ρ2)µ,

which approaches zero as m̄→∞, which, by definition of m̄, occurs as m→∞.

Case B. There exists t̃, k ≤ t̃ ≤ m̄, i ∈ St̃ such that i /∈ L(St̃), d(i, St̃) 6= d(i).

Consider t̃ ≤ t ≤ m− 1. If i ∈ St and a neighbor of i, say j, is chosen so that St+1 = St ∪ {j},
then it must be that d(i, St) 6= d(i). If i /∈ L(St), then L(St+1) = L(St) ∪ {j}, so |L(St+1)| =
|L(St)| + 1, contradicting |L(St)| = r for all t = k, . . . ,m. So it must be that for each t,
St+1 = St ∪ {j} for some neighbor j of some i ∈ L(St). As |L(St)| = r, the probability of
choosing i ∈ L(St) rather than some i /∈ L(St) (which is possible, given Case B) is no greater
than r/(r + 1). This must happen at t = t̃, . . . ,m−1, which occurs with a probability no greater
than (

r

r + 1

)m−t̃
≤

(
r

r + 1

)m−m̄
=

(
r

r + 1

)m−k
2

,
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which approaches zero as m→∞.

So, from any Sk, |L(Sk)| = r, the probability of |L(Sm)| ≤ r can be made arbitrarily small
by increasing m. Consequently, for any r0 ∈ N, we can make Pm

[ {
(Γ, S) : |L(S)| < r0

} ]
arbitrarily small by increasing m and we have (A.3).

Consider a given tree Γ = (V,E), with root vertex i1, and vertex j ∈ U ⊂ V such that j 6= i1.
It will be shown that the probability that L(Sm) = U is independent of d(j). First note that
if U includes some l such that the unique path in Γ from l to i1 passes through j, then it is
impossible that j ∈ L(Sm) and thus impossible that U = L(Sm). Assuming that this is not the
case, if we create a new graph by altering the branches of Γ that emerge from j in any direction
other than towards i1 while maintaining d(j) ≥ 2, then the probability of L(Sm) = U remains
the same. This is because the altered part of the graph has no effect on the construction of
{S1, . . .} unless and until (i) St is reached such that j ∈ L(St); and (ii) j is randomly chosen
so that St+1 will be the union of St with some neighbor of j. However, if this occurs, then
j /∈ L(St+1), regardless of the value of d(j).

In summary, the probability of U = L(S) is independent of d(j) for j ∈ U , j 6= i1. That is,
knowing that a vertex j is in L(S) does not tell us anything more about d(j) than what we
already know, that it is chosen according to the distribution ρ. In particular, the probability
that all vertices in L(S) \ {i1} have degree less than n̂, conditional on L(S) containing at least
r vertices, is bounded:

Pm
[ {

(Γ, S) : d(j) < n̂ for all j ∈ L(S)
} ∣∣ |L(S)| ≥ r

]
≤

∑
n<n̂

ρn

r−1

,(A.4)

where the bound is constructed by multiplying independent probabilities of r − 1 vertices in
L(S) \ {i1} having degree less than n̂.

Let n̂ be such that
∑
n<n̂ ρn < 1. For any given δ > 0, it is possible to choose r̃ large enough

such that
(∑

n<n̂ ρn
)r̃−1

< δ/2. Furthermore, (A.3) implies that it is possible to choose m̃

such that Pm̃
[ {

(Γ, S) : |L(S)| < r̃
} ]

< δ/2. Therefore

Pm̃
[ {

(Γ, S) : d(j) ≥ n̂ for some j ∈ L(S)
} ]

(A.5)

≥ Pm̃
[ {

(Γ, S) : |L(S)| ≥ r̃
} ]︸ ︷︷ ︸

>(1− δ
2 ) by choice of m̃

· Pm̃
[ {

(Γ, S) : d(j) ≥ n̂ for some j ∈ L(S)
} ∣∣ |L(S)| ≥ r̃

]︸ ︷︷ ︸
>(1− δ

2 ) by (A.4)

>

(
1−

δ

2

)2

> 1− δ.

As, for any δ > 0, (A.5) holds for large enough m̃, we have

lim
m→∞

Pm
[ {

(Γ, S) : d(j) ≥ n̂ for some j ∈ L(S)
} ]

= 1.(A.6)

If j ∈ L(S), d(j) ≥ n̂, then Co(S) ≤ 1/n̂. So, from (A.6),

lim
m→∞

Pm
[{

(Γ, S) : Co(S) ≤
1

n̂

}]
= 1.(A.7)

Now consider CK(S). By Lemma 1, CK(S) ≤ Co(S). If there exists no maximal n such that
Pn > 0, then for any ε > 0, we can choose n̂ such that 1/n̂ < ε, so by (A.7),

lim
m→∞

Pm
[ {

(Γ, S) : Co(S)− CK(S) > ε
} ]

= 0,(A.8)
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proving the lemma.

If there exists maximal n such that Pn > 0, let n̂ take this value. Recall that CK(S) =

minS′⊆S
d(S′,S)
d(S′) . If S = S′, d(S′, S) = m − 1 and d(S) ≤ mn̂. If S′ ⊆ S, S′ 6= S, then

d(S′, S) ≥ |S′|, d(S′) ≤ |S′|n̂. In either case,
d(S′,S)
d(S′) ≥

(m−1)
mn̂

. This lower bound on CK(S)

approaches 1/n̂ as m → ∞, which together with CK(S) ≤ Co(S) (by Lemma 1) and (A.7),
implies (A.8) and we are done. Q.E.D.

Proof of Proposition 6: Assuming β < 1 + α, let

ε =
1

1 + β
−

1

2 + α
> 0.

If (Γ, S) is such that S is agency autonomous but not potential autonomous, then by Remarks
2, 1 respectively, Co(S) > 1

1+β
and CK(S) ≤ 1

2+α
, so

Co(S)− CK(S) >
1

1 + β
−

1

2 + α
= ε,

but, by Lemma 5, the probability of such an (Γ, S) pair approaches zero as m→∞. Q.E.D.

Proof of Lemma 6: If Γ is complete, then balancedness of all S ⊆ V follows from the argu-
ment immediately prior to the statement of the Lemma. To prove the reverse, assume that all
connected S ⊆ V are balanced. Choose arbitrary i ∈ V . Γ connected implies that there exists
j ∈ V such that {i, j} ∈ E. S = {i, j} is connected and d(i, S) = d(j, S) = 1. Balancedness of

S implies that
d(i,S)
d(i)

=
d(j,S)
d(j)

, so we have d(i) = d(j). This argument applies to any pair of

vertices that share an edge in Γ, so as Γ is connected, all vertices in V have the same degree.

For S = {i, j}, the induced subgraph of Γ on S is complete. For connected S, |S| = m,
m ≤ |V |, we show by induction that the induced subgraph on S is complete. For given S,
|S| = m, choose i0 ∈ S such that T = S \ {i0} is connected. By induction on m, it must be
that {j, k} ∈ E for all {j, k} ⊆ T , so d(j, T ) = |T | − 1 for all j ∈ T . By definition of T , at
least one vertex, say i1 ∈ T , is a neighbor of i0, therefore d(i1, S) = |T | = |S| − 1. For all

j ∈ S, balancedness of S implies that
d(j,S)
d(j)

=
d(i1,S)
d(i1)

, and as all vertices in V have the same

degree, d(j) = d(i1) so d(j, S) = d(i1, S) = |S| − 1. Therefore, the induced subgraph of Γ on S
is complete. As Γ is connected, this holds for S = V , therefore Γ is complete. Q.E.D.

Proof of Proposition 7: The condition in Definition 3 can be written as

min
T⊆S
T∈Ω

max
i∈T

πi(σ
B
S , σ

A
V \S)− πi(σAT , σ

B
S\T , σ

A
V \S) ≥ 0.

Substituting payoffs this becomes

min
T⊆S
T∈Ω

max
i∈T

(β − α)d(i, V \ S) + d(i, S)− (1 + β)(d(i, T ) + d(i, V \ S)) ≥ 0,

which rearranges to give the required condition. Q.E.D.

Proof of Proposition 8: Consider β ≤ 1 + α. Let S′, S′′ be robust to contagion. Let S =
S′ ∪ S′′. Let T ⊆ S attain the minimum in the definition of CoCo(S, α, β). Assume, without
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loss of generality, that T ′ := S′ ∩ T is nonempty. Then

CoCo(S, α, β) = max
i∈T

d(i, S)

d(i)
−

1 + β

2 + α

d(i, T )

d(i)
≥︸︷︷︸

by T ′⊆T

max
i∈T ′

d(i, S)

d(i)
−

1 + β

2 + α

d(i, T )

d(i)

= max
i∈T ′

d(i, S′)

d(i)
−

1 + β

2 + α

d(i, T ′)

d(i)
+
d(i, S \ S′)

d(i)
−

1 + β

2 + α

d(i, T \ T ′)
d(i)︸ ︷︷ ︸

≥0 by β≤1+α and T\T ′⊆S\S′

≥ max
i∈T ′

d(i, S′)

d(i)
−

1 + β

2 + α

d(i, T ′)

d(i)
≥︸︷︷︸

by defn
of Coco(.)

CoCo(S′, α, β) ≥︸︷︷︸
by robustness of S′

and Proposition 7

1 + α

2 + α
,

so by Proposition 7, S = S′ ∪ S′′ is robust to contagion.
Now consider β > 1+α. Let Γ = (V,E) contain two cliques S′ and S′′, each on k+1 vertices.

Let each vertex in S′ ∪ S′′ have degree k + l and let there be precisely one edge e = {i, j}
joining S′ and S′′ (that is, d(S′, S′′) = 1). Assume that the restriction of the set Ω of feasible
coalitions to S′ ∪ S′′ is the union of {e} with the set of singletons. Then

CoCo(S′, α, β) =︸︷︷︸
as all feasible
coalitions in S
are singletons

Co(S′) =︸︷︷︸
by defn
of Co(.)

k

k + l
.

Similarly, we have that CoCo(S′′, α, β) = k/(k + l). Also

CoCo(S′ ∪ S′′, α, β) ≤︸︷︷︸
by defn

of Coco(.)

d(i, S′ ∪ S′′)
d(i)

−
1 + β

2 + α

d(i, e)

d(i)

=
k + 1

k + l
−

1 + β

2 + α

1

k + l
<︸︷︷︸

by β>1+α

k

k + l
.

As α is rational, we can choose k and l such that (1 + α)/(2 + α) = k/(k + l). Consequently,

CoCo(S′ ∪ S′′, α, β) <
1 + α

2 + α
= CoCo(S′, α, β) = CoCo(S′′, α, β),

and Proposition 7 implies that S′ and S′′ are robust to contagion but S′ ∪ S′′ is not. Q.E.D.
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