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Abstract. Stable flows generalize the well-known concept of stable match-
ings to markets in which transactions may involve several agents, for-
warding flow from one to another. An instance of the problem consists
of a capacitated directed network, in which vertices express their pref-
erences over their incident edges. A network flow is stable if there is no
group of vertices that all could benefit from rerouting the flow along a
walk.
Fleiner [13] established that a stable flow always exists by reducing it to
the stable allocation problem. We present an augmenting-path algorithm
for computing a stable flow, the first algorithm that achieves polynomial
running time for this problem without using stable allocation as a black-
box subroutine. We further consider the problem of finding a stable flow
such that the flow value on every edge is within a given interval. For this
problem, we present an elegant graph transformation and based on this,
we devise a simple and fast algorithm, which also can be used to find a
solution to the stable marriage problem with forced and forbidden edges.
Finally, we study the highly complex stable multicommodity flow model
by Király and Pap [24]. We present several graph-based reductions that
show equivalence to a significantly simpler model. We further show that
it is NP-complete to decide whether an integral solution exists.

1 Introduction

Stability is a well-known concept used for matching markets where the aim is to
reach a certain type of social welfare, instead of profit-maximization [29]. The
measurement of optimality is not maximum cardinality or minimum cost, but
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the certainty that no two agents are willing to selfishly modify the market situ-
ation. Stable matchings were first formally defined in the seminal paper of Gale
and Shapley [17]. They described an instance of the college admission problem
and introduced the terminology based on marriage that since then became wide-
spread. Besides resident allocation, variants of the stable matching problem are
widely used in other employer allocation markets [30], university admission de-
cisions [2,4], campus housing assignments [5,28] and bandwidth allocation [16].
A recent honor proves the currentness and importance of results in the topic: in
2012, Lloyd S. Shapley and Alvin E. Roth were awarded the Sveriges Riksbank
Prize in Economic Sciences in Memory of Alfred Nobel for their outstanding
results on market design and matching theory.

In the stable marriage problem, we are given a bipartite graph, where the
two classes of vertices represent men and women, respectively. Each vertex has
a strictly ordered preference list over his or her possible partners. A matching
is stable if it is not blocked by any edge, that is, no man-woman pair exists who
are mutually inclined to abandon their partners and marry each other [17].

In practice, the stable matching problem is mostly used in one of its ca-
pacitated variants, which are the stable many-to-one matching, many-to-many
matching and allocation problems. The stable flow problem can be seen as a
high-level generalization of all these settings. To the best of our knowledge, it is
the most complex graph-theoretical generalization of the stable marriage model,
and thus plays a crucial role in the theoretical understanding of the power and
limitations of the stable marriage concept. From a practical point of view, sta-
ble flows can be used to model markets in which interactions between agents
can involve chains of participants, e.g., supply chain networks involving multiple
independent companies.

In the stable flow problem, a directed network with preferences models a
market situation. Vertices are vendors dealing with some goods, while edges
connecting them represent possible deals. Through his preference list, each ven-
dor specifies how desirable a trade would be to him. Sources and sinks model
suppliers and end-consumers. A feasible network flow is stable, if there is no
set of vendors who mutually agree to modify the flow in the same manner. A
blocking walk represents a set of vendors and a set of possible deals so that all of
these vendors would benefit from rerouting some flow along the blocking walk.

Literature review. The notion of stability was extended to so-called “vertical net-
works” by Ostrovsky in 2008 [26]. Even though the author proves the existence
of a stable solution and presents an extension of the Gale-Shapley algorithm,
his model is restricted to unit-capacity acyclic graphs. Stable flows in the more
general setting were defined by Fleiner [13], who reduced the stable flow problem
to the stable allocation problem.

The best currently known computation time for finding a stable flow is
O(|E| log |V |) in a network with vertex set V and edge set E. This bound is
due to Fleiner’s reduction to the stable allocation problem and its fastest solu-
tion described by Dean and Munshi [9]. Since the reduction takes O(|V |) time
and does not change the instance size significantly and the weighted stable al-
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location problem can be solved in O(|E|2 log |V |) time [9], the same holds for
the maximum weight stable flow problem. The Gale-Shapley algorithm can also
be extended for stable flows [8], but its straightforward implementation requires
exponential running time, just like in the stable allocation problem.

It is sometimes desirable to compute stable solutions using certain forced
edges or avoiding a set of forbidden edges. This setting has been an actively
researched topic for decades [6,10,14,20,25]. This problem is known to be solv-
able in polynomial time in the one-to-one matching case, even in non-bipartite
graphs [14]. Though Knuth presented a combinatorial method that finds a sta-
ble matching in a bipartite graph with a given set of forced edges or reports
that none exists [25], all known methods for finding a stable matching with both
forced and forbidden edges exploit a somewhat involved machinery, such as ro-
tations [20], LP techniques [11,12,21] or reduction to other advanced problems
in stability [10,14].

In many flow-based applications, various goods are exchanged. Such problems
are usually modeled by multicommodity flows [22]. A maximum multicommodity
flow can be computed in strongly polynomial time [31], but even when capacities
are integer, all optimal solutions might be fractional, and finding a maximum
integer multicommodity flow is NP-hard [19]. Király and Pap [24] introduced the
concept of stable multicommodity flows, in which edges have preferences over
which commodities they like to transport and the preference lists at the vertices
may depend on the commodity. They show that a stable solution always exists,
but it is PPAD-hard to find one.

Our contribution and structure. In this paper we discuss new and simplified
algorithms and complexity results for three differently complex variants of the
stable flow problem. Section 2 contains preliminaries on stable flows.
• In Section 3 we present a polynomial algorithm for stable flows. To derive a

fast, elegant, and direct solution method, we combine the well-known pseudo-
polynomial Gale-Shapley algorithm and the proposal-refusal pointer machin-
ery known from stable allocations into an augmenting-path algorithm for
computing a stable flow.

• Then, in Section 4 stable flows with restricted intervals are discussed. We pro-
vide a simple combinatorial algorithm to find a flow with flow value within
a pre-given interval for each edge. Surprisingly, our algorithm directly trans-
lates into a very simple new algorithm for the problem of stable matchings
with forced and forbidden edges in the classical stable marriage case. Unlike
the previously known methods, our result relies solely on elementary graph
transformations.

• Finally, in Section 5 we study stable multicommodity flows. First, we provide
tools to simplify stable multicommodity flow instances to a great extent by
showing that it is without loss of generality to assume that no commodity-
specific preferences at the vertices and no commodity-specific capacities on
the edges exist. Then, we reduce 3-sat to the integral stable multicommodity
flow problem and show that it is NP-complete to decide whether an integral
solution exists even if the network in the input has integral capacities only.
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2 Preliminaries

A network (D, c) consists of a directed graph D = (V,E) and a capacity function
c : E → R≥0 on its edges. The vertex set of D has two distinct elements, also
called terminal vertices: a source s, which has outgoing edges only and a sink t,
which has incoming edges only.

Definition 1 (flow). Function f : E → R≥0 is a flow if it fulfills both of the
following requirements:
1. capacity constraints: f(uv) ≤ c(uv) for every uv ∈ E;
2. flow conservation:

∑
uv∈E f(uv) =

∑
vw∈E f(vw) for all v ∈ V \ {s, t}.

A stable flow instance is a triple I = (D, c,O). It comprises a network (D, c)
and O, the preference ordering of vertices on their incident edges. Each non-
terminal vertex ranks its incoming and also its outgoing edges strictly and sep-
arately. If v prefers edge vw to vz, then we write rv(vw) < rv(vz). Terminals do
not rank their edges, because their preferences are irrelevant with respect to the
following definition.

Definition 2 (blocking walk, stable flow). A blocking walk of flow f is a
directed walk W = 〈v1, v2, ..., vk〉 such that all of the following properties hold:
1. f(vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, ..., k − 1;
2. v1 = s or there is an edge v1u such that f(v1u) > 0 and rv1(v1v2) < rv1(v1u);
3. vk = t or there is an edge wvk such that f(wvk) > 0 and rvk(vk−1vk) <

rvk(wvk).
A flow is stable, if there is no blocking walk with respect to it in the graph.

Unsaturated walks fulfilling point 2 are said to dominate f at start, while
walks fulfilling point 3 dominate f at the end. We can say that a walk blocks f
if it dominates f at both ends.

Throughout the paper, we will assume that the digraph D does not contain
loops or parallel edges, the source s only has outgoing edges, the sink t only has
incoming edges, and that no isolated vertices exist. All these assumptions are
without loss of generality and only for notational convenience.

Problem 1. sf
Input: I = (D, c,O); a directed network (D, c) and O, the preference ordering of
vertices.
Question: Is there a flow f so that no walk blocks f?

Theorem 1 (Fleiner [13]). sf always has a stable solution and it can be found
in polynomial time. Moreover, for a fixed sf instance, each edge incident to s or
t has the same value in every stable flow.

This result is based on a reduction to the stable allocation problem. The
second half of Theorem 1 can be seen as the flow generalization of the so-called
Rural Hospitals Theorem, known for stable matching instances in general graphs.
Part of this theorem states that if a vertex is unmatched in one stable matching,
then all stable solutions leave it unmatched [18].
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Algorithm 1: Augmenting path algorithm for stable flows
Initialize π, ρ.
while π[s] 6= ∅ do

Let W be an s-t-path or cycle in Hπ,ρ.
Let ∆ := mine∈W cf (e).
Augment f by ∆ along W .
while ∃uv ∈ EHπ,ρ with cf (uv) = 0 do

UpdatePointers (u)

3 A polynomial-time augmenting path algorithm for
stable flows

Using Fleiner’s construction [13], it is possible to find a stable flow efficiently
by computing a stable allocation instead. Also the popular Gale-Shapley algo-
rithm can be extended to sf. As described in [8], this yields a preflow-push type
algorithm, in which vertices forward or reject excessive flow according to their
preference lists. While this algorithm has the advantage of operating directly on
the network without transforming it to a stable allocation instance, it requires
pseudo-polynomial running time.

In the following, we describe a polynomial time algorithm to produce a stable
flow that operates directly on the network D. Our method is based on the well-
known augmenting path algorithm of Ford and Fulkerson [15], also used by Baïou
and Balinski [1] and Dean and Munshi [9] for stability problems. The main idea is
to introduce proposal and refusal pointers to keep track of possible Gale-Shapley
steps and execute them in bulk. Each such iteration corresponds to augmenting
flow along an s-t-path or cycle in a restricted residual network.

In the algorithm, every vertex v ∈ V \ {t} is associated with two pointers,
the proposal pointer π[v] and the refusal pointer ρ[v]. Initially π[v] points to
the first-choice outgoing edge on v’s preference list, whereas ρ[v] is inactive.
Throughout the algorithm π[v] traverses the outgoing edges of v in order of
increasing rank on v’s preference list (for the source s, we assume an arbitrary
preference order) until it gets advanced beyond the final outgoing edge. Then
ρ[v] becomes active and traverses the incoming edges of v in order of decreasing
rank on v’s preference list.

With any state of the pointers π, ρ, we associate a helper graph Hπ,ρ, which
contains the edges pointed at by the proposal pointers and the reversals of the
edges pointed at by the refusal pointer. A recursive update procedure for advanc-
ing the pointers along their lists ensures that throughout the algorithm, Hπ,ρ

contains an s-t-path or a cycle, with all edges having positive residual capacity
cf with respect to the current flow. The algorithm then augments the flow along
this path or cycle and updates the pointers of saturated edges. Once π[s] has
traversed all outgoing edges of s, the algorithm has found a stable flow. As in
each iteration, at least one pointer is advanced, the running time of the algo-
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rithm is polynomial in the size of the graph. See the full version [7] for a listing
of the subroutine UpdatePointers and a complete analysis.

4 Stable flows with restricted intervals

Various stable matching problems have been tackled under the assumption that
restricted edges are present in the graph [10,14]. A restricted edge can be forced
or forbidden, and the aim is to find a stable matching that contains all forced
edges, while it avoids all forbidden edges. Such edges correspond to transactions
that are particularly desirable or undesirable from a social welfare perspective,
but it is undesirable or impossible to push the participating agents directly to
use or avoid the edges. We thus look for a stable solution in which the edge
restrictions are met voluntarily.

A natural way to generalize the notion of a restricted edge to the stable flow
setting is to require the flow value on any given edge to be within a certain
interval. To this end, we introduce a lower capacity function l : E → R≥0 and
an upper capacity function u : E → R≥0.

Problem 1. sf restricted
Input: I = (D, c,O, l, u); an sf instance (D, c,O), a lower capacity function
l : E → R≥0 and an upper capacity function u : E → R≥0.
Question: Is there a stable flow f so that l(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ E?

Note that in the above definition, the upper bound u does not affect blocking
walks, i.e., a blocking walk can use edge uv, even if f(uv) = u(uv) < c(uv) holds.

sf restricted generalizes the natural notion of requiring flow to use an
edge to its full capacity (by setting l(uv) = c(uv)) and of requiring flow not
to use an edge at all (by setting u(uv) = 0), which corresponds to the tradi-
tional cases of forced and forbidden edges. In fact, it turns out that any given
instance of sf restricted can be transformed to an equivalent instance in
which l(uv), u(uv) ∈ {0, c(uv)} for all uv ∈ E. We describe the correspond-
ing reduction in the full version [7]. Henceforth, we will assume that our in-
stances are of this form and use the notation Q := {uv ∈ E : l(uv) = c(uv)}
and P := {uv ∈ E : u(uv) = 0} for the sets of forced and forbidden edges, re-
spectively.

In the following, we describe a polynomial algorithm that finds a stable flow
with restricted intervals or proves its nonexistence. We show that restricted
intervals can be handled by small modifications of the network that reduce the
problem to the unrestricted version of sf. We show this separately for the case
that only forced edges occur, which we call sf forced, in Section 4.1 and for
the case that only forbidden edges occur, called sf forbidden, in Section 4.2. It
is straightforward to see that both results can be combined to solve the general
version of sf restricted. All missing proofs can be found in the full version [7].

We mention that it is also possible to solve sf restricted by transforming
the instance first into a weighted sf instance, and then into a weighted stable
allocation instance, both solvable in O(|E|2 log |V |) time [9]. The advantages of
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Fig. 1. Substituting forced edge uv by edges sv and ut in D′.

our method are that it can be applied directly to the sf restricted instance and
it also gives us insights to solving the stable roommate problem with restricted
edges directly, as pointed out at the end of Sections 4.1 and 4.2. Moreover,
our running time is only O(|P ||E| log |V |), where P is the set of edges with
u(uv) < c(uv).

4.1 Forced edges

Let us first consider a single forbidden edge uv. We modify graph D to derive
a graph D′. The modification consists of deleting the forced edge uv and intro-
ducing two new edges sv and ut to substitute it. Both new edges have capacity
c(uv) and take over uv’s rank on u’s and on v’s preference lists, respectively, as
shown in Fig. 1.

Lemma 1. Let f be a flow in D with f(uv) = c(uv). Let f ′ be the flow in D′

derived by setting f ′(sv) = f ′(ut) = f(uv) and f ′(e) = f(e) for all e ∈ E \{uv}.
Then f is stable if and only if f ′ is stable.

Proof. We first observe that the set of edges not saturated by f in D is the same
as the set of edges not saturated by f ′ in D′. This is because uv is saturated by
f and ut, sv are saturated by f ′. Now let u′v′ be such an unsaturated edge. Note
that there is an edge u′w′ with ru′(u′w) > ru′(u′v′) and f(u′w) > 0 if and only
if there is an edge u′w′ with ru′(u′w′) > ru′(u′v′) and f ′(u′w′) > 0. The same is
true for incoming edges at v′ dominated by u′v′. In other words, the dominance
situation at all vertices is the same for f and f ′. This implies that any blocking
walk for f in D is a blocking walk for f ′ in D′ and vice versa. ut

Repeated application of Lemma 1 in conjunction with the Rural Hospital
Theorem (Theorem 1) allows us to transform any instance of sf forced into a
standard stable flow instance.

Theorem 2. sf forced can be solved in time O(|E| log |V |).

Stable matchings with forced edges The technique described above also
provides a fairly simple method for the stable matching problem with forced
edges even in non-bipartite graphs, because the Rural Hospitals Theorem holds
for that case as well. After deleting each forced edge uw ∈ Q from the graph,
we add uws and utw edges to each of the pairs, where ws and ut are newly
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Fig. 2. Adding edges sv in D+ and ut in D− to forbidden edge uv.

introduced vertices. These edges take over the rank of uw. Unlike in sf, here
we need to introduce two separate dummy vertices to each forced edge, simply
due to the matching constraints. There is a stable matching containing all forced
edges if and only if an arbitrary stable matching covers all of these new vertices
ws and ut. The running time of this algorithm is O(|E|), since it is sufficient to
construct a single stable solution in an instance with at most 2|V | vertices. More
vertices cannot occur, because in a matching problem more than one forced edge
incident to a vertex immediately implies infeasibility.

4.2 Forbidden edges

In order to handle sf forbidden, we present here an argumentation of the same
structure as in the previous section. First, we show how to solve the problem
of stable flows with a single forbidden edge by solving two instances on two
different extended networks. Then we show how these constructions can be used
to obtain an algorithm for the general case.

Notation For e = uv ∈ P , we define edges e+ = sv and e− = ut. We set
c(e+) = ε > 0 and set rv(e+) = rv(e) − 0.5, i.e., e+ occurs on v’s preference
list exactly before e. Likewise, we set c(e−) = ε and ru(e−) = ru(e) − 0.5,
i.e., e− occurs on u’s preference list exactly before e. For F ⊆ P we define
E+(F ) := {e+ : e ∈ F} and E−(F ) := {e− : e ∈ F}.

A single forbidden edge Assume that P = {e0} for a single edge e0. First we
present two modified instances that will come handy when solving sf forbid-
den. The first is the graph D+, which we obtain from D by adding an edge e+

0
to E. Similarly, we obtain the graph D− by adding e−0 to E. Both graphs are
illustrated in Fig. 2.

In the following, we characterize sf forbidden instances with the help of
D+ and D−. Our claim is that sf forbidden in D has a solution if and only
if there is a stable flow f+ in D+ with f+(e+) = 0 or there is a stable flow
f− in D− with f−(e−) = 0. These existence problems can be solved easily in
polynomial time, since all stable flows have the same value on edges incident to
terminal vertices by Theorem 1.

We will use the following straightforward observation. It follows from the fact
that deletion of an edge that does not carry any flow in a stable flow neither
affects flow conversation nor can create blocking walks.
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Observation 1. If f(e) = 0 for an edge e ∈ E and stable flow f in D, then f
remains stable in D \ e as well.

Lemma 2. Let f be a flow in D = (V,E) with f(e0) = 0. Then f is a stable
flow in D if and only if at least one of the following conditions hold:
Property 1: The flow f+ with f+(e) = f(e) for all e ∈ E and f+(e+

0 ) = 0 is
stable in (V,E ∪ {e+

0 }).
Property 2: The flow f− with f−(e) = f(e) for all e ∈ E and f−(e−0 ) = 0 is

stable in (V,E ∪ {e−0 }).

Proof. Sufficiency of any of the two properties follows immediately from Obser-
vation 1 by deletion of e+

0 or e−0 , respectively.
To see necessity, assume that f is a stable flow in D. By contradiction assume

that neither f+ nor f− is stable. Then there is a blocking walk W+ for f+ and
a blocking walk W− for f−. Since W+ is not a blocking walk for f in D, it must
start with e+

0 . Since W− is not a blocking walk for f in D, it must end with
e−0 . Let W ′+ := W+ \ {e+

0 } and W ′− := W− \ {e−0 }. Consider the concatenation
W := W ′− ◦ e0 ◦W ′+. Note that W is an unsaturated walk in D. If W ′− 6= ∅,
then W starts with the same edge as W− and thus dominates f at the start.
If W ′− = ∅, then W starts with e0, which dominates any flow-carrying edge
dominated by ut, and hence it dominates f at the start also in this case. By
analogous arguments it follows that W also dominates f at the end. Hence W is
a blocking walk, contradicting the stability of f . We conclude that at least one
of Properties 1 or 2 must be true if f is stable. ut

General case The method described above can be used to solve sf forbidden
if |P | = 1: We simply compute stable flows f+ in D+ and f− in D−. If f+(e+) =
0 or f−(e−) = 0, we have found a stable flow in f avoiding the forbidden edge e0.
More generally, for |P | > 1, Lemma 2 guarantees that we can add either e+ or
e− for each forbidden edge e ∈ P without destroying any stable flow avoiding the
forbidden edges. However, it is not straightforward to decide for which forbidden
edges to add e+ and for which to add e−. Simply applying our method greedily
for each forbidden edge does not lead to correct results, since the steps can
impact each other, as shown in the full version [7]. Now we show how to resolve
this issue and obtain a polynomial time algorithm for sf forbidden.

For any A,⊆ E, let us denote by D[A|B] the network with vertices V and
edges E∪E+(A)∪E−(B). Our algorithm maintains a partition of the forbidden
edges in two groups P+ and P−. Initially P+ = P and P− = ∅. In every
iteration, we compute a stable flow f in D[P+|P−]. If f(e+) > 0 for some
e ∈ P+, we move e from P+ to P− and repeat. If f(e+) = 0 for all e ∈ P+

but f(e−) > 0 for some e ∈ P−, we will show that no stable flow avoiding all
forbidden edges exists in D. Finally, if we reach a flow f where neither of these
two things happens, f is a stable flow in D avoiding all forbidden edges.

For the analysis of Algorithm 2, the following consequence of the augmenting
path algorithm presented earlier (Algorithm 1) is helpful. It allows us to prove
an important invariant of the Algorithm 2.
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Algorithm 2: Stable flow with forbidden edges
Initialize P+ = P and P− = ∅.
repeat

Compute a stable flow f in D[P+|P−].
if ∃ e ∈ P+ with f(e+) > 0 then

P+ := P+ \ {e} and P− := P− ∪ {e}
until f(e+) = 0 for all e ∈ P+;
if ∃ e ∈ P− with f(e−) > 0 then

return ∅
else

return f

Lemma 3. Let f be a stable flow in D. Let f ′ be a stable flow in D′ = D − e′
for some edge e′ ∈ δ+(s). Then f ′(e) ≥ f(e) for all e ∈ δ+(s) \ {e′}.

Lemma 4. Algorithm 2 maintains the following invariant: There is a stable
flow in D avoiding P if and only if there is a stable flow in D[∅|P−] avoiding
P+ ∪ E−(P−).

The correctness of Algorithm 2 follows immediately from the above invariant.
The running time of this algorithm is bounded by O(|P ||E| log |V |), as each
stable flow f can be computed in O(|E| log |V |) time and in each round either
|P+| decreases by one or the algorithm terminates. Note that both forced and
forbidden edges in the same instance can be handled by our two algorithms,
applying them one after the other. Finally, we can conclude the following result:

Theorem 3. sf restricted can be solved in O(|P ||E| log |V |) time.

Stable matchings with forbidden edges As before, we finish this part with
the direct interpretation of our results in sr and sm instances. To each forbidden
edge uw ∈ P we introduce edges uws or utw. According to the preference lists,
they are slightly better than uw itself. A stable matching with forbidden edges
exists, if there is a suitable set of these uws and utw edges such that all ws and
ut are unmatched. Our algorithm for several forbidden edges runs in O(|P ||E|)
time, because computing stable solutions in each of the |P | or less rounds takes
only O(|E|) time in sm. With this running time, it is somewhat slower than the
best known method [10] that requires only O(|E|) time, but it is a reasonable
assumption that the number of forbidden edges is small.

5 Stable multicommodity flows

A multicommodity network (D, ci, c), 1 ≤ i ≤ n consists of a directed graph
D = (V,E), non-negative commodity capacity functions ci : E → R≥0 for all
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the n commodities and a non-negative cumulative capacity function c : E → R≥0
on E. For every commodity i, there is a source si ∈ V and a sink ti ∈ V , also
referred to as the terminals of commodity i.

Definition 3 (multicommodity flow). A set of functions f i : E → R≥0,
1 ≤ i ≤ n is a multicommodity flow if it fulfills all of the following requirements:

1. capacity constraints for commodities:
f i(uv) ≤ ci(uv) for all uv ∈ E and commodity i;

2. cumulative capacity constraints:
f(uv) =

∑
1≤i≤n f

i(uv) ≤ c(uv) for all uv ∈ E;
3. flow conservation:∑

uv∈E f
i(uv) =

∑
vw∈E f

i(vw) for all v ∈ V \ {si, ti}.

The concept of stability was extended to multicommodity flows by Király and
Pap [24]. A stable multicommodity flow instance I = (D, ci, c, OE , OiV ), 1 ≤ i ≤
n comprises a network (D, ci, c), 1 ≤ i ≤ n, edge preferences OE over commodi-
ties, and vertex preferences OiV , 1 ≤ i ≤ n over incident edges for commodity i.
Each edge uv ranks all commodities in a strict order of preference. Separately
for every commodity i, each non-terminal vertex ranks its incoming and also its
outgoing edges strictly with respect to commodity i. Note that these preference
orderings of v can be different for different commodities and they do not depend
on the edge preferences OE over the commodities. If edge uv prefers commodity
i to commodity j, then we write ruv(i) < ruv(j). Analogously, if vertex v prefers
edge vw to vz with respect to commodity i, then we write riv(vw) < riv(vz). We
denote the flow value with respect to commodity i by f i =

∑
u∈V f

i(siu).

Definition 4 (stable multicommodity flow). A directed walkW = 〈v1, v2, ..., vk〉
blocks flow f with respect to commodity i if all of the following properties hold:

1. f i(vjvj+1) < ci(vjvj+1) for each edge vjvj+1, j = 1, ..., k − 1;
2. v1 = si or there is an edge v1u such that f i(v1u) > 0 and riv1

(v1v2) <
riv1

(v1u);
3. vk = ti or there is an edge wvk such that f i(wvk) > 0 and rivk(vk−1vk) <

rivk(wvk);
4. if f(vjvj+1) = c(vjvj+1), then there is a commodity i′ such that f i′(vjvj+1) >

0 and rvjvj+1(i) < rvjvj+1(i′).

A multicommodity flow is stable, if there is no blocking walk with respect to any
commodity.

Note that due to point 4, this definition allows saturated edges to occur in a
blocking walk with respect to commodity i, provided that these edges are inclined
to trade in some of their forwarded commodities for more flow of commodity i. On
the other hand, the role of edge preferences is limited: blocking walks still must
start at vertices who are willing to reroute or send extra flow along the first edge
of the walk according to their vertex preferences with respect to commodity i.
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Problem 2. smf
Input: I = (D, ci, c, OE , OiV ), 1 ≤ i ≤ n ; a directed multicommodity network
(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities OE and vertex prefer-
ences over incident edges OiV , 1 ≤ i ≤ n.
Question: Is there a multicommodity flow f so that no walk blocks f with respect
to any commodity?

Theorem 4 (Király, Pap [24]). A stable multicommodity flow exists for any
instance, but it is PPAD-hard to find.

PPAD-hardness is a somewhat weaker evidence of intractability than NP-
hardness [27]. Király and Pap use a polyhedral version of Sperner’s lemma [23]
to prove this existence result. Note that smf is one of the very few problems in
stability [3] where a stable solution exists, but no extension of the Gale-Shapley
algorithm is known to solve it – not even a variant with exponential running time.

5.1 Problem simplification

The definition of smf given above involves many distinct components and con-
straints. It is natural to investigate how far the model can be simplified without
losing any of its generality. It turns out that the majority of the commodity-
specific input data can be dropped, as shown by Theorem 5, which we prove in
the full version [7]. This result not only simplifies the instance, but it also sheds
light to the most important characteristic of the problem, which seems to be the
preference ordering of edges over commodities.

Theorem 5. There is a polynomial-time transformation that, given an instance
I of smf, constructs an instance I ′ of smf with the following properties:

1. all commodities have the same source and sink,
2. at each vertex, the preference lists are identical for all commodities,
3. there are no commodity-specific edge capacities,

and there is a polynomially computable bijection between the stable multicom-
modity flows of I and the stable multicommodity flows of I ′.

5.2 Integral multicommodity stable flows

Finally, we discuss the problem of integer stable multicommodity flows, intro-
duced in [24]. The proof of our result can be found in the full version [7].

Theorem 6. It is NP-complete to decide whether there is an integer stable mul-
ticommodity flow in a given network. This holds even if all commodities share
the same set of terminal vertices and all vertices have the same preferences with
respect to all commodities (but edges might have different capacities with respect
to different commodities).

Acknowledgment We thank Tamás Fleiner for discussions on Lemma 1.
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