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Abstract

We introduce a new solution concept for models of coalition formation, called the

myopic stable set. The myopic stable set is defined for a very general class of social

environments and allows for an infinite state space. We show that the myopic stable

set exists and is non-empty. Under minor continuity conditions, we also demonstrate

uniqueness. Furthermore, the myopic stable set is a superset of the core and of the set

of pure strategy Nash equilibria in noncooperative games.

Additionally, the myopic stable set generalizes and unifies various results from more

specific environments. In particular, the myopic stable set coincides with the coalition

structure core in coalition function form games if the coalition structure core is non-

empty; with the set of stable matchings in the standard one-to-one matching model;

with the set of pairwise stable networks and closed cycles in models of network forma-

tion; and with the set of pure strategy Nash equilibria in finite supermodular games,

finite potential games, and aggregative games. We illustrate the versatility of our con-

cept by characterizing the myopic stable set in a model of Bertrand competition with

asymmetric costs, for which the literature so far has not been able to fully characterize

the set of all (mixed) Nash equilibria.
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1 Introduction

Models of coalition formation study a widespread and important pattern of human interac-

tion: agents tend to form groups of equally interested individuals, but these groups behave

in a non-cooperative way towards outsiders. For example, individuals in a community join

forces to provide a local public good, voters create parties to attain their political goals, and

firms set up lobby groups to influence policy-makers.

The literature studies coalition formation in many distinct settings, like networks, coali-

tion function games, and matching models. In this paper, we focus on a general class of

social environments that covers all of these settings and many more. More precisely, we

define a social environment on the basis of four components (Chwe, 1994): a finite collection

of agents, a set of social states, for each agent, preferences over the set of states and an

effectivity correspondence that models the feasible transitions from one state to another.

We only require that the set of social states is a non-empty and compact metric space. As

such, in contrast to most settings in the literature, we allow the state space to be infinite.

For such social environments, we define a new solution concept called the myopic stable

set, abbreviated as MSS. The MSS extends the idea of level-1 farsighted stability by Herings,

Mauleon, and Vannetelbosch (2009, 2014) from finite networks to the general class of social

environments. The MSS is defined by three conditions, deterrence of external deviations,

external stability and minimality. Deterrence of external deviations requires that there is no

coalition that benefits from a deviation from a state inside the MSS to a state outside the

MSS. External stability makes sure that from any state outside the set it is possible to get

arbitrarily close to a state inside the MSS by a sequence of coalitional deviations. The final

condition, minimality, requires that the MSS is minimal with respect to set inclusion.

Our notion of dominance is myopic in the sense that agents (or coalitions) do not predict

how their decision to change the current state to another one will lead to further changes

by other coalitions. Such a notion is natural in very complex social environments where the

number of possible states and possible actions is overwhelmingly large and agents have little

information about the possible actions other agents may take or the incentives of other agents.

The myopic stable set thereby distinguishes our approach from the ones in the literature that

focus on farsightedness (see among others, Chwe, 1994; Xue, 1998; Herings, Mauleon, and

Vannetelbosch, 2004, 2009, 2014; Dutta, Ghosal, and Ray, 2005; Page, Wooders, and Kamat,

2005; Page and Wooders, 2009; Ray and Vohra, 2015). On the other hand, our analysis is

more in line with myopic concepts like the core and the von Neumann-Morgenstern stable

set. As we will see in the application to normal-form games, it is also intimately connected

to the notion of Nash equilibrium.

Our first main result (Theorem 4.1) shows that every social environment contains at least

one non-empty MSS. Moreover, under weak continuity assumptions we establish uniqueness
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of the MSS (Theorem 4.6). The existence and uniqueness results differ from many other

popular solution concepts in the literature. For instance, the core and the coalition structure

core for coalition function form games can be empty (Bondareva, 1963; Scarf, 1967; Shapley,

1967); the von Neumann Morgenstern stable set may fail to exist or to be unique (Lucas,

1968, 1992) and the set of pure strategy Nash equilibria may be empty.

We also provide several additional results that provide more insights about the structure

of an MSS (Theorem 4.12). For finite state spaces, we fully characterize the MSS as the

union of all closed cycles, i.e., subsets which are closed under coalitional better replies. For

infinite spaces, the union of all closed cycles is found to be a subset of the MSS. This result

is helpful in applications and in the comparison to other solution concepts. For instance,

any state in the core is a closed cycle and is therefore included in the MSS. Next we define

a generalization of the weak improvement property (Friedman and Mezzetti, 2001) to social

environments and we show that, under weak continuity conditions, the weak improvement

property characterizes the collection of social environments for which the MSS coincides with

the core.

We demonstrate the versatility of these results by analyzing the relationship between

the MSS and other solution concepts in more specific social environments. In particular, we

show that the MSS coincides with the coalition structure core for coalition function form

games (Kóczy and Lauwers, 2004) whenever the coalition structure core is non-empty; with

the set of stable matchings in the one-to-one matching model by Gale and Shapley (1962);

with the set of the set of pairwise stable networks and closed cycles in models of network

formation (Jackson and Watts, 2002), and the set of pure strategy Nash equilibria in finite

supermodular games (Bulow, Geanakoplos, and Klemperer, 1985), finite potential games

(Monderer and Shapley, 1996), and aggregative games (Selten, 1970). Finally, we illustrate

the versatility of our results by characterizing the MSS in a model of Bertrand competition

with asymmetric costs. This model is characterized by discontinuous payoff functions and

has no pure-strategy Nash equilibrium. Although Blume (2003) has shown the existence of

a mixed-strategy Nash equilibrium, the literature has, so far, not been able to characterize

the complete class of (mixed) equilibria for this game.

The structure of the paper is as follows. Section 2 provides the primitives of our general

framework of social environments and introduces several applications to demonstrate its

generality. Section 3 introduces and motivates the MSS. Section 4 establishes existence,

non-emptiness, and uniqueness results. Section 5 analyzes our solution concept for the

examples provided in Section 2 and relates it to other stability concepts from the literature.

Finally, Section 6 concludes.
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2 General Framework

Let N be a non-empty finite set of individuals with cardinality n. A coalition S is a subset

of N . The set of non-empty subsets of N is denoted by N . Let (X, d) be a metric space,

where X denotes our non-empty state space and d is a metric on X.1 Let some state x ∈ X
be given. We define

Bε(x) = {y ∈ X|d(x, y) < ε}

as the open ball around x with radius ε. The set Bε(x) contains all the states in X that

are in an ε-neighborhood of x. An effectivity correspondence E associates with each pair of

states x, y ∈ X a, possibly empty, collection of coalitions E(x, y) ⊆ N . If S ∈ E(x, y), we

say that the coalition S can move from state x to state y. If E(x, y) = ∅, then no coalition

can move from x to y.

Each individual i ∈ N has a complete and transitive preference relation �i over the state

space X. The profile (�i)i∈N then lists the preferences of all individuals in N . We denote

by �i the asymmetric part of �i, i.e., x �i y if and only if x �i y and not y �i x.

A social environment is now defined as follows.

Definition 2.1 (Social Environment). A social environment is a tuple

Γ = (N, (X, d), E, (�i)i∈N)

consisting of a non-empty, finite set of agents N , a non-empty, compact metric space (X, d) of

states, an effectivity correspondence E on X, and a collection of preference relations (�i)i∈N
over X.

The state space (X, d) can be used to encode many aspects of a particular application.

To illustrate the generality of our setting, we provide four specific models that have been

studied extensively in the literature: coalition function form games, one-to-one matching

models, models of network formation, and non-cooperative normal-form games. For each of

these examples we specify the social environment, i.e., the set of players N , the state space

(X, d), the preferences (�i)i∈N , and the effectivity correspondence E.

2.1 Coalition Function Form Games

A coalition function form game is defined by a tuple (N, v), where N is the set of players

and v : 2N → R is a characteristic function that assigns to each coalition S ⊆ N a number

1A metric d is a function d : X × X → R+ such that (i) for every x, y ∈ X: d(x, y) = 0 if and only if

x = y, (ii) for every x, y ∈ X: d(x, y) = d(y, x), and (iii) for every x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).
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v(S) ∈ R, called the coalitional value of S, with the usual convention that v(∅) = 0. A

coalition structure is a partition π := {S1, . . . , Sm} of N . It describes how the grand coalition

is divided into various sub-coalitions. The collection of all coalition structures, i.e., the

collection of partitions of N , is denoted by Π.

For coalition function form games, we define X as the set of coalition structures Π

together with all individually rational payoff vectors that can be obtained by allocating the

coalitional values among the members of the respective coalitions:

X =

{
(π, u) ∈ Π× RN

∣∣∣∣∣∀i ∈ N : ui ≥ v({i}) and ∀S ∈ π :
∑
i∈S

ui = v(S)

}
.

Given a state x ∈ X, we denote by π(x) the projection to its first component, i.e., the

coalition structure, and by u(x) the projection to its second component, i.e., the payoff

vector, so we can write x = (π(x), u(x)). The restriction of the payoff vector u(x) to the

members in coalition S is denoted by uS(x). The set X is non-empty since it always contains

the state where N is partitioned into singletons and each player i ∈ N receives the payoff

v(i).

We define the metric d on X by setting for all x, y ∈ X,

d(x, y) = 1{π(x)6=π(y)} + ‖u(x)− u(y)‖∞,

where 1 is the indicator function and ‖.‖∞ is the infinity norm.

We define preferences �i over the state space X by setting x �i y if and only if ui(x) ≥
ui(y), i.e., the payoff for individual i in state x is at least as high as the payoff for individual

i in state y.

For each pair of states (x, y), the effectivity correspondence E(x, y) specifies which coali-

tions can change state x into state y. As an example that imposes some reasonable structure

on the effectivity correspondence, we provide a brief outline of the restriction of coalitional

sovereignty (Konishi and Ray, 2003; Kóczy and Lauwers, 2004; Ray and Vohra, 2014, 2015;

Herings, Mauleon, and Vannetelbosch, 2016). For coalitional sovereignty, a group of players

S—the leaving players—can decide to leave their partners and create a new group. This

event induces a change from a state x to a state y characterized by a new coalition structure

and a new payoff vector. The collection of coalitions that is unaffected by this change is

denoted U(x, S) and the set of players that is unaffected is denoted by U(x, S). The set

U(x, S) contains all coalitions T ∈ π(x) that are disjoint from S. Formally,

U(x, S) = {T ∈ π(x)|S ∩ T = ∅},
U(x, S) = ∪T∈U(x,S)T.

An effectivity correspondence is in accordance with the principle of coalitional sovereignty

if it satisfies the properties of Non-interference and Full support. Non-interference requires
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that if a coalition S changes from a state x to a state y, then the unaffected coalitions U(x, S)

are still part of the new coalition structure π(y) and every unaffected individual i ∈ U(x, S)

keeps her old payoff, i.e., ui(x) = ui(y).

(1) Non-interference: For every x, y ∈ X, if S ∈ E(x, y) and T ∈ U(x, S), then S ∈
π(y), T ∈ π(y), and uT (x) = uT (y).

Full support requires that every coalition S has the opportunity to move to a new state

where it has the freedom to redistribute its worth v(S) at will.

(2) Full support: For every x ∈ X, every S ∈ N , and every u ∈ RS such that for all

i ∈ S : ui ≥ v({i}) and
∑

i∈S ui = v(S), there is a state y ∈ X such that uS(y) = u

and S ∈ E(x, y).

Coalitional sovereignty does not fully specify the effectivity correspondence E. In par-

ticular, it leaves unspecified the payoffs and coalition structure of players that are neither

part of the leaving coalition S nor part of an unaffected collection U(x, S), i.e., players in

the set N \ (S ∪ U(x, S)). We call these players residual players. Indeed, one of the more

controversial issues is to what extent the leaving players have the power to influence the

coalition structure and payoffs of these residual players; see Shubik (1962), Hart and Kurz

(1983), Konishi and Ray (2003), and Ray and Vohra (2014) for related discussions and alter-

native viewpoints. One frequently used specification is the γ-model (Hart and Kurz, 1983).

This γ-model prescribes that the residual players are divided into singletons. This assump-

tion is justified by the viewpoint that a coalition is only maintained if there is unanimous

agreement among its members. As such, the departure of one individual implies the collapse

of the entire coalition. In our setting, the γ-model imposes the following restriction on the

effectivity correspondence.

(3) γ-model For all x, y ∈ X and S ∈ E(x, y), if i ∈ N \ (S ∪ U(x, S)), then {i} ∈ π(y).

2.2 One-to-One Matching

As a second example of a social environment, we consider the two sided one-to-one matching

model (M,W, (Pm)m∈M , (Pw)w∈W ) from Gale and Shapley (1962). The matching model

consists of a finite set N of individuals, partitioned in the two exhaustive subgroups of men

M and women W . A matching is a function µ : M ∪W → M ∪W satisfying the following

properties:

1. For every man m ∈M , µ(m) ∈ W ∪ {m}.

2. For every women w ∈ W , µ(w) ∈M ∪ {w}.
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3. For all men m ∈M and women w ∈ W , µ(m) = w if and only if µ(w) = m.

In this setting, our state space X consists of all possible matchings µ. Since X is finite, we

can endow it with the discrete metric

d(µ, µ′) = 1{µ 6=µ′}.

Each man m ∈ M has a complete and transitive strict preference relation Pm over the set

W ∪ {m} and each woman w ∈ W has a complete and transitive strict preference relation

Pw over the set M ∪{w}. We assume that the preferences of the individuals (�i)i∈M∪W over

the set X are induced by their preferences over their match, i.e., for all m ∈M it holds that

µ �m µ′ if and only if µ(m)Pmµ
′(m) and for all w ∈ W it holds that µ �w µ′ if and only if

µ(w)Pwµ
′(w).

Imposing restrictions on the effectivity correspondence allows us to study the conse-

quences of different hypothesis on the matching process. We introduce two common restric-

tions from the literature on matching. The first requires that every man or woman is allowed

to break his/her link with her/his current partner. Doing so makes this man or women and

their former partners single.

(1) For all i ∈ N and µ ∈ X with µ(i) 6= i, we have {i} ∈ E(µ, µ′) where µ′ ∈ X is such

that

(i) µ′(i) = i,

(ii) µ′(µ(i)) = µ(i), and

(iii) for every j ∈ N \ {i, µ(i)} we have µ′(j) = µ(j).

The second restriction requires than any man and woman that are currently not matched to

each other can deviate by creating a link and thereby leaving their former partners single.

(2) For all m′ ∈M , w′ ∈ W , and µ ∈ X with µ(m′) 6= w′, we have that {m′, w′} ∈ E(µ, µ′),

where µ′ ∈ X is such that

(i) µ′(m′) = w′,

(ii) µ(m′) ∈ W implies µ′(µ(m′)) = µ(m′)

(iii) µ(w′) ∈M implies µ′(µ(w′)) = µ(w′),

(iv) for every j ∈ N \ {m′, w′, µ(m′), µ(w′)} it holds that µ′(j) = µ(j).

Observe that these two conditions respect the γ-model of coalitional sovereignty.
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2.3 Network Formation

As a third example of a social environment, we look at models of network formation (Jack-

son and Wolinsky, 1996). A network is given by a tuple g = (N, E), where N are the

nodes/players of the network and E is the set of undirected edges of the network. An undi-

rected edge is represented as a set of two distinct nodes/players. Two players i, j ∈ N are

linked in g if and only if {i, j} ∈ E . We often abuse notation and write ij ∈ g if i and j are

linked in the network g. The set of all networks with node set N is denoted by G. A value

function for player i is a a function vi : G→ R that associates a payoffs for player i for each

network in G. A network problem is thus given by (N,G, (vi)i∈N).

We identify X with the set G of all possible networks on N and endow it with the discrete

metric

d(g, g′) = 1{g 6=g′}.

Every agent i ∈ N has a preference relation �i over the set X of all possible networks defined

by g �i g′ if vi(g) ≥ vi(g
′). Let g + ij be the network obtained from network g by adding

the link ij and let g − ij be the network obtained by deleting the link ij from g.

We follow Jackson and Wolinsky (1996) by considering deviations by coalitions of size

one or two and by assuming link-deletion to be one-sided and link addition to be two-sided.

One-sided link deletion allows every player to delete one of its links.

(1) For all individuals i ∈ N , all networks g ∈ X, and all links ij ∈ g, {i} ∈ E(g, g − ij).

Two sided link addition allows any two players that are currently not-linked can change the

network by forming a link between themselves.

(2) For all individuals i, j ∈ N , all networks g ∈ X with ij /∈ g, we have {i, j} ∈ E(g, g+ij).

It is straightforward to adjust the effectivity correspondence to incorporate models of network

formation where more than one link at a time can be changed by coalitions of arbitrary

size (Dutta and Mutuswami, 1997; Jackson and van den Nouweland, 2005) or where link

formation is one-sided (Bala and Goyal, 2000) into our framework. We refer to Page and

Wooders (2009) for a more extensive discussion of alternative rules of network formation.

2.4 Normal-Form Games

As a last example of a social environment, we take non-cooperative normal-form games. A

normal-form game is given by a triple G = (N, (Σi, di)i∈N , (�i)i∈N), where N is the set of

players, Σi is the set of strategies for player i modelled as a metric space with metric di,

and �i is a preference relation over the set of all strategy profiles Σ =
∏

i∈N Σi with typical
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element σ. We assume that each strategy set (Σi, di) is non-empty and compact. We identify

the state space X with the set of strategy profiles Σ and endow it with the product metric

d(σ, σ′) =
∑n

i=1di(σi, σ
′
i).

As is standard in non-cooperative game theory, we use the notation (σi, σ−i) for the strategy

profile where σi is the strategy of player i and σ−i is the list of strategies of all players except

i, i.e., σ−i := (σj)j∈N\{i}.

To define the effectivity correspondence, first note that the standard analysis of a non-

cooperative game only allows coalitions of size one. Only singletons are effective and can

change the state by a unilateral deviation from their strategy. This means that for every

player i ∈ N , coalition {i} can change the state σ = (σi, σ−i) to the state σ′, i.e., {i} ∈
E(σ, σ′) if and only if σ′ = (σ′i, σ−i) for some σ′i ∈ Σi.

In this example we stick to the standard interpretation of a normal-form game where

only individuals can deviate. By adjusting the effectivity correspondence, our framework

can easily accommodate deviations by groups of players as for instance considered in the

concept of strong Nash equilibrium introduced in Aumann (1959).

3 The Solution Concept

In this section, we first introduce the notions of dominance and asymptotic dominance which

are used to define our solution concept, the myopic stable set.

We say that a state y ∈ X dominates another state x ∈ X if there is a coalition which

can (i) move from x to y and (ii) each member of the coalition that makes the move strictly

prefers y over x.

Definition 3.1 (Dominance). A state y ∈ X dominates the state x ∈ X under E if there

exists a coalition S ∈ E(x, y) such that for every i ∈ S it holds that y �i x.

Let some state x ∈ X be given. The subset of X consisting of all states that dominate x

together with state x itself is denoted by f(x), so

f(x) = {x} ∪ {y ∈ X|y dominates x under E}.

We define the two-fold composition of f by

f 2(x) = {z ∈ X|∃y ∈ S : y ∈ f(x) and z ∈ f(y)}.

By induction, we can define the k-fold iteration fk(x) as the subset of X that contains

all states obtained by a composition of dominance correspondences of length k ∈ N, i.e.,
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y ∈ fk(x) if there is a z ∈ X such that y ∈ f(z) and z ∈ fk−1(x). Observe that for all

k, ` ∈ N if k ≤ `, then fk(x) ⊆ f `(x). We define the set of all states that can be reached

from x by a finite number of dominations by fN(x), so

fN(x) :=
⋃
k∈Nf

k(x)

A state y is said to asymptotically dominate the state x if starting from x, it is possible to

get arbitrarily close to y in a finite number of dominations.

Definition 3.2 (Asymptotic Dominance). A state y ∈ X asymptotically dominates the state

x ∈ X under E if for all ε > 0 there exists a number k ∈ N and a state z ∈ fk(x) such that

d(y, z) < ε.

We denote by f∞(x) the set of all states in X that asymptotically dominate x. Formally,

f∞(x) = {y ∈ X|∀ε > 0, ∃k ∈ N,∃z ∈ fk(x) : d(y, z) < ε}.

It is easy to see that the set f∞(x) coincides with the closure of the set fN(x).

We are now ready to define our solution concept, the myopic stable set, abbreviated as

MSS.

Definition 3.3 (Myopic Stable Set). Let Γ = (N, (X, d), E, (�i)i∈N) be a social environ-

ment. The set M ⊆ X is a myopic stable set if it is closed and satisfies the following three

conditions:

1. Deterrence of external deviations: For all x ∈M , f(x) ⊆M .

2. External stability: For all x /∈M, f∞(x) ∩M 6= ∅.

3. Minimality: There is no closed set M ′ (M that satisfies Conditions 1 and 2.

Let M be a MSS. Deterrence of external deviations requires that no coalition can prof-

itably deviate to a state outside M . External stability requires that any state outside M is

asymptotically dominated by a state in M . Hence, from any state outside of M it is possible

to get arbitrary close to a state in M by a finite number of dominations. Observe that an

empty set would necessarily violate external stability, so any MSS is non-empty. Minimal-

ity imposes that there is no smaller closed set of states that satisfies deterrence of external

deviations and external stability.

For finite state spaces, it does not matter if one uses fN or f∞ in the definition of external

stability. On the other hand, for infinite state spaces, the asymptotic dominance relation

f∞ is the natural extension of fN. Also when the state space is infinite, an MSS might fail

to exist if one uses fN instead of f∞ in the definition of external stability. This is illustrated

in the following example.
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Example 1. Consider the social environment

Γ = ({1}, (X, d),�1),

where,

X =

{
1

k

∣∣∣∣k ∈ N
}
∪ {0},

and d is the usual metric on X, d(x, y) = |x − y|. As such, X is closed and compact.

Preferences �1 are defined by x �1 y if and only if x = y or y > x ≥ 0. The effectivity

correspondence E is such that {1} ∈ E(1/k, 1/(k + 1)) for every k ∈ N and E(x, y) = ∅
otherwise. It follows that

f(1/k) = {1/k, 1/(k + 1)} .

Observe that 0 ∈ f∞(x) for every x ∈ X and that f(0) = {0}. It now follows easily that {0}
is an MSS.

Suppose we replace the requirement of external stability by the stronger notion that for

all states x /∈ M , fN(x) ∩M 6= ∅, a property that we refer to as strong external stability.

Since, for every k ∈ N, 0 /∈ fN (1/k) , the set {0} does not satisfy strong external stability.

Actually, we can show that there is no closed set satisfying strong external stability together

with deterrence of external deviations and minimality. Towards a contradiction, assume that

the closed set M ⊆ X satisfies these properties. Given that M 6= {0} and M is non-empty,

there is k ∈ N such that 1/k ∈ M . Moreover, let k be the smallest such number. It is

easy to verify that the closed set M ′ := M \ {1/k} satisfies deterrence of external deviations

and strong external stability. Since M ′ is a proper subset of M , M violates the minimality

property.

An MSS is defined as a minimal set satisfying deterrence of external deviations and

external stability. Dropping the minimality requirement, we can define the concept of a

quasi myopic stable set (QMSS) which is useful in the proofs.

Definition 3.4 (Quasi Myopic Stable Set). Let Γ be a social environment. The set M ⊆ X

is a quasi myopic stable set if it is closed and satisfies deterrence of external deviations and

external stability.

4 General Properties

This section establishes existence of the myopic stable set in general and, under weak ad-

ditional assumptions, its uniqueness. The final part of this section derives some additional

structural properties of myopic stable sets that are used in the next section.
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4.1 Existence

The following main result shows existence of the myopic stable set.

Theorem 4.1 (Existence). Let Γ be a social environment. Then an MSS exists.

Proof. First observe that the set of states X is a QMSS. Indeed, since it is compact, it is

closed and it trivially satisfies deterrence of external deviations and external stability.

Let Z be the collection of all sets of states that are a QMSS. Notice Z is non-empty

as X ∈ Z. We will use Zorn’s lemma to show the existence of a minimal element in the

partially ordered set (Z,⊇), i.e., a set Z ∈ Z is minimal element if for all Z ′ ∈ Z with

Z ′ ⊆ Z, we have Z = Z ′.

Let S be a chain in Z, i.e., (S,⊇) is a totally ordered subset of (Z,⊇). Let I be an index

set for the sets in S, i.e., S = {Zα|α ∈ I}. Let . be the order on I that is induced by the

order on S, i.e., α . β if and only if Zα ⊆ Zβ. In order to apply Zorn’s Lemma, we have to

show that S has a lower bound in Z. Let M =
⋂
α∈I Z

α. Clearly, M is a lower bound of

S. We proceed by showing that M ∈ Z, i.e., M is a QMSS. First of all, observe that M is

closed as it is defined as the intersection of a collection of closed sets. We need to show that

it satisfies deterrence of external deviations and external stability.

Deterrence of external deviations: Let x ∈M and y /∈M be given. Then there is α ∈ I
such that y /∈ Zα, since otherwise y ∈ Zα for all α ∈ I, which means that y ∈ M . Since

x ∈ Zα and Zα satisfies deterrence of external deviations, we obtain y /∈ f(x) as was to be

shown.

External stability: Consider some y /∈M . Then there is α ∈ I such that y /∈ Zα. As S is

a chain, it follows that for all β . α, we have y /∈ Zβ.

For every β . α, there is xβ ∈ Zβ such that xβ ∈ f∞(y), since Zβ satisfies external

stability. This defines a net {xβ}β.α. Given that X is compact, it follows by Theorem 2.31

of Aliprantis and Border (2006) that this net has a convergent subnet, say {xβ′}β′∈I′ , where

I ′ ⊆ I is such that for all β ∈ I, there is a β′ ∈ I ′ such that β′ . β. Let x be the limit of this

convergent subnet. We split the remaining part of the proof in two steps. First, we show

that x ∈M . Second, we show that x ∈ f∞(y).

Step 1: x ∈ M : Towards a contradiction, suppose that x /∈ M . Then, there exists γ ∈ I
such that x /∈ Zγ. In particular, given that Zγ is a closed set, there is ε > 0 such that

Bε(x) ∩ Zγ = ∅. Since S is a chain, we have that Bε(x) ∩ Zδ = ∅ for all δ . γ. Since x is the

limit of the subnet {xβ′}β′∈I′ , there is γ′ ∈ I ′ such that γ′ . γ and xγ
′ ∈ Bε(x). Then we have

xγ
′ ∈ Zγ′ , xγ

′ ∈ Bε(x), and Bε(x) ∩ Zγ′ = ∅, a contradiction. We conclude that x ∈M .

Step 2: x ∈ f∞(y): We need to show that for every ε > 0 there is k ∈ N and x ∈ fk(y)

such that d(x, x) < ε.
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Let some ε > 0 be given. The subnet {xβ′}β′∈I′ converges to x. As such, there exists

γ′ ∈ I ′ such that d(xγ
′
, x) < ε/2. In addition, xγ

′ ∈ f∞(y), so there is k ∈ N and x ∈ fk(y)

such that d(x, xγ
′
) < ε/2. Then, by the triangle inequality, it holds that

d(x, x) ≤ d(x, xγ
′
) + d(xγ

′
, x) < ε.

Together with x ∈ fk(y), this concludes the proof, i.e., x ∈ f∞(y).

Having established existence of an MSS, we now analyze the cardinality of such sets.

4.2 Uniqueness

The first lemma derives a property of the MSS that will be used frequently in the following

proofs.

Lemma 4.2. Let Γ be a social environment and let M be a myopic stable set of Γ. For all

x, y ∈ X, if x ∈M and y ∈ f∞(x) then y ∈M .

Proof. Let x ∈ M and y ∈ f∞(x) and assume, towards a contradiction, that y /∈ M . Given

that M is closed, there is ε > 0 such that Bε(y) ∩ M = ∅. Also, by definition, there is

k ∈ N and z ∈ fk(x) such that z ∈ Bε(y), i.e. z /∈ M . Since z ∈ fk(x), there is a sequence

z0, z1, . . . , zk of length k such that

z0 = x, z1 ∈ f(z0), . . . , zk = z ∈ f(zk−1).

Let k′ ∈ {1, . . . , k} be such that zk
′

is the first element in this sequence with the property

that zk
′
/∈M . Given that z0 = x ∈M and zk = z /∈M , such an element exists. It holds that

zk
′−1 ∈ M , zk

′ ∈ f(zk
′−1), and zk

′
/∈ M . This contradicts deterrence of external deviations

for M .

The following lemma shows that any two myopic stable sets cannot be disjoint.

Lemma 4.3. Let Γ be a social environment and let M1 and M2 be two myopic stable sets

of Γ. Then M1 ∩M2 6= ∅.

Proof. Consider a state x1 ∈ M1. If x1 ∈ M2, then we are done. Otherwise, by external

stability of M2 we know that there is x2 ∈ M2 such that x2 ∈ f∞(x1). Lemma 4.2 tells us

that x2 ∈M1, so x2 ∈M1 ∩M2.

The following example shows that uniqueness of an MSS cannot be demonstrated without

any additional assumptions.
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Example 2. Consider the social environment Γ = ({1}, (X, d), E,�1), where

X = {0, 1/2, 1} ∪
{

1
k
| k ∈ N \ {1, 2}

}
∪
{

1− 1
k
| k ∈ N \ {1, 2}

}
,

and the metric is d(x, y) = |x− y|.
The effectivity correspondence is such that the individual can move from both states 0

and 1 to state 1/2 and, for every k ∈ N\{1, 2}, from state 1−1/k to state 1/k and from state

1/k to state 1− 1/(k+ 1). The individual cannot make any other moves. The preferences of

the individual are such that

2
3
≺1

1
3
≺1

3
4
≺1

1
4
≺1

4
5
≺1

1
5
≺1 · · · ≺1 1 ≺1 0 ≺1

1
2
.

Now, we claim that both {0, 1/2} and {1/2, 1} are myopic stable sets. It is easy to see

that they both satisfy deterrence of external deviations (notice that the individual cannot

move from 1 to 0). For external stability, observe that for every k ∈ N \ {1, 2} it holds

that 0, 1 ∈ f∞(1/k) and 0, 1 ∈ f∞(1 − 1/k). Moreover, it holds that 1/2 ∈ f(0) = f∞(0)

and 1/2 ∈ f(1) = f∞(1). Finally, for minimality, the sets {0} and {1} violate deterrence of

external deviations since 1/2 ∈ f(0) and 1/2 ∈ f(1). The set {1/2} violates external stability

as 1/2 /∈ f∞(x) for any x ∈ X different from 0, 1/2 and 1.

Although Example 2 shows that the MSS is not necessarily unique, we can restore unique-

ness by imposing the following mild continuity assumption on the dominance correspondence

f .

Definition 4.4 (Lower Hemi-continuity of f). The dominance correspondence f : X → X

is lower hemi-continuous if for every sequence {xk}k∈N in X such that xk → x and for every

y ∈ f(x) there is a sequence {yk}k∈N in X such that for all k, yk ∈ f(xk) and yk → y.

In words, if there is a sequence of states converging to x and y dominates x, then it

is possible to find a sequence of states that converges to y such that each element in this

sequence dominates the corresponding element of the sequence that converges to x. Later

on, we will show that this condition is always satisfied if preferences are continuous and some

continuity condition on the effectivity relation is satisfied. The following technical lemma is

helpful in proving uniqueness of an MSS.

Lemma 4.5. If the dominance correspondence f : X → X is lower hemi-continuous, then

the asymptotic dominance correspondence f∞ : X → X is transitive.

Proof. Let x, y, z ∈ X be such that y ∈ f∞(x) and z ∈ f∞(y). We have to show that

z ∈ f∞(x), so we need to show that for every ε > 0, there is k′ ∈ N and z′ ∈ fk′(x) such

that d(z′, z) < ε.
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By assumption, z ∈ f∞(y), so there is k ∈ N and z1 ∈ fk(y) such that d(z1, z) < ε/2. In

addition, as y ∈ f∞(x), we know that for every ` ∈ N there is k` ∈ N and y` ∈ fk`(x) such

that d(y`, y) < 1/`. This generates a sequence {y`}`∈N that converges to y, i.e., y` → y.

Note that fk is lower hemi-continuous, since it is a composition of k lower hemi-continuous

correspondences. Given lower hemi-continuity of fk and the fact that z1 ∈ fk(y), we know

that there is a sequence {z`2}`∈N such that z`2 → z1 and z`2 ∈ fk(y`). Now, we have that

y` ∈ fk`(x) and z`2 ∈ fk(y`), which gives z`2 ∈ fk+k`(x).

Take ` large enough such that d(z`2, z1) < ε/2. Conclude that z`2 ∈ fk+k`(x) and

d(z`2, z) ≤ d(z`2, z1) + d(z1, z) < ε.

This completes the proof.

We are now ready to establish the uniqueness of an MSS whenever the dominance corre-

spondence f is lower hemi-continuous.

Theorem 4.6. Let Γ be a social environment such that the corresponding dominance cor-

respondence f is lower hemi-continuous. Then Γ has a unique MSS.

Proof. Suppose not, then, by Theorem 4.1 and Lemma 4.3, there exists an MSS M1 and an

MSS M2 such that M1 6= M2 and their intersection M3 = M1 ∩M2 is non-empty. Let us

show that M3 is a QMSS, contradicting the minimality of M1 and M2, and establishing the

uniqueness of the MSS. First of all, notice that M3, being the intersection of two closed sets,

is also closed.

For deterrence of external deviations, let x ∈M3 and, towards a contradiction, suppose that

y ∈ f(x) and y /∈ M3. Then given that x ∈ M1 and M1 satisfies deterrence of external

deviations, it must be that y ∈ M1. Also given that x ∈ M2 and M2 satisfies deterrence

of external deviations, it must be that y ∈ M2. This implies that y ∈ M1 ∩M2 = M3, a

contradiction. Consequently, M3 satisfies deterrence of external deviations.

For external stability, take any y /∈M3. There are three cases to consider.

Case 1: y ∈ M1 \M3: Then, by external stability of M2, there is x ∈ M2 such that

x ∈ f∞(y). By Lemma 4.2, we have that x ∈M1. This means that x ∈M2∩M1 = M3 what

we needed to show.

Case 2: y ∈ M2 \M3: The proof is symmetric to Case 1 with M1 and M2 interchanged.

Case 3: y ∈ X \ (M1 ∪M2): We know, by external stability of M1, that there is x ∈M1

such that x ∈ f∞(y). If x ∈M3, we are done. If not, we know from Case 1 above that there

is z ∈ M3 such that z ∈ f∞(x). It follows from x ∈ f∞(y) and z ∈ f∞(x) that z ∈ f∞(y)

by Lemma 4.5.

15



The continuity condition of Theorem 4.6 is trivially satisfied when the state space X is

finite. As such, for all applications with a finite state space, we have uniqueness of the MSS.

The dominance correspondence f is defined in terms of the individual preference relations

(�i)i∈N and the effectivity correspondence E. It might therefore be difficult to verify lower

hemi-continuity of f directly. We therefore provide conditions on the primitives of a social

environment that imply lower hemi-continuity of f . As a first condition, we impose continuity

of the preferences.

Definition 4.7 (Continuity of Preferences). The preference relation �i of individual i ∈ N
is continuous if for any two sequences {xk}k∈N and {yk}k∈N in X with xk → x and yk → y

and, for every k ∈ N, xk �i yk, it holds that x �i y.

Our second condition is lower hemi-continuity of the effectivity correspondence E. To-

wards this end, consider, for every S ∈ N , the correspondence GS : X → X defined by

GS(x) = {x} ∪ {y ∈ X | S ∈ E(x, y)}, x ∈ X,

which associates to every state x ∈ X the set of states coalition S can move to together with

state x itself.

Definition 4.8 (Lower Hemi-continuity of E). The effectivity correspondence E is lower

hemi-continuous if for every coalition S ∈ N the correspondence GS : X → X is lower hemi-

continuous, i.e., for every sequence {xk}k∈N in X such that xk → x and for every y ∈ GS(x)

there is a sequence {yk}k∈N such that yk ∈ GS(xk) and yk → y.

Theorem 4.9 shows that continuity of preferences and lower hemi-continuity of E is

sufficient for the dominance correspondence f to be lower hemi-continuous.

Theorem 4.9. Let Γ be a social environment such that the preferences (�i)i∈N are contin-

uous and the effectivity correspondence E is lower hemi-continuous. Then the dominance

correspondence f is lower hemi-continuous.

Proof. Let x, y ∈ X and sequences {xk}k∈N and {yk}k∈N in X be given. Let us first show

that if individual i ∈ N strictly prefers y to x, y �i x, then there is a number ` ∈ N such

that for all k ≥ `, yk �i xk. Suppose not, then for every ` ∈ N we can find k` ≥ ` such that

xk` �i yk` . This creates sequences {xk`}`∈N, {yk`}`∈N in X with xk` → x and yk` → y such

that xk` �i yk` . By continuity of �i, x �i y, a contradiction.

Let {xk}k∈N be a sequence in X such that xk → x ∈ X and consider some y ∈ f(x).

Then either y = x or y 6= x and there is a coalition S such that S ∈ E(x, y) and y �i x for

all i ∈ S.

If y = x, take the sequence {yk}k∈N in X defined by yk = xk. We immediately have that,

for every k ∈ N, yk ∈ f(xk) and yk → y.
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If y 6= x and there is a coalition S such that S ∈ E(x, y) and y �i x for all i ∈ S, we need

to show that there is a sequence {yk}k∈N such that for all k, yk ∈ f(xk) and yk → y. By

lower hemi-continuity of the correspondence GS, we know that there is a sequence {yk}k∈N
such that yk ∈ GS(xk) and yk → y. By the first paragraph of the proof, we know that for

every i ∈ N there is `i ∈ N such that yk �i xk for all k ≥ `i. Let ` = maxi∈S `i. Then, for

every k ≥ ` and every i ∈ S, yk �i xk and S ∈ E(xk, yk), which shows that yk ∈ f(xk).

The sequence {zk}k∈N defined by zk = xk if k < ` and zk = yk if k ≥ ` therefore has all the

desired properties.

Combining Theorem 4.6 and Lemma 4.9 directly yields the following corollary which

gives a sufficient condition on the primitives of the model to obtain a unique MSS.

Corollary 4.10. Let Γ be a social environment such that the preferences (�i)i∈N are contin-

uous and the effectivity correspondence E is lower hemi-continuous. Then there is a unique

MSS.

4.3 Closed Cycles and the Core

We finish this section with two general results about the structure of an MSS.

Definition 4.11 (Closed Cycle). A closed cycle of a social environment Γ is a set C ⊆ X

such that for every x ∈ C it holds that f∞(x) = C.

Intuitively, a closed cycle is a subset of X which is closed under the asymptotic dominance

correspondence f∞. We denote the union of all closed cycles by CC, so CC contains all the

states that are part of some closed cycle. The following result characterizes the MSS for

finite environments as the union of all closed cycles and shows that this union is a subset of

the MSS for social environments with an infinite state space.

Theorem 4.12. Let Γ be a social environment and M be an MSS of Γ. It holds that

CC ⊆M . If X is finite, we have CC = M .

Proof. Towards a contradiction, suppose there is a closed cycle C which is not a subset of

M . Let x ∈ C and x /∈ M . By external stability there is y ∈ M such that y ∈ f∞(x). As

x ∈ C, we also have that x ∈ f∞(y). By Lemma 4.2, it follows that x ∈M , a contradiction.

Since the choice of C was arbitrary, we have shown that CC ⊆M .

We show next that if X is finite, then CC = M . Since CC ⊆ M , we only need to show

that CC is a QMSS. The set CC satisfies deterrence of external deviations, since for all

x ∈ CC, f(x) ⊆ f∞(x) ⊆ CC. It remains to verify external stability of CC, i.e., for every

state x /∈ CC, f∞(x) ∩ CC 6= ∅.
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Let x /∈ CC and define Y = f∞(x). Note that Y is non-empty sincex ∈ f(x), finite and

that f∞(y) ⊆ Y for every y ∈ Y . Let us represent the set Y and the dominance relation

f on Y by a finite directed graph D, i.e., (i) Y are the vertices of D and (ii) D has an arc

from y to z if and only if z ∈ f(y). By contracting each strongly connected component of

D to a single vertex, we obtain a directed acyclic graph, which is called the condensation of

D. As the condensation is finite and acyclic, it has a maximal element, say c. Observe that

c represents a closed cycle C, so Y ∩ CC 6= ∅.

A sink is a closed cycle which consists of only one state, i.e., f(x) = x. The union of all

sinks is called the core.

Definition 4.13 (Core). Let Γ be a social environment. The core of Γ is given by

CO = {x ∈ X | f(x) = {x}}.

It is well-known that the core may be empty for some social environments. However, if it

is not empty, then it is always contained in the myopic stable set by virtue of Theorem 4.12.

Corollary 4.14. Let Γ be a social environment and let M be an MSS. Then we have

CO ⊆M .

The next definition is inspired by the finite analogue for normal-form games as presented

in Friedman and Mezzetti (2001).

Definition 4.15 (Weak (Finite) Improvement Property). A social environment Γ satisfies

the weak finite improvement property if for each state x ∈ X, fN(x) contains a sink and the

weak improvement property if for each state x ∈ X, f∞(x) contains a sink.

The following provides a characterization for the MSS in social environments with the

weak improvement property.

Theorem 4.16. Let Γ be a social environment and let f be lower hemi-continuous. Then,

the MSS of Γ is equal to the core if and only if the social environment satisfies the weak

improvement property.

Proof. Assume that Γ has the weak improvement property. By Corollary 4.14, CO ⊆ M .

We will show that CO is a QMSS. By minimality, it then follows that CO = M .

In order to see that CO is closed let {xk}k∈N be a sequence in CO, i.e., for all k, {xk} =

f(xk). Now assume that xk → x and x /∈ CO. This means that there is y 6= x such

that y ∈ f(x). By lower hemi-continuity of f , there should be a sequence {yk}k∈N such

yk ∈ f(xk) and yk → y. As for all k, xk ∈ CO, we have that for all k, yk = xk which means

that yk → x 6= y, a contradiction. Deterrence of external deviations is immediate for the core
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as it is the union of sinks. If the social environment satisfies the weak improvement property

we have that for all x /∈ CO, f∞(x) ∩ CO 6= ∅ thus the core satisfies external stability.

For the reverse, assume that CO = M . Now, if x ∈M , it is a sink, so f∞(x) = {x} ⊆ CO.

If x /∈ CO we have by external stability of M , that f∞(x) ∩M 6= ∅, so f∞(x) contains a

sink. This shows that Γ satisfies the weak improvement property.

The requirement of lower hemi-continuity of f in Theorem 4.16 can be weakened to the

requirement that CO should be closed.

5 Applications

In this section, we discuss how the results from the previous section can be applied to the

examples in Section 2.

5.1 Coalition Function Form Games

We can associate a social environment Γ = (N, (X, d), E, (�i)i∈N) to each coalition function

form game (N, v) as in Section 2.1, so we impose the properties of non-interference, full

support and the γ-model.

By Theorem 4.1 we know that there exists at least one non-empty MSS. Let us first show

that for coalition function form games, the MSS is also unique. Towards this end, we first

show that the preference relations �i are continuous and that the effectivity correspondence

E is lower hemi-continuous.

Lemma 5.1. Let (N, v) be a coalition function form game and let Γ = (N, (X, d), E, (�i)i∈N)

be the induced social environment as in Section 2.1. Then, for every i ∈ N , the preference

relation �i is continuous and the effectivity correspondence E is lower hemi-continuous.

Proof. Let some i ∈ N be given. To show continuity of �i, let {xk}k∈N and {yk}k∈N be

sequences in X such that xk → x and yk → y. Then, by the continuity of ui, we have

that ui(x
k) → ui(x) and ui(y

k) → ui(y). So if ui(x
k) ≥ ui(y

k) for all k ∈ N, we obtain

ui(x) ≥ ui(y), which shows that x �i y.

To show lower hemi-continuity of E, let some S ∈ N , a sequence {xk}k∈N in X such that

xk → x and some y ∈ GS(x) be given. We show that there is a sequence {yk}k∈N such that

yk ∈ GS(xk) and yk → y. If y = x, then the choice yk = xk would do, so consider the case

y 6= x,

First of all, there is k′ ∈ N such that for all k ≥ k′, π(xk) = π(x), so in particular

U(xk, S) = U(x, S). For every k < k′, we define yk = xk. For every k ≥ k′, we define yk ∈ X
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by π(yk) = π(y) and

ui(y
k) =

{
ui(y), i ∈ N \ U(x, S),

ui(x
k), i ∈ U(x, S).

Consider some k ≥ k′. Since y 6= x, it holds that S ∈ π(y) and, for every i ∈ N\(S∪U(x, S)),

we have that i is a residual player and the properties of the γ-model imply that {i} ∈ π(y).

The same properties hold for π(yk). For every i ∈ S, it holds that ui(y
k) = ui(y), so

ui(y
k) ≥ v({i}) and

∑
i∈S ui(y

k) = v(S). For every i ∈ N \ (S ∪ U(x, S)), we have that

ui(y
k) = v({i}) = ui(y). For every i ∈ U(x, S) it holds that ui(y) = ui(x) and ui(y

k) = ui(x
k).

By coalitional sovereignty, we have that yk ∈ GS(xk). Using that xk → x, it follows easily

that yk → y.

Lemma 5.1 together with Theorem 4.6 and Lemma 4.9 shows uniqueness of the MSS.

Corollary 5.2. Let (N, v) be a coalition function form game and let Γ be the induced social

environment as in Section 2.1. Then Γ has a unique MSS.

In fact, most other models of coalitional sovereignty will also lead to lower hemi-continuity

of E so will also have a unique MSS. However, establishing the lower hemi-continuity of E

must be done case by case.

The Coalition Structure Core One of the most prominent set-valued solution concepts

for coalition function form games is the coalition structure core.

Definition 5.3 (Coalition Structure Core). Let (N, v) be a coalition function form game

and let Γ = (N, (X, d), E, (�i)i∈N) be the induced social environment as in Section 2.1. The

coalition structure core of (N, v) is the set of states x ∈ X such that for every coalition

S ∈ N∑
i∈S

ui(x) ≥ v(S).

In words, the coalition structure core gives to the members of each coalition at least the

payoff they can obtain by forming that coalition.

Lemma 5.4. Let (N, v) be a coalition function form game and let Γ = (N, (X, d), E, (�i)i∈N)

be the induced social environment as in Section 2.1. The coalition structure core of (N, v)

is equal to the core of Γ.

Proof. Let Y be the coalition structure core. Let y ∈ CO and assume y /∈ Y . Then there is a

coalition S such that
∑

i∈S ui(y) < v(S). Since y ∈ X, it holds for all i ∈ S, ui(y) ≥ v({i}).
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Now, let uS be a vector of payoffs for the members in S such that
∑

i∈S ui = v(S) and for all

i ∈ S, ui > ui(y). Then, by full support, there exists a state y′ ∈ X such that S ∈ E(y, y′)

and uS = uS(y′). Conclude that y′ ∈ f(y). This contradicts the fact that y ∈ CO.

For the reverse, let y ∈ Y and z ∈ f(y) such that z 6= y, i.e., y /∈ CO. Then there is

S ∈ E(y, z) such that uS(z)� uS(y). Also,

v(S) =
∑
i∈S

ui(z) >
∑
i∈S

ui(y) ≥ v(S),

where the first equality follows from the definition of the state space and the last inequality

from the definition of Y . We have obtained a contradiction.

Kóczy and Lauwers (2004) define the coalition structure core to be accessible if from

any initial state there is a finite sequence of states ending with an element of the coalition

structure core and each element in that sequence outsider independently dominates the

previous element. The notion of outsider independent domination differs from our notion

of a myopic improvement in two ways. First, residual players are not required to become

singletons after a move has taken place. Second, improvements for the members of the

coalition that moves are not necessarily strict improvements.

The following example illustrates that under the requirement of strict improvements of all

members involved in a move, as in our dominance correspondence f , the coalition structure

core does not satisfy strong external stability, i.e., it is not the case that for all states x ∈ X,

there is a state y in the coalitional structure core such that y ∈ fN(x).

Example 3. Let (N, v) be a coalition function form game such thatN = {1, 2, 3}, v({1, 2}) =

1, and v({2, 3}) = 1. All other coalitions have a worth of 0. Here, player 2 can choose to form

a coalition with either player 1 or player 3 to form a two-person coalition generating a surplus

equal to one. The coalition structure core therefore consists of only two states, y and y′,

with equal payoffs, u(y) = u(y′) = (0, 1, 0), and coalitional structures π(y) = {{1, 2}, {3}},
and π(y′) = {{1}, {2, 3}}.

Consider an initial state x0 ∈ X such that π(x0) = {{1}, {2}, {3}} and u(x0) = (0, 0, 0).

Under our notion of a myopic improvement, where all players involved in a move have to

gain strictly, a state x1 belongs to f(x0) if and only if either π(x1) = {{1, 2}, {3}} and

u(x1) = (ε, 1 − ε, 0) for some ε ∈ (0, 1) or π(x1) = {{1}, {2, 3}} and u(x1) = (0, 1 − ε, ε)

for some ε ∈ (0, 1). It follows that x1 is a state where either player 1 or player 3 receives a

payoff of zero and the other two players receive a strictly positive payoff summing up to 1.

Now consider any state xk such that either player 1 or player 3 receives 0 and the other

two players receive a strictly positive payoff summing up to 1. We claim that any state

xk+1 ∈ f(xk) has the same properties. Without loss of generality, assume that u3(x
k) = 0.

Let xk+1 be an element of f(xk) different from xk. Since u1(x
k) + u2(x

k) = 1, the only
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coalition that can move is {2, 3} and it holds that π(xk+1) = {{1}, {2, 3}}. Moreover, it

must also hold that u2(x
k+1) > u2(x

k) > 0 and u3(x
k+1) > u3(x

k) = 0, which proves the

claim. It now follows that for every k ∈ N, if xk ∈ fk(x0), then xk is such that there are two

players with a strictly positive payoff. Given this, there is no k ∈ N such that xk belongs to

the coalition structure core.

Theorem 5.5 shows that the MSS coincides with the coalition structure core whenever it

is non-empty.

Theorem 5.5. Let (N, v) be a coalition function form game, Γ be the induced social envi-

ronment as in Section 2.1, and Y be the coalition structure core of Γ. If Y is non-empty,

then the unique MSS of Γ is equal to Y .

Proof. From Lemma 5.1 we know that f is lower hemi-continuous. Also Lemma 5.4 shows

that Y is equal to the core of Γ. If we can show that Γ satisfies the weak improvement

property whenever Y 6= ∅, then we can use Theorem 4.16 to establish our proof. Since the

proof is trivial when the number of individuals n = 1, we assume n ≥ 2 throughout.

So assume that Y 6= ∅. We need to show that for all x0 ∈ X, f∞(x0) ∩ Y 6= ∅. If x0 in

Y , then nothing needs to be shown, so assume that x0 ∈ X \ Y . We need to show that for

every ε > 0 there is a number k′ ∈ N, a state xk
′ ∈ fk′(x0), and a state y ∈ Y such that

d(xk
′
, y) < ε.

Let some ε > 0 be given. Béal, Rémila, and Solal (2013) show that there exists a sequence

of states (x0, . . . , xk
′
) such that xk

′ ∈ Y , k′ is less than or equal to (n2 + 4n)/4, and, for

every k ∈ {1, . . . , k′},

1. there is Sk ∈ N such that Sk ∈ E(xk−1, xk),

2. uSk(xk−1) < uSk(xk).

Notice that the inequality in 2. only means that at least one of the players in Sk gets a

strictly higher payoff, though not necessarily all of them. Let P k be the set of partners of

the players in Sk at state xk−1, more formally defined as

P k = ∪{S∈π(xk−1)|S∩Sk 6=∅}S,

so P k is equal to the moving coalition Sk together with the residual players. Since Sk ∈
E(xk−1, xk), it follows that

ui(x
k) = v({i}), i ∈ P k \ Sk,

ui(x
k) = ui(x

k−1), i ∈ N \ P k.
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We define W k ⊂ Sk to be the, possibly empty, proper subset of Sk consisting of players that

only weakly improve when moving from state xk−1 to state xk, so for every i ∈ W k it holds

that ui(x
k−1) = ui(x

k). We define

δ = mink∈{1,...,k′}mini∈Sk\Wk ui(x
k)− ui(xk−1),

ε′ = min{δ, ε},

so δ is the smallest improvement of any of the strictly improving players involved in any

move along the sequence. It holds that δ > 0 and therefore that ε′ > 0. For k ∈ {0, . . . , k′},
define

νk =
n2k

n2k′+1
.

We define e(W k) = 0 ifW k = ∅ and e(W k) = 1 otherwise. We use the sequence (x0, x1, . . . , xk
′
)

of states as constructed by Béal, Rémila, and Solal (2013) to define a new sequence (x̃0, x̃1, . . . , x̃k
′
)

of states by setting x̃0 = x0 and, for every k ∈ {1, . . . , k′},

π(x̃k) = π(xk),

ui(x̃
k) = ui(x

k) + ε′νk
|Sk\Wk|
|Wk| , i ∈ W k,

ui(x̃
k) = ui(x

k)− ε′νke(W k), i ∈ Sk \W k,

ui(x̃
k) = ui(x

k) = v({i}), i ∈ P k \ Sk,
ui(x̃

k) = ui(x̃
k−1), i ∈ N \ P k.

Notice that the first line does not entail a division by zero, since if i ∈ W k, then W k 6= ∅.
Compared to the sequence (x0, x1, . . . , xk

′
), the sequence (x̃0, x̃1, . . . , x̃k

′
) is such that each

strictly improving player in Sk \W k donates an amount ε′νk/|W k| to each of the players in

W k whenever the latter set is non-empty. It is also important to observe that the fraction

νk is an n2 multiple of νk−1 and that νk′ = 1/n.

We show first by induction that, for every k ∈ {0, . . . , k′}, x̃k ∈ X. Obviously, it holds

that x̃0 = x0 ∈ X. Assume that, for some k ∈ {1, . . . , k′}, x̃k−1 ∈ X. We show that x̃k ∈ X.

It holds that

ui(x̃
k) > ui(x

k) ≥ v({i}), i ∈ W k,

ui(x̃
k) ≥ ui(x

k−1) + δ − ε′νk > ui(x
k−1) + δ − ε′ ≥ ui(x

k−1) ≥ v({i}), i ∈ Sk \W k,

ui(x̃
k) = v({i}), i ∈ P k \ Sk,

ui(x̃
k) = ui(x̃

k−1) ≥ v({i}), i ∈ N \ P k,

where the very last inequality follows from the induction hypothesis. Moreover, for every

S ∈ π(xk), it holds that either S = Sk and W k = ∅, so∑
i∈S

ui(x̃
k) =

∑
i∈Sk

ui(x
k) = v(S),
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or S = Sk and W k 6= ∅, so∑
i∈S

ui(x̃
k) =

∑
i∈Wk

(
ui(x

k) + ε′νk
|Sk \W k|
|W k|

)
+

∑
i∈Sk\Wk

(
ui(x

k)− ε′νk
)

=
∑
i∈Sk

ui(x
k) = v(S),

or S = {i′} with i′ ∈ P k \ Sk and∑
i∈S

ui(x̃
k) = ui′(x̃

k) = ui′(x
k) = v({i′}) = v(S),

or S ⊆ N \ P k, so S ∈ π(x̃k−1), and∑
i∈S

ui(x̃
k) =

∑
i∈S

ui(x̃
k−1) = v(S),

where the last equality makes use of the induction hypothesis. We have now completed the

proof of the fact that for every k ∈ {0, . . . , k′}, x̃k ∈ X.
We show next by induction that, for every k ∈ {0, . . . , k′}, and for every i ∈ N ,

|ui(x̃k)− ui(xk)| ≤ ε′νk(n− 1).

Obviously, for every i ∈ N , it holds that |ui(x̃0) − ui(x0)| = 0 ≤ ε′ν0(n − 1). Assume that,

for some k ∈ {1, . . . , k′}, for every i ∈ N , |ui(x̃k−1) − ui(xk−1)| ≤ ε′νk−1(n − 1). We show

that, for every i ∈ N , |ui(x̃k) − ui(xk)| ≤ ε′νk(n − 1). If i ∈ W k, then W k 6= ∅, and the

statement follows from the observation that

0 ≤ ui(x̃
k)− ui(xk) = ε′νk

|Sk\Wk|
|Wk| ≤ ε′νk(n− 1).

If i ∈ Sk \W k, then we have that

0 ≥ ui(x̃
k)− ui(xk) ≥ −ε′νk ≥ −ε′νk(n− 1).

If i ∈ P k \ Sk, then |ui(x̃k)− ui(xk)| = 0. If i ∈ N \ P k, then it holds that

|ui(x̃k)− ui(xk)| = |ui(x̃k−1)− ui(xk−1)| ≤ ε′νk−1(n− 1) < ε′νk(n− 1),

where the first inequality makes use of the induction hypothesis and the last inequality of

the fact that νk−1 < νk.

Let some k ∈ {1, . . . , k′} and some i ∈ Sk be given. We show that ui(x̃
k) > ui(x̃

k−1). If

i ∈ W k, then it holds that

ui(x̃
k) = ui(x

k) + ε′νk
|Sk \W k|
|W k|

= ui(x
k−1) + ε′νk

|Sk \W k|
|W k|

≥ ui(x̃
k−1)− ε′νk−1(n− 1) + ε′νk

1

n− 1

> ui(x̃
k−1),
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where the strict inequality uses that νk = n2νk−1. If i ∈ Sk \W k, then it holds that

ui(x̃
k) ≥ ui(x

k)− ε′νk
≥ ui(x

k−1) + δ − ε′νk
≥ ui(x̃

k−1)− ε′νk−1(n− 1) + δ − ε′n2νk−1

> ui(x̃
k−1),

where the strict inequality uses the facts that δ ≥ ε′ and

(n2 + (n− 1))νk−1 < 2n2νk−1 ≤ 2νk ≤ 1.

Combining the statements proven so far, it follows that x̃k
′ ∈ fk′(x0). We complete the proof

of the weak improvement property by noting that xk
′ ∈ Y by the result of Béal, Rémila, and

Solal (2013) and by demonstrating that d(x̃k
′
, xk

′
) < ε. It follows that d(x̃k

′
, xk

′
) < ε since

π(x̃k
′
) = π(xk

′
) and, for every i ∈ N ,

|ui(x̃k
′
)− ui(xk

′
)| ≤ ε′νk′(n− 1) < ε′ ≤ ε.

5.2 One-to-One Matching

As in Section 2.2, we can associate a social environment Γ = (N, (X, d), E, (�i)i∈N) to each

one-to-one matching problem (M,W,P ). A matching µ is said to be stable in the matching

problem (M,W,P ) if for every i ∈M ∪W it does not hold that iPiµ(i) and if for every pair

(m,w) ∈M ×W it does not hold that wPmµ(m) and mPwµ(w). It can easily be shown that

a matching is stable if and only if it is in the core of the social environment Γ as defined in

Definition 4.13.

In a seminal contribution to the literature, Gale and Shapley (1962) showed the existence

of stable matchings. The following result of Roth and Vande Vate (1990) will also be helpful.

Lemma 5.6. (Roth and Vande Vate, 1990) For every matching µ ∈ X there is a stable

matching µ′ such that µ′ ∈ fN(µ).

Since the set of states is finite in this application, it holds that fN(µ) = f∞(µ). As such,

the result of Roth and Vande Vate (1990) can be rephrased as saying that Γ satisfies the

weak improvement property as defined in Definition 4.15. Given that for finite settings f is

always lower hemi-continuous, the following result now follows from Theorem 4.16.

Corollary 5.7. Let (M,W,P ) be a matching problem and let Γ be the induced social

environment as in Section 2.2. Then the MSS of Γ is unique and equal to the set of stable

matchings.
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Herings, Mauleon, and Vannetelbosch (2016) define the level-1 farsighted set for matching

problems. It is not hard to see that the MSS for social environments Γ as in Section 2.2

coincides with the level-1 farsighted set. Corollary 5.7 is therefore equivalent to Theorem 3

of Herings, Mauleon, and Vannetelbosch (2016) that characterizes the level-1 farsighted set

as the core of the matching problem.

5.3 Network Formation

As in Section 2.3, we can associate a social environment Γ = (N, (X, d), E, (�i)i∈N) to each

network problem (N,G, v). A network g is said to be pairwise stable (Jackson and Wolinsky,

1996) if for every ij ∈ g it holds that vi(g − ij) ≤ vi(g) and vj(g − ij) ≤ vj(g) and for every

ij /∈ g it holds that vi(g + ij) > vi(g) implies vj(g + ij) ≤ vj(g).2 It is not hard to show

that a network is pairwise stable if and only if it is in the core of the social environment Γ

as defined in Definition 4.13.

Corollary 4.14 shows that any pairwise stable network is in the myopic stable set. How-

ever, it is not necessarily the case that the MSS only contains the pairwise stable networks.

Consider the binary relation R on X defined by gRg′ if g ∈ fN(g′), i.e., g can be reached

from g′ by a finite number of dominations. Let I be the symmetric part of R, i.e., gIg′ if

and only if gRg′ and g′Rg. Consider the set of equivalence classes E induced by I. Let us

denote the equivalence class of network g by [g], i.e., g′ ∈ [g] if and only if g′Ig. For two

distinct equivalence classes [g] and [g′] write [g]P [g′] if gRg′. It is easy to see that [g]P [g′] if

and only if gRg′ and not gRg′.

Let V be the collection of maximal elements of (E, P ), i.e., [g] ∈ V if there is no [g′]

such that [g′]P [g]. Since an element of V simply represents a closed cycle as defined in

Definition 4.11, the following result follows from Theorem 4.12.

Corollary 5.8. Let (N,G, v) be a network problem and let Γ be the induced social envi-

ronment as in Section 2.3. A network g belongs to an MSS M if and only if the equivalence

class [g] belongs to V , i.e., M = {g ∈ X|[g] ∈ V }.

Herings, Mauleon, and Vannetelbosch (2009) define the pairwise myopically stable sets

for network problems using the weaker notion of dominance corresponding to pairwise sta-

bility as defined in Jackson and Wolinsky (1996). It is not hard to see that the MSS for

social environments Γ as in Section 2.3 coincides with the pairwise myopically stable set for

generic network problems. For such network problems, Corollary 5.8 is therefore equivalent

2Pairwise stability as defined in Jackson and Wolinsky (1996) is somewhat stronger and also requires that

there is no ij /∈ g such that vi(g+ij) > vi(g) and vj(g+ij) = vj(g). The weaker notion used here is discussed

as an alternative in Section 5 of Jackson and Wolinsky (1996) and is also widely used in the literature. For

generic network problems, there are no indifferences, so the two definitions are equivalent.
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to Theorem 1 of Herings, Mauleon, and Vannetelbosch (2009) that characterizes the pairwise

myopically stable set as the union of closed cycles. In their paper, a closed cycle is defined

in the sense of Jackson and Watts (2002) for network problems. The notion of closed cycle

of Definition 4.11 is the appropriate generalization to social environments.

5.4 Normal-Form Games

In Section 2.4, we associated a social environment Γ = (N, (X, d), E, (�i)i∈N) to each normal-

form game G = (N, (Σi, di)i∈N , (�i)i∈N).

A strategy profile σ ∈ Σ is said to be a pure strategy Nash equilibrium of the game G

if, for every i ∈ N , for every σ′i ∈ Σi, it holds that σ �i (σ′i, σ−i). It can easily be shown

that a strategy profile is a pure strategy Nash equilibrium if and only if it is in the core of

the social environment Γ as defined in Definition 4.13. Corollary 4.14 then shows that every

pure strategy Nash equilibrium belongs to every MSS. For normal-form games, Theorem

4.16 reduces to the following result.

Corollary 5.9. Let G be a normal-form game and let Γ be the induced social environment

as in Section 2.4. The MSS of Γ is equal to the set of pure strategy Nash equilibria if and

only if Γ has the weak improvement property.

The following result exploits the fact that many classes of games have the weak improve-

ment property.

Corollary 5.10. Let G be a normal-form game and let Γ be the induced social environment

as in Section 2.4. Then the MSS is equal to the set of pure strategy Nash equilibria for finite

potential games, aggregative games, and finite supermodular games.

Proof. For finite supermodular games, Friedman and Mezzetti (2001) show that the game

has the weak finite improvement property which implies the weak improvement property.

Monderer and Shapley (1996) establish the weak finite improvement property for potential

games. For aggregative games, it is easily verified that E is lower hemi-continuous and

preferences are continuous by assumption, so f is lower hemi-continuous by Theorem 4.9.

Dindoš and Mezzetti (2006) show that aggregative games have the weak finite improvement

property. The result now follows from Theorem 4.16.

As an illustration, consider the two games in Example 4.

Example 4. Game 1 has a unique Nash equilibrium, but does not satisfy the weak finite

improvement property. Thus, the MSS may contain strategy profiles which are not Nash

equilibria.
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Game 1:

Player 1

Player 2

E F G H

A 4, 1 −20,−20 1, 4 0, 0

B 2, 2 4, 1 −20,−20 0, 0

C −20,−20 2, 2 4, 1 0, 0

D 0, 0 0, 0 0, 0 1, 1

The Nash equilibrium of Game 1 is (D,H) and the unique myopic stable set M is given by

M = {(A,E), (A,G), (B,E), (B,F ), (C,F ), (C,G), (D,H)}.

On the other hand, Game 2 shows that not every strategy profile where each strategy

is played with positive probability in a mixed-strategy Nash equilibrium is part of an MSS.

In this game there exists a pure strategy Nash equilibrium (B,R) and two mixed strategy

Nash equilibria(
(1
2
T, 1

2
M, 0B), (1

2
L, 1

2
C, 0R)

)
,
(

(19
42
T, 1

6
M, 8

21
B), ( 8

21
L, 8

21
C, 5

21
R)
)
.

The unique MSS contains only the pure strategy Nash equilibrium (B,R). Of course, if we

define the states in the social environment corresponding to Game 2 to be the mixed strategy

profiles, then the mixed Nash equilibria would be part of the MSS.

Game 2:

Player 1

Player 2

L C R

T 1, 3 3, 1 0, 0

M 3, 1 1, 3 0, 0

B 0, 0 3
2
, 3
2

4, 4

Asymmetric Bertrand Competition Theorem 4.1 shows that for any game G, the

associated social environment Γ has at least one MSS. Here, we illustrate the power of

this result by determining the MSS in a two player Bertrand game with asymmetric costs.

Consider two firms N = {1, 2} where each firm i ∈ {1, 2} chooses a price pi ≥ 0. We assume

that the firm with the lowest price sells the amount q ≥ 0 at its posted price and incurs a

cost per unit of ci ≥ 0. In order to make the state space compact, take some p̄ high enough,

in particular exceeding c1 and c2, and restrict the prices to the interval [0, p̄]. We consider

the state space X = {p ∈ R2
+ | p1 ≤ p̄, p2 ≤ p̄} and the metric di(p, p

′) = |p− p′|, i = 1, 2.
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Additionally, we assume that costs are asymmetric, so c1 < c2.
3 If both firms post the

same price, output is split equally between the two firms. Profits (and therefore preferences)

are given by

ui(pi, pj) =


(pi − ci)q, if pi < pj,

(pi − ci)q/2, if pi = pj,

0, if pi > pj.

This game is interesting for several reasons. To start, observe that the payoff functions are

not continuous. Given this, the dominance correspondence f is not lower hemi-continuous,

so we cannot use Theorem 4.6 to establish uniqueness of the MSS. Also, apart from the

discontinuity in payoff functions, this asymmetric Bertrand game has no pure strategy Nash

equilibria, so the core of the associated social environment is empty. Finally, several papers

mistakenly claim that this game has no Nash equilibrium. As Blume (2003) noted, there are

mixed Nash equilibria in which player 1 chooses p1 = c2 and player 2 randomizes his prize

p2 continuously on an interval [c2, c2 + ε]. On the other hand, the literature has so far not

yet been able to determine all mixed Nash equilibria of this game.

To illustrate the versatility of our framework, let us determine an MSS of this game and

show it is unique. It is represented by the shaded area in Figure 1. The construction, which

crucially relies on the fact that the MSS is closed, proceeds in several steps. Let M be an

MSS, which exists by virtue of Theorem 4.1.

Step 1. P 1 = {(p1, p2) ∈ X|c1 ≤ p1 = p2 ≤ c2} ⊆M.

Towards a contradiction, suppose that (p1, p2) ∈ X satisfies c1 < p1 = p2 < c2 and

(p1, p2) is not in M . Once the contradiction is obtained, we get the result of Step 1

exploiting the fact that M is closed.

Take any p′1 ∈ R+ such that c1 < p′1 < p1. There are two cases to consider. In case

1, (p′1, p2) ∈ M . Given that (p1, p2) /∈ M and M is closed, there is an ε′ > 0 such

that for every ε ∈ (0, ε′) we have (p1 − ε, p2) /∈ M . However, for ε small enough,

(p1 − ε, p2) ∈ f(p′1, p2) as firm 1 will find it profitable to deviate to p1 − ε > p′1. Since

M satisfies deterrence of external deviations, it follows that (p1 − ε, p2) ∈ M , leading

to a contradiction. In case 2, we have (p′1, p2) /∈ M . By external stability, there must

be (p′′1, p
′′
2) ∈ M such that (p′′1, p

′′
2) ∈ f∞(p′1, p2). At (p′1, p2), firm 2 makes no sales

and has zero profits. Since p′1 < c2, it has no profitable deviation. For firm 1, any

p̃1 ∈ R+ such that p′1 < p̃1 < p2 is a profitable deviation, p̃1 = p2 may or may not be

a profitable deviation, and p̃1 > p2 is not a profitable deviation. It is now easy to see

that f∞(p′1, p2) = {(p̃1, p2) ∈ R2
+|p′1 ≤ p̃1 ≤ p2}. External stability therefore implies

3In the symmetric case c1 = c2 = c, it is easily verified that the unique MSS is equal to the unique Nash

equilibrium, i.e., p1 = p2 = c.
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that there is (p′′1, p2) ∈ M with c1 < p′′1 < p1, but then we are back in case 1, and we

obtain a contradiction as before. Consequently, it holds that (p1, p2) ∈M .

Step 2. P 2 = {(p1, p2) ∈ X|c1 ≤ p1 ≤ c2, p1 ≤ p2} ⊆M.

Take (p1, p2) ∈ P 1 such that p2 < c2. It follows from Step 1 that (p1, p2) ∈ M. It

holds that u2(p1, p2) is strictly negative. As such, firm two can gain by increasing p2

above the value of p1 as this will give him a profit of zero. By deterrence of external

deviations, all these options must also be in M. The result of Step 2 now follows from

the requirement that M is closed.

Step 3. P 3 = {(p1, p2) ∈ X|c1 ≤ p1 ≤ p2} ⊆M.

Take (p1, p2) ∈ P 2 such that c1 < p1 < p2. By Step 2 it holds that (p1, p2) ∈M . Then

firm 1 can deviate and can increase profits by choosing p′1 such that, p1 < p′1 < p2.

Since M satisfies deterrence of external deviations, it holds that (p′1, p2) ∈ M . This

shows that we can drop the restriction p1 ≤ c2 from the definition of the set P 2. Using

closedness of M we can again change strict inequalities to weak inequalities.

Step 4. P 4 = P 3 ∪ {(p1, p2) ∈ X|c2 ≤ p2 ≤ p1} ⊆M.

Take (p1, p2) ∈ P 3 such that c2 < p1 < p2. By Step 3 it holds that (p1, p2) ∈ M . Now

firm 2 can deviate and set p′2 such that c2 < p′2 < p1 and make strictly positive profits.

Thus, the set {(p1, p2) ∈ X|c2 ≤ p2 ≤ p1} is a subset of M. The set P 4 is given by the

shaded area in the Figure 1.

Step 5. P 4 is the unique MSS.

We have shown that P 4 is contained in any MSS, so we only need to show that P 4

itself is a QMSS. First, observe that P 4 is closed. Next, X \ P 4 is given by

{(p1, p2) ∈ X|p1 < c1}︸ ︷︷ ︸
P 5

∪ {(p1, p2) ∈ X|p1 > p2, p2 < c2}︸ ︷︷ ︸
P 6

.

In order to see that P 4 satisfies deterrence of external deviations, observe that firm 1

will never deviate to a point in the set P 5 as this gives zero or negative profits for firm

1 and profits at states in P 4 are non-negative for firm 1. Firm 2 has no possibility to

deviate to P 5 from a point in the set P 4. Also, any point in the set P 6 gives firm 2

negative profits. Firm 2 only obtains negative profits at states in P 4 if p1 = p2 < c2.

However, if firm 2 deviates to p′2 < p1, then his profits would become more negative so

firm 2 will never deviate to states in P 6.

It remains to show that P 4 satisfies external stability. If p2 ≤ p1 < c1, then firm 2 can

gain by choosing p′2 such that p′2 > c2. Next firm 1 can gain by choosing p′1 such that

c2 < p′1 < p2. The strategy profile (p′1, p
′
2) belongs to P 4. If p1 < p2 ≤ c1, then firm 1
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Figure 1: The MSS for the asymmetric Bertrand model. Left panel: without legal restric-

tions. Right panel: with legal restrictions.
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can gain by choosing p′1 such that p′1 > c2. Then firm 2 can gain by choosing p′2 such

that c2 < p′2 < p′1. The strategy profile (p′1, p
′
2) is in P 4. If p1 < c1 < p2, firm 1 can gain

by choosing p′1 such that c1 < p′1 < p2 which leads to the strategy profile (p′1, p2) in P 4.

Hence, external stability holds starting from any state in P 5. For (p1, p2) ∈ P 6 \ P 5 it

holds that p1 > p2, c1 ≤ p1, and p2 < c2, so firm 2 can gain by choosing p′2 = c2. The

strategy profile (p1, c2) belongs to P 4.

Asymmetric Bertrand Competition under Legal Restrictions Let us now consider a

slightly different version of Bertrand competition. In many countries, pricing below marginal

or average cost is considered to be predatory pricing and thus forbidden by law. We analyze

how this restriction influences the MSS. To do so, we adjust the state space and define

X = {(p1, p2) ∈ P |c1 ≤ p1, c2 ≤ p2}.

The MSS is considerably smaller than in the previous setting. In particular, we will show

that it is equal to the set

P ∗ =

{
(p1, c2) ∈ P

∣∣∣∣c1 + c2
2

≤ p1 ≤ c2

}
.

Recall that the mixed Nash equilibrium derived by Blume (2003) had p1 = c2 and p2 being

drawn from an atomless distribution on an interval [c2, c2 + ε]. The prediction of the MSS is

that prices will be set lower than in the mixed Nash equilibrium.

Again, we split the proof into several steps.
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Step 1. First we show that P ∗ is a QMSS. We first establish deterrence of external deviations.

For (p1, c2) ∈ P ∗, profits of firm 1 are non-negative. Thus, setting p1 > c2 with a

payoff of zero is not a profitable deviation for firm 1 from any point in P ∗. Note

that the payoff of player 1 is increasing in p1 for p1 < c2. Thus, a deviation to

a p1 < (c1 + c2)/2 could only be profitable from the strategy profile (c2, c2). This

requires (p1 − c1)q > (c2 − c1)q/2 or, equivalently, p1 > (c1 + c2)/2, which is not the

case. It is easily verified that firm 2 cannot increase its profits by deviating from any

(p1, c2) ∈ P ∗. This shows deterrence of external deviations for P ∗.

It remains to verify external stability. Let some state (p1, p2) ∈ X \ P ∗ be given. If

c2 < p1 < p2, then firm 2 can profitably deviate to p′2 = (c2 + p1)/2 and firm 1 can

profitably deviate in the next step to p′1 = (c2 + p′2)/2 and so forth. It follows that

(c2, c2) ∈ f∞(p1, p2). If p1 ≤ c2 < p2, then firm 1 can profitably deviate to p′1 such that

c2 < p′1 < p2 and we can continue as in the previous case. If c2 < p2 ≤ p1, then firm 1

can profitably deviate to p′1 such that c2 < p′1 < p2 and we can continue as before. If

p1 /∈ [(c1 + c2)/2, c2] and p2 = c2, then firm 1 can profitably deviate to p′1 = (c1 + c2)/2

to reach a state in P ∗. We have covered all states in X \ P ∗ and thereby shown that

P ∗ satisfies external stability.

Step 2. Let M be a QMSS. Let us show that for every (p1, c2) ∈ P ∗ \ {(c2, c2)}, if (p1, c2) ∈M,

then (c2, c2) ∈ M . Suppose (c2, c2) /∈ M . By closedness of M , there is ε̄ > 0 such

that, for every ε ∈ (0, ε̄), (c2 − ε, c2) /∈M . Take p′1 = max{(p1 + c2)/2, c2 − ε̄/2}, then

(p′1, c2) ∈ f(p1, c2), so (p′1, c2) ∈M . Given that p′1 > c2 − ε̄, we obtain a contradiction.

Step 3. Let M be a QMSS. Let us show that if (c2, c2) ∈ M , then, for every (p1, c2) ∈ P ∗ \
{(c2, c2)}, we have (p1, c2) ∈M . This follows from the fact that any strategy profile in

(p1, c2) ∈ P ∗ \ {(c2, c2)} with p1 > (c1 + c2)/2 offers higher profits for firm 1 compared

to (c2, c2) and the fact that M is closed.

Step 4. We are now ready to show that P ∗ is an MSS. First of all, by step 1 it is a QMSS. So if,

towards a contradiction, P ∗ is not an MSS, it should violate minimality. This means

that there is a proper subset of P ∗ that is also a QMSS. This subset either contains

(c2, c2) or it is a subset of P ∗ \ {(c2, c2)}. If contains (c2, c2) then, by Step 3, it should

contain P ∗ \ {(c2, c2)} and therefore be equal to P ∗. If it is a subset of P ∗ \ {(c2, c2)},
then by Step 2, it should contain (c2, c2), a contradiction.

Step 5. Finally, let us show that the set P ∗ is the unique MSS. Let M be an MSS. By Lemma

4.3, it holds that P ∗ ∩M 6= ∅. If M contains (c2, c2), then, by Step 3, M should also

contain P ∗ \ {(c2, c2)}, so P ∗ ⊆ M and by minimality P ∗ = M . If M contains an
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element of P ∗ \ {(c2, c2)}, then, by Step 2, it should also contain (c2, c2) and, by Step

3, also P ∗ \ {(c2, c2)}. Again, we obtain P ∗ ⊆M and by minimality P ∗ = M .

By characterizing the MSS for the asymmetric Bertrand model, we have shown that it

is possible to find the MSS in nontrivial non-cooperative games. The difference between the

MSS in the two versions of the Bertrand model given above is substantial which emphasizes

the great importance of details in this model, i.e., the choice of strategy sets. The underlying

origin of this sensitivity is due to the discontinuity in payoff functions. Note that in both

cases no pure strategy Nash equilibrium exists, any mixed-strategy Nash equilibrium involves

randomizations over a continuous interval, and the literature contains no full characterization

of the set of Nash equilibria. The fact that it is not overly complicated to characterize the

MSS in such a complex environment further boosts the appeal of the MSS as an equilibrium

concept.

6 Conclusion

The myopic stable set provides a solution concept for a wide variety of social environments.

As we have shown, the setting encompasses coalition function form games, models of network

formation, matching models, and non-cooperative games. These environments have been

chosen based on their prominence in the literature but are by no means exhaustive. In

particular, promising environments for future research on the myopic stable set include

exchange processes in general equilibrium models, many-to-many matching with transfers

and non-cooperative games where groups of players can deviate.

The following three features boost the appeal of the myopic stable set as a solution

concept. First, the myopic stable set unifies standard solution concepts in many social

environments. For instance, it coincides with the coalition structure core in coalition function

form games (Kóczy and Lauwers, 2004) if the coalition structure core is non-empty, the set of

stable matchings in the standard one-to-one matching model (Gale and Shapley, 1962), the

set consisting of pairwise stable networks and closed cycles of networks (Jackson and Watts,

2002), and the set of pure strategy Nash equilibria in finite supermodular games (Bulow,

Geanakoplos, and Klemperer, 1985), finite potential games (Monderer and Shapley, 1996),

and aggregative games (Selten, 1970).

Second, our solution concept exists for any social environment and—under weak conti-

nuity assumptions—provides a unique (set-valued) prediction. This differs from well-known

concepts in the literature which fail to satisfy these properties even in social environments

with more structure.

Finally, we have characterized the myopic stable set explicitly for two versions of asym-

metric Bertrand competition, a complex game which contains no pure strategy Nash equi-
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librium and where the set of mixed strategy Nash equilibria is unknown. Thus, we believe

that the myopic stable set can be fruitfully applied in many settings.
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