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Abstract

The paper examines problems of implementing social choice objectives in a dynamic
environment, in which a society can achieve its objective in a one-step-ahead manner.
The social objective that a society wants to achieve is summarized in a social choice
function (SCF) that maps each state of the world into a dynamic process mapping
every history into a socially desirable outcome. This social process is one-step-ahead
implementable if there exists a process of one-period game forms (one game form after
each outcome history), each of which generates a social outcome only at one given
period after a given history, such that at each state of the world there is a subgame-
perfect Nash equilibrium in which the social objective is fulfilled at every period, after
every history, as a unique equilibrium outcome process. The paper identifies neces-
sary conditions for SCFs to be one-step-ahead implemented, the folding condition and
one-step-ahead Maskin monotonicity, and shows that they are also suffi cient under aux-
iliary conditions when there are three or more agents. Finally, it provides an account
of welfare implications of one-step-ahead implementability in the contexts of trading
decisions and voting problems.
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1. Introduction

The theory of implementation investigates the goals that a planner/society can achieve
when these goals depend on private information held by various agents. The problem of the
planner is to design a mechanism or game form in which the agents’incentives dovetail to
an equilibrium outcome that coincides with the planner’s goal. When such a mechanism
exists, his goal is fully implementable. This paper studies full implementation problems in
a dynamic environment, in which:

• A finite number of agents interacts for a finite number of periods/stages and they
commonly observe the state (of the world) before starting interacting.1

• A period-t environment consists of a set of agents, a set of period-t outcomes and
agents’preferences over those outcomes. An agent’s preferences over period-t outcomes
endogenously depend on planners’decisions taken in the past as well as on planners’
future goals.

• A period-t planner aims to solve his implementation problem by devising a one-shot
mechanism (one after each outcome history) which asks agents to report only the
information pertaining to his problem and which gives the agents the appropriate
incentives so that a period-t “socially desirable” outcome results from the strategic
behavior of the agents.

• The period-t planner concerns himself only about his implementation problem, aims
to implement a socially desirable period-t outcome after any outcome history - even
after off-equilibrium histories - and cannot punish agents over periods.2

Many real-world allocation problems have the above dynamic structure. Think of a
group of parents with school-age children who move to a new city. There seems to be an
obvious order of priorities for each family: first, to secure a property and then a school-seat.
The families’rankings of schools are established endogenously by the outcome of the housing
market, whereas the families’willingness to pay for a property depends on the allocation
rules set by the school authority. The school authority aims to make a socially desirable
matching of pupils to schools based on the rakings submitted by the families as well as on
where the families reside. Moreover, the role of the housing market maker may be to facilitate
the trade of houses but certainly not to make a commitment related to the outcome of the
school admissions problem.

One can also observe the above structure in situations in which one authority handles
problems over time but its identity changes over time, or its goal is achieved only in a
one-step-ahead manner. For example, in democratic societies, the identity of governments
changes over time due to periodic elections and the current government can decide and

1We assume finite periods for the sake of simplicity. Our framework extends to infinite periods by imposing
a Markovian kind of refinement condition: Strategies depend only on outcome histories.

2Note that we do not require the existence of a period-t planner who is someone other than the agents.
Indeed, there may not be such entity, as in the case of the contract relationship. In situations like these,
contracting parties designs a period-t contract (period-t mechanism) with the goal to incentivizing themselves
in pursuit of a commonly agreed goal.
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execute only current policy variables at hand (see, e.g., Persson and Tabellini, 2000; Krusell
et al., 1997). Also, in a market, the role of the market maker is to facilitate trade period-
by-period but not to make a commitment related to future trading activities, or to enforce
them over time (see, e.g., Radner, 1972, 1982; and Prescott and Mehra; 1980).

We thus study the following type of implementation problems. (i) A social choice
objective is summarized in a social choice function (SCF) that maps each state into a dynamic
process, which maps every outcome history into a socially desirable outcome at each given
period.3 (ii) A dynamic mechanism is a process of one-shot mechanisms (one mechanism
after each outcome history), each of which is a mechanism with simultaneous moves and
observed actions. (iii) The definition of implementability is that there is a subgame-perfect
Nash equilibrium such that the social objective is fulfilled at every period, after every outcome
history, as a unique equilibrium outcome process. When it is so we say that the SCF is (fully)
one-step-ahead implementable.

We assume, as in Athey and Segal (2013), that the SCF is a (complete) contingent plan:
In every period, after every history, it needs to specify a socially desirable outcome.

Under our notion of implementation, we provide two necessary conditions. The first
and key necessary condition is what we call folding condition, which says that the SCF at a
given period should depend only on agents’preferences over current social outcomes, which
are induced by means of backward induction. Its role is to transforms the SCF into a list
of one-shot functions, one for each period, so that period-t function maps every period-t
environment into a period-t socially desirable outcome. Then, we show that every period-t
function has to be Maskin monotonic (Maskin, 1999), after every history. This requirement
is named one-step-ahead Maskin monotonicity.

Furthermore, if every period-t function satisfies unanimity and weak no veto power, we
show that the necessary conditions are also suffi cient. The construction of the process of
one-shot mechanisms is simple: In each period t, after every history, just run the Maskin
mechanism over period-t outcomes, in which each agent reports a profile of period-t prefer-
ences as well as a tie-breaking information.

Finally, we provide an account of welfare implications of our suffi ciency result in the
context of trading decisions and voting problems.

Firstly, we consider a borrowing-lending model with no liquidity constraints, in which
agents trade in spot markets and transfer wealth between any two periods by borrowing
and lending. In this set-up, intertemporal pecuniary externalities arise because trades in the
current period change the spot price of the next period, which, in turn, affects its associated
equilibrium allocation. The quantitative implication of this is that every agent’s induced
preference concerns not only her own consumption/saving behavior but also the consump-
tion/saving behavior of all other agents. Under such a pecuniary externality, we show that
the standard dynamic competitive equilibrium solution is not one-step-ahead implementable
because it fails to satisfy the folding condition. We have also identified preference domains
- which involve no pecuniary externalities - for which the dynamic competitive equilibrium
solution is definable and one-step-ahead implementable.

3We may consider a set of such social choice functions in order to accommodate with possibility of multiple
equilibria, although we consider a single function here for simplicity.
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Secondly, we consider a bi-dimensional policy space where an odd number of agents vote
sequentially on each dimension and where an ordering of the dimensions is exogenously given.
We assume that each voter’s type space is unidimensional, that a majority vote is organized
around each policy dimension and that the outcome of the first majority vote is known to
the voters at the beginning of the second voting stage. This dynamic resolution is common
in political economy models (see, e.g., Persson and Tabellini, 2000). In this environment, we
show that the simple majority solution, which selects the Condorcet winner in each voting
stage, is one-step-ahead implementable. In this process, we explicitly state the conditions on
the utility function of each voter that are needed for this SCF to be well-defined and show
that this is the case. As established by De Donder et al (2012) for the case where there is
a continuum of voters, the assumption that both dimensions are strategic complements, as
well as the requirement that the induced utility of both dimensions is increasing in the type
of the voter, are particularly important for guaranteeing the existence of a Condorcet winner
in each voting stage.

1.1 Related Literature

The fundamental paper on implementation is thanks to Maskin (1999; circulated since
1977), who proves that any choice rule that can be Nash implemented satisfies a remarkably
strong invariance condition, now widely referred to as Maskin monotonicity. Moreover, he
shows that when the mechanism designer faces at least three agents, a choice rule is Nash
implementable if it is Maskin monotonic and satisfies the condition of no veto-power.

Since Maskin’s result, economists have also been interested in understanding how to
circumvent the limitations imposed by Maskin monotonicity by exploring the possibilities
offered by approximate (as opposed to exact) implementation (Matsushima, 1988; Abreu
and Sen, 1991), as well as by implementation in refinements of Nash equilibrium (Moore and
Repullo, 1988; Abreu and Sen, 1990; Palfrey and Srivastava, 1991; Herrero and Srivastava,
1992; Jackson, 1992) and by repeated implementation (Kalai and Ledyard, 1998; Lee and
Sabourian, 2011; Mezzetti and Renou, 2017).

Moore and Rupullo (1988)’s result says that for any choice rule, one can design an
extensive game form that yields unique implementation in subgame-perfect Nash equilibria.
They find that the class of implementable choice rules is dramatically expanded by the use
of extensive game forms. In contrast to them, we restrict the attention to the class of multi-
stage mechanisms with observed actions, and (perhaps) more important we are interested in
implementing a social contingent plan rather than sequences of social outcomes. In terms of
results, we find that we cannot escape the limitations imposed by Maskin monotonicity.

The paper on dynamic implementation, which is closest to ours, in particular because
it allows for non-separable preferences and outcomes are chosen on a stage-by-stage basis,
is Penta (2015). This author considers belief-free settings with incomplete information and
restricts the analysis to direct mechanisms, but in many other respects, his environment is
similar to ours (including resorting to a backwards procedure and identifying a property that
is reminiscent of our necessary conditions).

Further, our dynamic problems contrast with the repeated implementation problems
studied by Lee and Sabourian (2011) and Mezzetti and Renou (2017), in which agents’
period-t preferences are time-separable and they change randomly from one period to the
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next one. Indeed, in our setup, the evolution of agents’period-t preferences are established
as an endogenous process, because they depend on past social decisions and on planners’
future goals.

The endogenous evolution of agents’information is a common feature in the most re-
cent literature on dynamic mechanism design (see, e.g., Bergemann and Välimäki, 2010;
and Pavan et al., 2014), though this literature maintains the assumption of separability of
preferences and focuses on partial implementation.

Finally, our implementation problems also contrast with the static implementation prob-
lems studied by Hayashi and Lombardi (2017), in which planners solves their implementation
problems simultaneously and do not communicate with each other. Indeed, in our setup, a
period-t planner observes the outcome history and this history affects his implementation
problem.

The remainder of the paper is organized as follows. Section 2 sets out the theoretical
framework and outlines the basic implementation model. Section 3 presents our necessary
and suffi cient conditions. Section 4 covers one-step-ahead implementable SCFs in the context
of trading and voting problems. Section 5 concludes. Appendix includes proofs not in the
main body.

2. Basic framework

Let us imagine that a set of agents indexed by i ∈ I ≡ {1, · · · , I} have to decide
what outcome is best in each time period/stage indexed by t ∈ T ≡ {1, 2, · · · , T}. Let us
denote the universal set of period-t outcomes by X t, with xt as a typical outcome. Thus,
the universal set of outcome paths available to agents is the space:

X ⊆
∏
t∈T

X t,

with x as a typical outcome path. The t-head x−t is obtained from the path x ∈ X by
omitting the last t components, that is, x−t ≡ (x1, · · · , xt−1), the t-tail is obtained from x by
omitting the first t − 1 components, that is, x+t ≡

(
xt, · · · , xT

)
, and we identify (x−t, x+t)

with x. The same notational convention will be followed for any profile of outcomes. We
will refer to the t-head x−t as the past outcome history x−t.

The feasible set of period-t+1 outcomes available to agents depends upon past outcome
history x−(t+1), that is, X t+1

(
x−(t+1)

)
⊆ X t+1 for every period t 6= T .

We write F t for the collection of functions defined as follows:

F t ≡
{
f t|f t : X−t → X t such that f t

[
x−t
]
∈ X t

(
x−t
)}
, for all t 6= 1.

We also write F for the product space X1 ×F2 × · · · × FT .
The information held by the agents is summarized in the concept of a state, which is a

complete description of the variable characterizing the environment. Write Θ for the domain
of possible states, with θ as a typical state. For every period t ≥ 2, the description of the
variable characterizing the environment after the outcome history x−t is denoted by θ|x−t.
Moreover, for every t ≥ 2 we write θ|x−t, x+(t+1) for a complete description of the variable
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characterizing the environment in period t after the outcome history x−t and the future sure
outcome path x+(t+1).

In the usual fashion, agent i’s preferences in state θ are given by a complete and tran-
sitive binary relation, subsequently an ordering, Ri (θ) of elements of X . The corresponding
strict and indifference relations are denoted by Pi (θ) and Ii (θ), respectively. The statement
xRi (θ) y means that agent i judges x to be at least as good as y. The statement xPi (θ) y
means that agent i judges x to be better than y. Finally, the statement xIi (θ) y means that
agent i judges x and y as equally good, that is, she is indifferent between them.

2.1 Implementation model

Dynamic social objectives

The goal of the central designer is to implement a social choice function (SCF) f : Θ→ F
that assigns to each state θ a dynamic “socially optimal”process

f [θ] =
(
f 1 [θ] , f 2 [θ|·] , · · · , fT [θ|·]

)
,

where:

• f 1 [θ] ∈ X1 is the period-1 socially optimal outcome and

• f t [θ|·] ∈ F t is the period-t socially optimal process that selects the socially optimal
outcome f t [θ|x−t] in period t ≥ 2 at the state θ after the past outcome history x−t ∈
X−t.

To save writing, for every period t 6= 1 and every past outcome history x−t, we write
f+t [θ|x−t] for the t-tail path of socially optimal outcomes in state θ that follows the past
outcome history x−t, whose period-τ element is the value of the composition f τ ◦f τ−1◦· · ·◦f t
at θ|x−t; that is:

f+t
[
θ|x−t

]
≡
(
f τ
[
θ|x−t

])
τ≥t

where f τ [θ|x−t] ≡ (f τ ◦ f τ−1 ◦ · · · ◦ f t) [θ|x−t] for every period τ ≥ t. The image or range of
the period-t function f t of the SCF f at the past outcome history x−t is the set:

f t
[
Θ|x−t

]
≡
{
f t
[
θ|x−t

]
|θ ∈ Θ

}
, for every x−t ∈ X−t with t 6= 1.

The image or range of the period-1 function f 1 of the SCF f is the set f 1 [Θ] ≡ {f 1 [θ] |θ ∈ Θ}.

Dynamic mechanism

The central designer delegates the choice to agents according to a process of one-period
mechanisms (or game forms) with observed actions and simultaneous moves and then execute
that choice. In other words, we assume that the actions of every agent are perfectly monitored
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by every other agent as well as that every agent chooses an action in period t without knowing
the period t action of any other agent.

More formally, in the first period all agents i ∈ I choose actions from nonempty choice
sets Ai (h1), where h1 ≡ ∅ denotes the initial history. Thus, the period-1 action space is the
product space:

A
(
h1
)
≡
∏
i∈I

Ai
(
h1
)
,

with a (h1) ≡ (a1
1 (h1) , · · · , a1

I (h1)) as a typical period-1 action profile.
In the second period, agents know the history h2 ≡ a1, and the actions that every agent

i ∈ I has available in period 2 depends on what has happened previously. Then, let Ai (h2)
denote the period-2 nonempty action space of agent i when the history is h2 and let A (h2)
denote the corresponding period-2 nonempty action space, which is defined by:

A
(
h2
)
≡
∏
i∈I

Ai
(
h2
)
,

with a (h2) ≡ (a1 (h2) , · · · , aI (h2)) as a typical period-2 action profile.
Continuing iteratively, we can define ht, the (nontrivial) history at the beginning of

period t > 1, to be the list of t− 1 action profiles,

ht ≡
(
a1, a2, · · · , at−1

)
,

identifying actions played by agents in periods 1 through t − 1. We let Ai (ht) be agent i’s
nonempty action set in period t when the history is ht and let A (ht) be the corresponding
period-t action space, which is defined by:

A
(
ht
)
≡
∏
i∈I

Ai
(
ht
)
,

with a (ht) ≡ (a1 (ht) , · · · , aI (ht)) as a typical profile of actions.
We assume that in each period t, every agent knows the history ht, this history is

common knowledge at the beginning of period t, and that every agent i ∈ I chooses an
action from the action set Ai (ht). We also assume that in each period t, all agents i ∈ I
choose actions simultaneously.

We let H t be the set of all period-t histories, where we define H1 to be the null set, and
let

H ≡
⋃
t∈T

H t

be the set of all possible histories.
For any nontrivial history ht ≡ (a1, a2, · · · , at−1) ∈ H, define a subhistory of ht to be a

sequence of the form (a1, · · · , am) with 1 ≤ m ≤ t − 1, and the trivial history consisting of
no actions is denoted by ∅.

The delegation to agents is made by means of a dynamic mechanism Γ ≡ (I, H,A (H) , g),
where H is the set of all possible histories, A (H) is the set of all profiles of actions available
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to agents, defined by
A (H) ≡

⋃
h∈H

A (h) ,

and g ≡
(
g1, · · · , gT

)
is a sequence of outcome functions, one for each period t ∈ T , with

the property that: a) the outcome function g1 assigns to period-1 action profile a (h1) ∈
A (h1) a unique outcome in X1, and b) for every period t 6= 1 and every nontrivial history
ht ≡ (a1, a2, · · · , at−1) ∈ H t, the outcome function gt assigns to each period-t action profile
a (ht) ∈ A (ht) a unique outcome in X t (g−t (ht)).

The submechanism of a dynamic mechanism Γ that follows the history ht is the dynamic
mechanism

Γ
(
ht
)
≡
(
I, H|ht, A

(
H|ht

)
, g+t

)
,

where H|ht is the set of histories for which ht is a subhistory for every h ∈ H|ht,

A
(
H|ht

)
≡

⋃
h∈H|ht

A (h)

is the set of all profiles of actions available to agents from period t to period T , and g+t is
t-tail of the sequence g that begins with period t after the history ht such that for every
hT ≡

(
a1, · · · , aT−1

)
∈ HT |ht and every a

(
hT
)
∈ A

(
hT
)
it holds that g

(
hT , a

(
hT
))

=(
g−t
(
hT , a

(
hT
))
, g+t

(
hT , a

(
hT
)))
.

One-step-ahead implementation

A dynamic mechanism Γ and a state θ induce a dynamic game (Γ, θ) (with observed
actions and simultaneous moves). The subgame of the dynamic game (Γ, θ) that follows the
history ht ∈ H is the dynamic game (Γ (ht) , θ).

Let Ai ≡
⋃
h∈H

Ai (h) be the set of all actions for agent i ∈ I. A (pure) strategy for agent

i is a map si : H → Ai with si (h) ∈ Ai (h) for every history h ∈ H. Individual i’s space of
strategies, Si, is simply the space of all such si.

A strategy profile s ≡ (s1, · · · , sI) is a list of strategies, one for each agent i ∈ I.
The strategy profile s−i is obtained from s by omitting the ith component, that is, s−i
= (s1, · · · , si−1, si+1, · · · , sI), and we identify (si, s−i) with s.

For any strategy si of agent i and any history ht in the dynamic mechanism Γ, the
strategy that si induces in the dynamic subgame (Γ (ht) , θ) is denoted by si|ht. Individual
i’s space of strategies that follows history ht is denoted by Si|ht. The period-t strategy of
agent i is sometimes denoted by sti.

For every dynamic game (Γ, θ), the strategy profile s∗ is a Nash equilibrium of (Γ, θ) if
for every agent i ∈ I it holds that:

g
(
s∗i , s

∗
−i
)
Ri (θ) g

(
si, s

∗
−i
)
for every si ∈ Si.

Let NE (Γ, θ) denote the set of Nash equilibrium strategy profiles of (Γ, θ).
Moreover, for every dynamic game (Γ, θ) and every nontrivial history ht ∈ H, the
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strategy profile s∗|ht is a Nash equilibrium of (Γ (ht) , θ) if for every agent i ∈ I and a given
past outcome history x−t ∈ X−t it holds that:(

x−t, g+t
(
s∗i |ht, s∗−i|ht

))
Ri (θ)

(
x−t, g+t

(
si|ht, s∗−i|ht

))
for every si|ht ∈ Si|ht.

Let NE (Γ (ht) , θ) denote the set of Nash equilibrium strategy profiles of (Γ (ht) , θ).
A strategy profile s∗ is a subgame perfect equilibrium (SPE) of a dynamic game (Γ, θ) if

it holds that:
s∗|ht ∈ NE

(
Γ
(
ht
)
, θ
)
, for every history ht ∈ H.

Let SPE (Γ, θ) denote the set of SPE strategy profiles of (Γ, θ), with sθ as a typical element.

Definition 1 A dynamic mechanism Γ ≡ (I, H,A (H) , g) implements the SCF f : Θ→ F
in SPE if for every θ ∈ Θ,

f 1 [θ] = g1
(
sθ
(
h1
))
, and

f t
[
θ|g−t

(
ht
)]

= gt
(
sθ
(
ht
))
, for every ht ∈ H t with t 6= 1,

if and only if
sθ ∈ SPE (Γ, θ)

If such a mechanism exists, the SCF f is said to be one-step-ahead implementable.

3. Necessary and suffi cient conditions

3.1 Folding

In this section, we first propose a property, folding, and show that this is a necessary
condition for one-step-ahead implementation. While this property is heavy in notation, its
idea is simple. This property reduces the dynamic implementation problem into a process of
“step-by-step”implementation problems, one for each period, where the planner takes only
the agents’preferences induced over current social outcomes into account.

This necessary condition is derived by using the approach developed by Moore and
Repullo (1990) and thus it is stated in terms of the existence of certain sets. These sets are
denoted by Y−t, Y 1 and Y t (y−t) and represent respectively the set of feasible past outcome
histories up to period t 6= 1, the set of period-1 attainable outcomes and the set of period-t
attainable outcomes after the past outcome history y−t. Moreover, the condition consists
of three parts: the first part characterises the period-T implementation problem, the second
one relates to the implementation problem of period t 6= 1, T and the third one relates to
the period-1 implementation problem.

Solving backward, for any feasible past outcome history y−T , the period-T induced or-
dering of agent i in state θ at y−T , that is, at θ|y−T , denoted by Ri

[
θ|y−T

]
, is equal to:

yTRi

[
θ|y−T

]
zT ⇐⇒

(
y−T , yT

)
Ri (θ)

(
y−T , zT

)
, for every yT , zT ∈ Y T

(
y−T

)
. (1)

We denote by R
[
θ|y−T

]
the profile of period-T induced orderings at θ|y−T and by
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D
[
Θ|y−T

]
the period-T domain of induced orderings at Θ|y−T , that is:

D
[
Θ|y−T

]
≡
{
R
[
θ|y−T

]
|θ ∈ Θ

}
. (2)

Therefore, the first part of the condition can be formulated as follows:

(i) The preference domain D
[
Θ|y−T

]
is not empty, and there is a period-T function ϕT :

D
[
Θ|y−T

]
→ Y T

(
y−T

)
such that:

ϕT
(
R
[
θ|y−T

])
= fT

[
θ|y−T

]
, for every θ ∈ Θ. (3)

To introduce the second part of the condition, let us suppose that in our way back to
period 1 we have reached period t 6= 1, T and that y−t is a feasible past outcome history.
Given that in our framework rationality is common knowledge between the players and given
that the objective of the planner is to implement a dynamic social choice process prescribed
by the SCF f , every player will "look ahead" and a period-t outcome yt will be evaluated at
the past outcome history y−t as well as at the future sure outcome path f+(t+1) prescribed
by the SCF in response to the outcome history path (y−t, yt). On this basis, the period-t
induced ordering of agent i in state θ at the past outcome history y−t and at the future sure
outcome path prescribed by the social process f+(t+1), that is, at θ|y−t, f+(t+1), denoted by
Ri

[
θ|y−t, f+(t+1)

]
, is equal to:

ytRi

[
θ|y−t, f+(t+1)

]
zt ⇐⇒(

y−t, yt, f+(t+1) [θ| (y−t, yt)]
)
Ri (θ)

(
y−t, zt, f+(t+1) [θ| (y−t, zt)]

)
,

(4)

for every yt, zt ∈ Y t (y−t).
Let us denote byR

[
θ|y−t, f+(t+1)

]
the profile of period-t induced orderings at θ|y−t, f+(t+1)

for t 6= 1, T and byD
[
Θ|y−t, f+(t+1)

]
the period-t domain of induced orderings atΘ|y−t, f+(t+1),

that is:
D
[
Θ|y−t, f+(t+1)

]
≡
{
R
[
θ|y−t, f+(t+1)

]
|θ ∈ Θ

}
. (5)

Therefore, as for the first part of the condition, the second part can be stated as follows:

(ii) The preference domain D
[
Θ|y−t, f+(t+1)

]
is not empty, and there is a period-t function

ϕt : D
[
Θ|y−t, f+(t+1)

]
→ Y t (y−t) such that:

ϕt
(
R
[
θ|y−t, f+(t+1)

])
= f t

[
θ|y−t

]
, for every θ ∈ Θ. (6)

Reasoning like that used in the preceding paragraphs, the period-1 induced ordering of
agent i in state θ at the outcome path prescribed by the social process f+2, that is, at θ|f+2,
denoted by Ri [θ|f+2], is equal to:

y1Ri

[
θ|f+2

]
z1 ⇐⇒

(
y1, f+2

[
θ|y1

])
Ri (θ)

(
z1, f+2

[
θ|z1

])
, for every y1, z1 ∈ Y 1. (7)

Denoting the profile of period-1 induced orderings at θ|f+2 by R [θ|f+2] and defining the
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period-1 domain of induced orderings at Θ|f+2 by:

D
[
Θ|f+2

]
≡
{
R
[
θ|f+2

]
|θ ∈ Θ

}
, (8)

the third part of folding can be stated as follows:

(iii) The preference domain D [Θ|f+2] is not empty, and there is a period-1 function ϕ1 :
D [Θ|f+2]→ Y 1 such that:

ϕ1
(
R
[
θ|f+2

])
= f 1 [θ] , for every θ ∈ Θ. (9)

In summary, if the SCF f is one-step-ahead implementable, then the following condition
must be satisfied:

Definition 2 The SCF f : Θ→ F satisfies the folding condition if there is a collection of
spaces of sequences of past outcomes {Y−t}t∈T \{1} and if there is a period-1 outcome space
Y 1 ≡ Y−2 and there is a collection of period-t outcome spaces

{
{Y t (y−t)}y−t∈Y−t

}
t∈T \{1}

such that:

• f 1 [Θ] ⊆ Y 1 and f t [Θ|y−t] ⊆ Y t (y−t) for every t 6= 1;

• for every t 6= 1, it holds that

y−t ∈ Y−t ⇐⇒ y1 ∈ Y 1 and yτ ∈ Y τ
(
y−τ
)
for every 2 ≤ τ ≤ t;

• part (i) is satisfied for every y−T ∈ Y−T ;

• part (ii) is satisfied for every y−t ∈ Y−t with t 6= 1, T ;

• part (iii) is satisfied.

A SCF satisfying the above condition is said to be a folding SCF. Our first main result
can thus be stated as follows:

Theorem 1 If I ≥ 2 and the SCF f : Θ → F is one-step-ahead implementable, then it
satisfies the folding condition.

Proof. See Appendix.

This is not an obvious condition. In intertemporal environments there may be various
different reasons for sending an identical message in a single period. For example, consider
that an agent sends a message telling that he prefers high tax rate in the current period.
It may be because he purely prefers to have high tax in the current period, or it may be
because he desires the tax rate to be chosen in the next period following the high current tax
rate, and so on. The folding condition says that the planner does not distinguish between
those reasons, and does not need to question why either.

10



3.2 One-step-ahead Maskin monotonicity

A condition that is central to the Nash implementation thanks to Maskin (1999) is an
invariance condition, now widely referred to as Maskin monotonicity. This condition says
that if an outcome x is socially optimal at the state θ and this x does not strictly fall in
preference for anyone when the state is changed to θ′, then x must remain a socially optimal
outcome at θ′. An equivalent statement of Maskin monotonicity follows the reasoning that
if x is socially optimal at θ but not socially optimal at θ′, then the outcome x must have
fallen strictly in someone’s ordering at the state θ′ in order to break the Nash equilibrium via
some deviation. Therefore, there must exist some (outcome-)preference reversal if a Nash
equilibrium strategy profile at θ is to be broken at θ′. Let us formalize that condition as
follows: For any state θ and any agent i and any outcome x ∈ X, the weak lower contour
set of Ri (θ) at x is defined by L (x,Ri (θ)) ≡ {y ∈ X|xRi (θ) y}. Therefore:

Definition 3 The SCF F : Θ→ X is Maskin monotonic provided that for all x ∈ X and
all θ̄, θ ∈ Θ, if L(f

(
θ̄
)
, Ri

(
θ̄
)
) ⊆ L(f

(
θ̄
)
, Ri (θ)) for every i ∈ I, then f

(
θ̄
)

= f (θ).

We basically require an adaptation of Maskin monotonicity to each implementation
problem. In other words, one-step-ahead Maskin monotonicity requires that every period-
t social choice function ϕt that results from the folding of the SCF is Maskin monotonic.
Therefore, the condition of one-step-ahead Maskin monotonicity can be stated as follows:

Definition 4 A folding SCF f : Θ→ F is one-step-ahead Maskin monotonic provided that:
(i) the period-T function ϕT over D

[
Θ|y−T

]
is Maskin monotonic for every y−T ∈ Y−T ; (ii)

for every t 6= 1, T , the period-t function ϕt over D
[
Θ|y−t, f+(t+1)

]
is Maskin monotonic for

every y−t ∈ Y−t; (iii) the period-1 function ϕ1 over D [Θ|f+2] is Maskin monotonic.

Our second main result is that only one-step-ahead Maskin monotonic SCFs are one-
step-ahead implementable.

Theorem 2 If I ≥ 2 and the SCF f : Θ → F is one-step-ahead implementable, then it is
one-step-ahead Maskin monotonic.

Proof. See Appendix.

3.3 The characterization theorem

In the abstract Arrovian domain, the condition of no veto-power says that if an outcome
is at the top of the preferences of all agents but possibly one, then it should be chosen
irrespective of the preferences of the remaining agent: that agent cannot veto it. The
condition of no veto-power implies two well-known conditions: unanimity and weak no veto-
power. Unanimity states that if an outcome is at the top of the preferences of all agents,
then that outcome should be selected by the SCF. Weak no veto-power states that if an
outcome x is socially optimal at the state θ̄ and if the state changes from θ̄ to θ in a way
that under the new state an outcome y that was no better than x at Ri

(
θ̄
)
for some agent i

is weakly preferred to all outcomes in the weak lower contour set of Ri

(
θ̄
)
at x according to
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the ordering Ri (θ) and this y is maximal for every other agent j in the set X according to
Rj (θ), then this y should be socially optimal at θ. These properties can be stated as follows
for an abstract outcome space X:

Definition 5 The SCF F : Θ→ X satisfies unanimity provided that for all θ ∈ Θ and all
x ∈ X if xRi (θ) y for all i ∈ I and all y ∈ X, then x = F (θ). A SCF that satisfies this
property is said to be a unanimous SCF.

Definition 6 A SCF F : Θ → X satisfies weak no veto-power provided that for every
θ̄, θ ∈ Θ if y ∈ L

(
f
(
θ̄
)
, Ri

(
θ̄
))
⊆ L (y,Ri (θ)) for some i ∈ I and X ⊆ L (y,Rj (θ)) for

every j ∈ I\ {i}, then f (θ) = y.

As a part of suffi ciency, we require an adaptation of the above definitions to each period-
t implementation problem. In other words, one-step-ahead unanimity requires that each of
period-t social function ϕt defined over period-t domain of induced orderings is unanimous,
whereas one-step-ahead weak no veto-power requires that each ϕt satisfies weak no veto-
power. The conditions can be stated as follows:

Definition 7 A folding SCF f : Θ → F satisfies one-step-ahead unanimity provided that
the following requirements hold: (i) the period-T function ϕT over D

[
Θ|y−T

]
is unanimous

for every y−T ∈ Y−T ; (ii) for every t 6= 1, T , the period-t function ϕt over D
[
Θ|y−t, f+(t+1)

]
is unanimous for every y−t ∈ Y−t; (iii) the period-1 function ϕ1 over D [Θ|f+2] is unanimous.

Definition 8 A folding SCF f : Θ → F satisfies one-step-ahead weak no veto-power pro-
vided that the following requirements hold: (i) the period-T function ϕT over D

[
Θ|y−T

]
satisfies weak no veto-power for every y−T ∈ Y−T ; (ii) for every t 6= 1, T , the period-t func-
tion ϕt over D

[
Θ|y−t, f+(t+1)

]
satisfies weak no veto-power for every y−t ∈ Y−t; (iii) the

period-1 function ϕ1 over D [Θ|f+2] satisfies weak no veto-power.

Our characterization of one-step-ahead implementable SCFs can thus be stated as fol-
lows:

Theorem 3 If I ≥ 3 and the SCF f : Θ → F satisfies the folding condition and one-step-
ahead Maskin monotonicity and if the SCF satisfies one-step-ahead weak no veto-power as
well as one-step-ahead unanimity, then it is one-step-ahead implementable.

Proof. See Appendix.

4. Implications

4.1 Impossibility of implementing the dynamic competitive solu-
tion

In this section, we investigate whether the trading rule as considered in the dynamic
general equilibrium framework is indeed one-step-ahead implementable.

When it is literally understood, the concept of Arrow-Debreu-McKenzie (ADM) (Arrow
and Debreu, 1954; McKenzie,1954) equilibrium says that all the agents meet on the first day
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of their life and write down a contract on all the deliveries of consumption contingent on
every date-event, and simply commit to it. A more realistic description of trading over time
is by Radner (1972, 1982), which considers that at each period agents can trade only between
current consumption and assets to be carried over to the next period. To our knowledge,
however, the Radner-type model has not been given a strategic foundation. In the Radner
model prices are defined only for on-path situation and it is left unclear what prices should be
formed in off-path situations, while a strategic outcome function in a dynamic environment
must specify prices and allocations even at off-path histories. In fact, as far as the markets
are sequentially complete ADM equilibrium and Radner equilibrium are equivalent (Arrow,
1964). This means that from strategic viewpoints the Radner model cannot escape the
problem which the ADM model has. The competitive models are silent about what prices
and allocations should be formed after the society makes mistake.

Strategic implementation of competitive solutions in general involves a strange story:
each agent is supposed to behave as a price-taker, despite he is aware that message he sends
may affect the market price. In the static setting, these apparently contradicting natures
can be made compatible by making the mechanism nicely so that agents face a kind of
coordination game in which they are induced to agree on prices in equilibrium. In fact, the
(feasibility-constrained version of) ADM solution is Nash-implementable.

Being a price-taker is harder in dynamic environments, however, when social decision
and execution can be made only in a sequential manner. It requires that every agent perceives
that he cannot affect spot price/interest rate at any period, in particular that the amount of
asset to carry over to the future does not affect the spot prices/interest rates in the future,
despite he is aware that messages he sends may affect the market price in both the current
period and the future periods, and that equilibrium prices and allocations in the future
periods are a function of whole allocations in the current period including his own.

Below we explain the nature of the problem and see whether the Radner-type solution
can clear this bar.

For the sake of convenience, we assume that there are only three consumption periods
(CPs), and so two trading periods (TPs), and that there is one perfectly divisible commodity
in each CP. In TP1 agents transfer consumption between CP1 and CP2, and in TP2 they
transfer consumption between CP2 and CP3.

In TP1, agents sell/buy consumption in CP1 and buy/sell consumption in CP2. In
TP2, agents sell/buy consumption in CP2 and buy/sell consumption in CP3. Let q1 be the
TP1 spot price, the relative price of CP2 consumption for CP1 consumption, and q2 be the
TP2 spot price, the relative price of CP3 consumption for CP2 consumption.

Each agent i is endowed with an amount ωti of the commodity in CPt. The total
endowment of the commodity in CPt is denoted by ωt. Agent i’s consumption set is R3

+,
and her consumption in CPt is denoted by cti. In state θ, this agent has preference ordering
Ri (θ) over consumption sequences in her consumption set. Endowments are given once and
for all, and therefore an economy is described by a state θ.

The domain assumption is that at each economy θ ∈ Θ agent i’s preference ordering <θ
i

is represented by an additively separable utility function

Ui(θ, c
1
i , c

2
i , c

3
i ) = v1

i (θ, c
1
i ) + v2

i (θ, c
2
i ) + v3

i (θ, c
3
i ).
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This guarantees that all consumption goods in CP1, CP2 CP3 are gross-substitutes of each
other and the ADM and Radner equilibrium is unique.

We describe feasible allocations by using net trade vectors. Let

H =

{
z ∈ RI |

∑
i∈I

zi = 0

}
,

which is the set of closed net trades. Thus, the set of closed net trade vectors for TPt can
be defined by

Zt = H t ×H t+1, for t = 1, 2.

A TPt net trade allocation is thus a vector zt = (ztt, ztt+1) in Zt, where the ith element ztti
of ztt denotes agent i’s net trade of consumption in CPt, and where the ith element ztt+1

i of
ztt+1 denotes agent i’s net trade of consumption in CP(t+ 1).

The set of feasible net trade allocations over the two trading periods is denoted by Z
and defined by

Z =
{

(z1, z2) ∈ Z1 × Z2|ω1
i + z11

i ≥ 0, ω2
i + z12

i + z22
i ≥ 0, ω3

i + z23
i ≥ 0, ∀i ∈ I

}
.

The set of feasible TP1 net trade allocations is given by

Z̄1 = {z1 ∈ Z1|(z1, z2) ∈ Z for some z2 ∈ Z2},

while the set of TP2 net trade allocation, conditional on z1, is given by

Z̄2(z1) = {z2 ∈ Z2|(z1, z2) ∈ Z}, for all z1 ∈ Z̄1.

In economy θ ∈ Θ, agent i’s preference ordering <θ
i over consumption sequences induces

a preference ordering Ri (θ) over the set of feasible net trade allocations Z in the natural
way: for all z, ẑ ∈ Z,

zRi (θ) ẑ ⇐⇒ Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i ) ≥
Ui(θ, ω

1
i + ẑ11

i , ω
2
i + ẑ12

i + ẑ22
i , ω

3
i + ẑ23

i ).

Though the preference ordering <θ
i exhibits separability over consumption sequences, the

derived preference ordering Ri (θ) over Z is typically non-separable since consumption in
CP2 depends on net trades in both TP1 and TP2.

We provide the definition of competitive equilibrium backward. The definition of equi-
librium when we start from TP2 is straightforward.4

Definition 9 For every economy θ ∈ Θ and every z1 ∈ Z̄1, the net trade allocation

4Note that this is a feasibility-constrained version. As it is known that the ADM solution fails to satisfy
Maskin monotonicity when it results in boundary allocations, and it is necessary to modify the solution by
truncating each agent’s consumption set by the set of feasible allocations. Here each individual’s admissible
set of trades is truncated by Z̄2

(
z1
)
, although it does not matter when we can restrict attention to interior

allocations.
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f 2 [θ|z1] ∈ Z̄2 (z1) constitutes a TP2 competitive net trade allocation, conditional on z1,
if there is a TP2 spot price q2[θ|z1] such that for every agent i this allocation f 2 [θ|z1] solves
the following problem:

Max
z2∈Z̄2(z1)

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i ), subject to z22
i + q2[θ|z1]z23

i ≤ 0. (10)

Let R1
i [θ, f

2] denote agent i’s TP1 induced preference ordering over the set of feasible
TP1 net trade allocations, Z̄1, and be defined by

x1R1
i [θ, f

2]y1 ⇐⇒ Ui(θ, ω
1
i + x11

i , ω
2
i + x12

i + f 22
i [θ|x1], ω3

i + f 23
i [θ|x1]) (11)

≥ Ui(θ, ω
1
i + y11

i , ω
2
i + y12

i + f 22
i [θ|y1], ω3

i + f 23
i [θ|y1]), for all x1, y1 ∈ Z̄1.

In contrast to static pure exchange economies where each agent’s preferences are defined
over her own net trade vectors, in sequential trading, each agent must have preferences over
whole TP1 net trade allocations. This is due to the presence of intertemporal pecuniary
externalities. Indeed, an outcome of the trading rule in TP2 depends on the net trade
allocation assigned in TP1, because trading in TP1 affects the values of endowments in the
next trading period. Moreover, the induced ordering R1

i [θ, f
2] may be non-convex. In order

for it to be a convex preference ordering, it is required that the TP2 function f 2 that maps
every economy, conditional on past trades, into a TP2 net trade allocation be a concave
function, but this requirement fails for any reasonable trading rule. As is known, although
convexity is no more than a suffi cient technical condition for things to work, it becomes
extremely diffi cult to establish any reasonable solution once it is violated.

We may proceed in two ways. First, we can still define a concept of competitive equi-
librium following the tradition of dynamic general equilibrium theory.

Definition 10 For every economy θ ∈ Θ, a TP1 net trade allocation f 1 [θ] ∈ Z̄1 constitutes
a TP1 competitive net trade allocation if there is a TP1 spot price q1[θ] such that for every
agent i the net trade allocation profile (f 1 [θ] , f 2 [θ|f 1 [θ]]) solves the following problem:

Max
z∈Z

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i )

subject to

(i) z11
i + q1[θ]z12

i ≤ 0

(ii) z22
i + q2[θ|f 1 [θ]]z23

i ≤ 0.

This is consistent with the existing dynamic general equilibrium framework, in the sense
that agents take the price path as given. Note that it assumes that each agent perceives that
her saving choice does not affect either TP1 spot price q1[θ] or TP2 spot price q2[θ|f 1 [θ]],
despite that in the next period the spot price q2[θ|z1] is affected by whole z1 which includes
his own trade vector z1

i .
The path of consumptions given by this solution is equivalent to the ADM solution.5

5Note again that this is the feasibility-constrained version, while it does not matter when we can restrict

15



This solution is not one-step-ahead implementable, however. We prove this by means of an
example.

Claim 1 Let I ≥ 2. Then, the Radner solution, defined over Θ, does not satisfy the folding
condition.

Proof. Suppose that there are three agents, i, j and k. Assume that agents’intertemporal
endowments are as follows:

ωi = (ω1
i , 0, 0), ωj = (0, ω2

j , 0) and ωk = (0, 0, ω3
k),

where ω1
i , ω

2
j , ω

3
k > 1.

Each economy θ ∈ Θ = (0, 1] specifies a preference profile over consumption paths
represented by:

Ui(θ, c
1
i , c

2
i , c

3
i ) = c1

i + θ ln c3
i

Uj(θ, c
1
j , c

2
j , c

3
j) = ln c1

j + c2
j

Uk(θ, c
1
k, c

2
k, c

3
k) = ln c2

k + c3
k.

Then, the TP2 spot price equilibrium is given by:

q2[θ|x1] = x12
i , for all x1 ∈ Z̄1,

and the TP2 competitive net trade allocation is given by:

f 22
i [θ|x1] = −x12

i

f 23
i [θ|x1] = 1

f 22
j [θ|x1] = 0

f 23
j [θ|x1] = 0

f 22
k [θ|x1] = x12

i

f 23
k [θ|x1] = −1, for all x1 ∈ Z̄1.

The TP1 orderings over Z̄1 induced by TP2 competitive net trade allocations are rep-
resented respectively by:

U1
i

(
θ, x1|f 2

)
= ω1

i + x11
i

U1
j

(
θ, x1|f 2

)
= ln x11

j + ω2
j + x12

j

U1
k

(
θ, x1|f 2

)
= ln x12

i + ω3
k − 1, for all x1 ∈ Z̄1, for all θ ∈ Θ.

For every economy θ ∈ Θ, the TP1 equilibrium spot price is:

q1[θ] = θ,

attention to interior allocations.
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which results in the following TP2 equilibrium spot price:

q2[θ|f 1[θ]] = 1,

and in the following competitive equilibrium net trade allocations:

f 11
i [θ] = −θ
f 12
i [θ] = 1

f 22
i [θ|f 1[θ]] = −1

f 23
i [θ|f 1[θ]] = 1

f 11
j [θ] = θ

f 12
j [θ] = −1

f 22
j [θ|f 1[θ]] = 0

f 23
j [θ|f 1[θ]] = 0

f 11
k [θ] = 0

f 12
k [θ] = 0

f 22
k [θ|f 1[θ]] = 1

f 23
k [θ|f 1[θ]] = −1.

We have found that f 1[θ] 6= f 1[θ′] for all θ,θ′ ∈ Θ with θ 6= θ′, though TP1 reduced
utility profiles are identical across economies in Θ, in violation of part (iii) of the folding
condition.

When an agent reveals an intention to save more, there may be different reasons to do
so. It may be because he is simply patient, or it may be because he wants to manipulate the
Radner equilibrium outcome in the next period. The planner does not distinguish between
those reasons. In particular, the above example is the case that no information is revealed
to the planner after TP1.

While we can induce agents to behave as price-takers in the static setting, it is thus
in general impossible to do that in the realistic dynamic setting in which social decision
and execution can be done only in a sequential manner. The problem will disappear when
there is a large number of traders, as each agent tends to be small and unable to manipulate
through intertemporal pecuniary externalities. Then we would say that the dynamic general
equilibrium model should be understood as such a limit model rather than an exact finite-
person model.

The second way is find a domain in which an exact finite-person implementation is
possible. It is the domain such that there are no intertemporal pecuniary externalities.6

Condition 1 For all θ ∈ Θ, the TP2 spot price q2[θ|x1] is constant in x1 ∈ Z̄1.

Note that when the above condition is met, a TP2 competitive net trade vector assigned

6Such situation emerges also when constant returns to scale in intertemporal production prevails, since
interest rate in such economy is constant.
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to agent i depends only on her own past saving/borrowing behavior. For this reason, we
write f 22

i [θ|z12
i ] and f 23

i [θ|z12
i ] for f 22

i [θ|z1] and f 23
i [θ|z1] respectively.

Here are examples of domains which satisfy Condition 1. In what follows, let us focus on
economies where the quantity ωti is strictly positive for every agent i and every consumption
period t = 1, 2, 3.

Assumption 1 (Θ1) Assume that aggregate endowment is constant over time; that is, ω1 =
ω2 = ω3. Also, assume that the agents have identical discount factors, while they may exhibit
different elasticities of intertemporal substitution. That is, for every economy θ ∈ Θ1 it holds
that ω1 = ω2 = ω3 and that there is (β1, β2) such that every i’s preference over consumptions
is represented in the form:

Ui(θ, c
1
i , c

2
i , c

3
i ) = vi(θ, c

1
i ) + β1vi(θ, c

2
i ) + β1β2vi(θ, c

3
i ),

where:

• the sub-utility vi(θ, ·) is twice continuously differentiable, strictly increasing and strictly
concave over R++.

• the limit of the first derivative of the sub-utility vi(θ, ·) is positive infinity as cti ap-
proaches 0; that is, limcti→0

∂vi(θ,c
t
i)

∂cti
=∞.

• the limit of the first derivative of the sub-utility vi(θ, ·) is zero as cti approaches positive
infinity; that is, limcti→∞

∂vi(θ,c
t
i)

∂cti
= 0.

• the sub-utility vi(θ, ·) satisfies the requirement that −
(
∂2vi(θ,c

t
i)

∂2cti
cti/

∂vi(θ,c
t
i)

∂cti

)
< 1 for all

cti ∈ R++.

For this domain, we obtain that the TP2 competitive spot price, net trade allocations
and consumption allocations prescribed for every θ ∈ Θ1 are:

q2
[
θ|z1

]
= β2

f 22
i

[
θ|z12

i

]
= − β2

1 + β2 ·
(
z12
i + ω2

i − ω3
i

)
f 23
i

[
θ|z12

i

]
=

1

1 + β2 ·
(
z12
i + ω2

i − ω3
i

)
c∗2i
[
θ|z1

]
= c∗3i

[
θ|z1

]
=
z12
i + ω2

i + β2ω3
i

1 + β2 , ∀i ∈ I and ∀z1 ∈ Z̄1.

Note that period-1 reduced utility on Z̄1 is represented by:

Ui
(
θ, z1|f 2

)
= vi

(
θ, ω1

i + z11
i

)
+β1

(
1 + β2

)
vi

(
θ,
z12
i + ω2

i + β2ω3
i

1 + β2

)
, ∀i ∈ I and ∀z1 ∈ Z̄1.
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Assumption 2 (Θ2) In this domain we drop the assumption of constant aggregate endow-
ment over time, but we assume that agents have identical CES preferences. That is, for every
θ ∈ Θ2 there is a triplet (β1, β2, ρ) such that every i’s preference ordering over consumptions
is represented in the form:

Ui(θ, c
1
i , c

2
i , c

3
i ) =

(c1
i )

1−ρ

1− ρ + β1 (c2
i )

1−ρ

1− ρ + β1β2 (c3
i )

1−ρ

1− ρ , with ρ > 0.

When agents have identical CES preferences, we obtain that the TP2 competitive equi-
librium spot price, net trade allocations and consumption allocations prescribed for every
θ ∈ Θ2 are:

q2
[
θ|z1

]
= β2

(
ω2

ω3

)ρ

f 22
i

[
θ|z12

i

]
= −

z12
i + ω2

i − ω3
i

(
ω2

ω3

)
1 + 1

β2

(
ω2

ω3

)1−ρ

f 23
i

[
θ|z12

i

]
=

ω3

ω2
·
z12
i + ω2

i − ω3
i

(
ω2

ω3

)
1 + β2

(
ω3

ω2

)1−ρ

c∗2i
[
θ|z1

]
=

z12
i + ω2

i + β2ω3
i

(
ω2

ω3

)ρ
1 + β2

(
ω3

ω2

)1−ρ

c∗3i
[
θ|z1

]
=

ω3

ω2
· c∗2i

[
θ|z1

]
, ∀i ∈ I and ∀z1 ∈ Z̄1.

Next, let us define a TP1 competitive equilibrium when Condition 1 is satisfied.

Definition 11 For every economy θ satisfying Condition 1, a TP1 net trade allocation
f̂ 1 [θ] ∈ Z̄1 constitutes a backward TP1 competitive net trade allocation if there is a TP1
spot price q1[θ] such that for every agent i the net trade allocation f̂ 1 [θ] solves the following
problem:

Max
z1∈Z̄1

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + f 22
i

[
θ|z12

i

]
, ω3

i + f 22
i

[
θ|z12

i

]
), subject to z11

i + q1[θ]z12
i ≤ 0.

Using this definition, we obtain that the competitive equilibrium spot prices prescribed
for every economy θ ∈ Θ1 are:

q1 [θ] = β1 and q2
[
θ|f̂ 1 [θ]

]
= β2,

and so the competitive net trade allocations and the equilibrium consumption allocations
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are for every agent i ∈ I as follows:

f̂ 11
i [θ] = − β1

1 + β1 + β1β2 ·
(
ω1
i

(
1 + β2

)
− ω2

i − β2ω3
i

)
f̂ 12
i [θ] =

1

1 + β1 + β1β2 ·
(
ω1
i

(
1 + β2

)
− ω2

i − β2ω3
i

)
f 22
i

[
θ|f̂ 12

i [θ]
]

= − β2

1 + β2 ·
(
f̂ 12
i [θ] + ω2

i − ω3
i

)
f 23
i

[
θ|f̂ 12

i [θ]
]

=
1

1 + β2 ·
(
f̂ 12
i [θ] + ω2

i − ω3
i

)
c∗1i [θ] = c∗2i

[
θ|f̂ 12

i [θ]
]

= c∗3i

[
θ|f̂ 12

i [θ]
]

=
ω1
i + β1ω2

i + β1β2ω3
i

1 + β1 + β1β2 .

For economies in Θ2, we obtain that the equilibrium spot prices prescribed for every
θ ∈ Θ2 are:

q1 [θ] = β1

(
ω1

ω2

)ρ
and q2

[
θ|f̂ 1 [θ]

]
= β2

(
ω2

ω3

)ρ
.

Thus, the competitive net trade allocations are:

f̂ 11
i [θ] = −

ω1
i

(
β2
(
ω3

ω2

)1−ρ
+ 1

)
−
(
ω1

ω2

)(
ω2
i + β2ω3

i

(
ω2

ω3

)ρ)
1 + 1

β1

(
ω1

ω2

)1−ρ
+ β2

(
ω3

ω2

)1−ρ

f̂ 12
i [θ] =

ω2

ω1
·
ω1
i

(
β2
(
ω3

ω2

)1−ρ
+ 1

)
−
(
ω1

ω2

)(
ω2
i + β2ω3

i

(
ω2

ω3

)ρ)
1 + β1

(
ω2

ω1

)1−ρ
+ β1β2

(
ω3

ω1

)1−ρ

f 22
i

[
θ|f̂ 12

i [θ]
]

= −
f̂ 12
i [θ] + ω2

i − ω3
i

(
ω2

ω3

)
1 + 1

β2

(
ω2

ω3

)1−ρ

f 23
i

[
θ|f̂ 12

i [θ]
]

=
ω3

ω2
·
f̂ 12
i [θ] + ω2

i − ω3
i

(
ω2

ω3

)
1 + β2

(
ω3

ω2

)1−ρ ,

while the corresponding equilibrium consumption allocations are:

c∗1i [θ] =
ω1
i + β1ω2

i

(
ω1

ω2

)ρ
+ β1β2ω3

i

(
ω1

ω3

)ρ
1 + β1

(
ω2

ω1

)1−ρ
+ β1β2

(
ω3

ω1

)1−ρ

c∗2i
[
θ|z∗1 [θ]

]
=

ω2

ω1
· c∗1i [θ]

c∗3i
[
θ|z∗1 [θ]

]
=

ω3

ω1
· c∗1i [θ] .
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The backward competitive solution of an economy θ is a SCF f̄ =
(
f̄ 1 [·] , f̄ 2 [·|·]

)
associat-

ing the period-1 function f̄ 1 [θ] with the backward TP1 competitive net trade allocation f̂ 1 [θ],
that is, f̄ 1 [θ] = f̂ 1 [θ] ∈ Z̄1, and the period-2 function f̄ 2 [θ|·] with the TP2 competitive net
trade allocation for any TP1 net trade allocation in the set Z̄1, that is, f̄ 2 [θ|z1] = f 2 [θ|z1] for
every z1 ∈ Z̄1. Thanks to Condition 1, we can now state and prove the following permissive
results.

Claim 2 Assume that I ≥ 3. Suppose that the quantity ωti is strictly positive for every
agent i and every consumption period t = 1, 2, 3. Then, the backward competitive solution
f̄ is one-step-ahead implementable if it is defined either over Θ1 or over Θ2.

Proof. Let the premises hold. To show that f̄ is one-step-ahead implementable when it
is defined either over Θ1 or over Θ2, we need to show that this solution satisfies the folding
condition and one-step-ahead Maskin monotonicity. Moreover, we need also to show this
solution satisfies one-step-ahead unanimity and one-step-ahead weak no veto-power.

First, let us show that f̄ satisfies the folding condition. To this end, let Y 1 = Y−2 = Z̄1

and let Y 2 (z1) = Z̄2 (z1) for every z1 ∈ Z̄1. Then, the sets Y 1 = Y−2 and Y 2 (z1) are not
empty sets. Note that for k = 1, 2, it holds that f̄ 1

[
Θk
]
⊆ Z̄1 and f̄ 2

[
Θk|z1

]
⊆ Z̄2 (z1) for

every z1 ∈ Z̄1.
Let us define the TP2 induced ordering of agent i in state θ at z1 ∈ Z̄1, denoted by

Ri [θ|z1], as follows:

x2Ri

[
θ|z1

]
y2 ⇐⇒

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + x22
i , ω

3
i + x23

i ) ≥ Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + y22
i , ω

3
i + y23

i ),

for every x2, y2 ∈ Y 2 (z1). We denote by R [θ|z1] the profile of TP2 induced orderings at
θ|z1, by D [Θ1|z1] the TP2 domain of induced orderings at Θ1|z1 and by D [Θ2|z1] the TP2
domain of induced orderings at Θ2|z1. For every k = 1, 2, let us define the TP2 function
ϕ2 : D

[
Θk|z1

]
→ Y 2 (z1) as follows:

ϕ2
(
R
[
θ|z1

])
= f̄ 2

[
θ|z1

]
, ∀θ ∈ Θk.

The TP1 induced ordering of agent i in state θ, denoted by Ri

[
θ|f̄ 2

]
, is defined as in

(11). Let us denote by R
[
θ|f̄ 2

]
the profile of TP1 induced orderings at θ|f̄ 2, by D

[
Θ1|f̄ 2

]
the TP1 domain of induced orderings at Θ1|f̄ 2, and by D

[
Θ2|f̄ 2

]
the TP1 domain of induced

orderings at Θ2|f̄ 2. For every k = 1, 2, let us define the TP1 function ϕ1 : D
[
Θk|f̄ 2

]
→ Y 1

as follows:
ϕ1
(
R
[
θ|f̄ 2

])
= f̄ 1 [θ] , ∀θ ∈ Θk.

By the above definitions and by the fact that competitive equilibrium exists in each TP, one
can check that the backward competitive solution f̄ satisfies the folding condition.

To see that f̄ also satisfies one-step-ahead Maskin monotonicity, it suffi ces to observe
that in each TP the competitive net trade allocation is unique and always an interior alloca-
tion, that the TP1 competitive solution ϕ1 on D

[
Θk|f̄ 2

]
is Maskin monotonic for k = 1, 2,

and that the TP2 competitive solution ϕ2 onD
[
Θk|z1

]
is also Maskin monotonic for k = 1, 2.

Finally, to see that the backward competitive solution f̄ satisfies one-step-ahead una-
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nimity and one-step-ahead weak no veto-power it suffi ces to observe that they are vacuously
satisfied since agents’induced orderings are strictly monotonic in consumption.

4.2 Period-by-period implementability of the Condorcet winner

In this section, we consider a bi-dimensional policy space where an odd number of agents
vote sequentially on each dimension and where an ordering of the dimensions is exogenously
given. We assume that a majority vote is organized around each policy dimension and that
the outcome of the first majority vote is known to the voters at the beginning of the second
voting stage. This stage-by-stage resolution is common in political economy models (see,
e.g., Persson and Tabellini, 2000). We are interested in one-step-ahead implementing the
simple majority solution, which selects the Condorcet winner in each voting stage.

A policy choice is an ordered pair (x1, x2) ∈ X1×X2, where the policy space of dimension
d = 1, 2 is an open interval.7 Each voter i is described by a one-dimensional type θi. The
type space is the open interval

(
η, η̄
)
.

Definition 12 The voter i’s utility function U :
(
η, η̄
)
× X1 × X2 → R is a twice-

continuously differentiable satisfying:
(a) Strict concavity, that is:

∂2U(θi, x
1, x2)

∂2x1
< 0 and

∂2U(θi, x
1, x2)

∂2x2
< 0, for every

(
x1, x2

)
∈ X1 ×X2.

(b) induced single-crossing property, that is:

∂2U(θi, x
1, x2)

∂θi∂x1
> 0 and

∂2U(θi, x
1, x2)

∂θi∂x2
> 0, for every

(
x1, x2

)
∈ X1×X2 and θi ∈

(
η, η̄
)
.

(c) Strategic complementarity, that is:

∂2U(θi, x
1, x2)

∂x1∂x2
≥ 0, for every

(
x1, x2

)
∈ X1 ×X2.

The induced single-crossing property simply requires that the induced utility of both
dimensions is increasing in the type of voter. This property can also be found in De Donder
et al. (2012).

We now introduce the definition of a Condorcet winner for an arbitrary policy space P :

Definition 13 Suppose that agents in I votes over the set of policies P . We say that p ∈ P
is a majority voting outcome, also known as a Condorcet winner (CW ), if there does not
exist any other distinct outcome p′ ∈ P that is strictly preferred by more than half of voters
to the outcome p.

For any integer k ≥ 2, the set of states Θ takes the structure of the Cartesian product
of allowable independent types for voters, that is, Θ ≡

(
η, η̄
)2k−1

, with θ as typical element.

7The choice of a bi-dimensional policy space is motivated by convenience.
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It simplifies the argument, and causes no loss of generality, to assume that θ1 ≤ θ2 ≤ · · · ≤
θ2k−1. Therefore, the type θk is the median type, denoted by θmed, at state θ.

At the state θ, each voter is assumed to have an ordering preference relation Ri (θ) over
the policy space X1 ×X2 which is represented by U (θi, ·, ·).

Solving by backward induction when the state θ is the prevailing state, if x1 ∈ X1 is
the outcome of the first majority voting, then the stage-2 induced ordering of voter i on X2

in state θ at x1 is denoted by Ri [θ|x1] and is represented by U (θi, x
1, ·).

The profile of the stage-2 induced orderings in state θ at x1 is denoted by R [θ|x1]. Let
D [Θ|x1] be the stage-2 domain of induced ordering preferences induced by the set Θ as well
as by the outcome x1; that is:

D
[
Θ|x1

]
≡
{
R
[
θ|x1

]
|θ ∈ Θ

}
, for every x1 ∈ X1. (12)

If x1 ∈ X1 is the outcome of the first majority voting, then the stage-2 majority voting
function f 2 : D [Θ|x1]→ X2 is defined as follows:

f 2
[
θ|x1

]
= CW

(
R
[
θ|x1

])
,

where CW (R [θ|x1]) denotes the Condorcet winner under the profile R [θ|x1]. It will be
shown below that this outcome is the most-preferred outcome of the median type.

Let us suppose that the stage-2 majority voting function is well-defined for every out-
come x1 ∈ X1. Then, in stage-1, the utility of a voter i at state θ for the outcome z1 ∈ X1

is:
U
(
θi, z

1, f 2
[
θ|z1

])
.

Then, the stage-1 induced ordering of voter i on X1 in state θ at the majority voting function
f 2 [θ|·], denoted by Ri [θ|f 2], is given by:

y1Ri

[
θ|f 2

]
z1 ⇐⇒

(
y1, f 2

[
θ|y1

])
Ri (θ)

(
z1, f 2

[
θ|z1

])
, for every y1, z1 ∈ X1.

As usual, the profile of the stage-1 induced orderings in state θ at the majority voting
function f 2 [θ|·] is denoted by R [θ|f 2]. Let D [Θ|f 2] be the stage-1 domain of induced
ordering preferences induced by the set Θ as well as by the majority voting function f 2; that
is:

D
[
Θ|f 2

]
≡
{
R
[
θ|f 2

]
|θ ∈ Θ

}
. (13)

Thus, the stage-1 majority voting function f 1 : D [Θ|f 2]→ X1 is defined as follows:

f 1 [θ] = CW
(
R
[
θ|f 2

])
, for every θ ∈ Θ,

where CW (R [θ|f 2]) denotes the Condorcet winner under the profile R [θ|f 2].

Definition 14 The SCF f (·) = (f 1 [·] , f 2 [·|·]) on Θ is the majority voting solution if for
every θ ∈ Θ:

f 1 [θ] = CW
(
R
[
θ|f 2

])
and f 2

[
θ|x1

]
= CW

(
R
[
θ|x1

])
for every x1 ∈ X1.

The following lemma shows that the majority voting solution is a single-valued function.
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The intuition behind it is similar to that of Proposition 4 of De Donder et al. (2012) for
the case where there is a continuum of voters. Firstly, the assumption of strict concavity
assures the existence and unicity of the Condorcet winner in the second voting stage. This
assumption, combined with the assumption of strategic complementarity and with the in-
duced single-crossing property, assures that the stage-1 induced ordering of voter i on X1

in state θ at the majority voting function f 2 [θ|·] is single-crossing. This guarantees the
existence and unicity of the Condorcet winner in the first voting stage.

Lemma 1 Suppose that the cardinality of I is 2k−1 with k ≥ 2. Suppose that voter i ∈ I’s
utility function Ui on Θ × X1 × X2 meets the requirements of Definition 12 and depends
only on her own type. Then, the majority voting SCF f (·) = (f 1 [·] , f 2 [·|·]) over Θ is a
single-valued function on each policy dimension.

Proof. See Appendix.

Thanks to the above lemma, we can now state and prove the main result of this section.

Claim 3 Suppose that the cardinality of I is 2k− 1 with k ≥ 2. Suppose that voter i ∈ I’s
utility function Ui on Θ × X1 × X2 meets the requirements of Definition 12 and depends
only on her own type. Then, the majority voting solution is one-step-ahead implementable.

Proof. Let the premises hold. By Theorem 3, it suffi ces to show that the majority vot-
ing solution satisfies the folding condition and one-step-ahead Maskin monotonicity and,
moreover, it satisfies one-step-ahead unanimity and one-step-ahead weak no veto-power.

Thus, T = {1, 2}. Let Y 1 = X1 and Y 2 (x1) = X2 for every x1 ∈ X1. Define D [Θ|x1]
as in (12) and define D [Θ|f 2] as in (13).

For every x1 ∈ X1, define the second stage function ϕ2 : D [Θ|x1]→ X2 by ϕ2 (R [θ|x1]) =
CW (R [θ|x1]) for every R [θ|x1] ∈ D [Θ|x1]. Moreover, define the first stage function ϕ1 :
D [Θ|f 2] → X1 by ϕ1 (R [θ|f 2]) = CW (R [θ|f 2]) for every R [θ|f 2] ∈ D [Θ|f 2]. These func-
tions are single-valued by Lemma 1. This shows that the majority voting solution satisfies
the folding condition.

By definitions of the preceding paragraph and by the fact that in each period agents
have single crossing preferences, one can see that the majority voting solution satisfies one-
step-ahead Maskin monotonicity. Since unanimity and weak no veto-power are satisfied, we
conclude that the majority voting solution on Θ is one-step-ahead implementable.

5. Conclusion

Summary. We have identified two necessary conditions for one-step-ahead implementability,
the folding condition and one-step-ahead Maskin monotonicity. The first condition states
that a one-step-ahead implementable SCF can be decomposed into a sequence of social choice
functions, each of which is defined only over induced preferences induced over outcomes at
hand. Each induced preference is constructed in the manner of backward-induction. This
means that a period-t induced preference over the current component set depends on past
decisions as well as on the socially optimal path that the dynamic process will bring about

24



in the future. The second condition states that every such social function needs to satisfy
a remarkably strong invariance condition for Nash implementation, now widely referred to
as Maskin monotonicity (Maskin, 1999). We have also shown that under two auxiliary
conditions the two necessary conditions are suffi cient, as well.

We have applied our analysis to two prominent dynamic problems, voting over time and
sequential trading. In the voting application, we have shown that on the domain satisfying
the single-crossing property the simple majority solution, which selects the Condorcet winner
in each voting stage (after every history), is one-step-ahead implementable.

In a borrowing-lending model with no liquidity constraints, in which agents trade in spot
markets and transfer wealth between any two periods by borrowing and lending, we have
noted that intertemporal pecuniary externalities arise because trades in the current period
change the spot price of the next period, which, in turn, affects its associated equilibrium
allocation. The quantitative implication of this is that every agent’s induced preference
ordering concerns not only her own consumption/saving behavior but also the consump-
tion/saving behavior of all other agents. In this set-up, we have shown that, under such
pecuniary externalities, the standard dynamic competitive equilibrium solution is not one-
step-ahead implementable. However, we have also identified preference domains —which
involve no pecuniary externalities — for which the no-commitment version of the dynamic
competitive equilibrium solution is definable and one-step-ahead implementable. It remains
an open question how we should deal with intertemporal pecuniary externalities. We hope
that this and other topics related to this paper will be investigated in future research.

In this paper, we have considered one-step-ahead implementation in SPE. One may
consider that agents follow an alternative equilibrium concept, which is known to be less re-
strictive. This does not ease the restrictiveness of one-step-ahead implementability, however,
since it does not change the restrictiveness of the folding condition.
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Appendix

Proof of Theorem 1

Proof of Theorem 1. Let the premises hold. Thus, there exists a dynamic mechanism
Γ ≡ (I, H,A (H) , g) that one-step-ahead implements the SCF f . Therefore, for every θ̄ ∈ Θ,

f 1
[
θ̄
]

= g1
(
sθ̄
(
h1
))

and
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f t
[
θ̄|g−t

(
ht
)]

= gt
(
sθ̄
(
ht
))

for every ht ∈ H t with t 6= 1

if and only if sθ̄ ∈ SPE
(
Γ, θ̄
)
. Fix any sθ̄ ∈ SPE

(
Γ, θ̄
)
. Then, sθ̄|ht is a Nash equilibrium

of
(
Γ (ht) , θ̄

)
for every history ht ∈ H. Moreover, by one-step-ahead implementability of f ,

it also follows that:

f+t
[
θ̄|g−t (h)

]
= g+t

(
sθ̄|h

)
, for every h ∈ H t with 2 ≤ t ≤ T . (14)

Fix any period t 6= 1. Let us define the set Y 1, the set Y−t and the set Y t (g−t (h)) as
follows:

Y 1 ≡
{
g1
(
a
(
h1
))
∈ X t|for some a

(
h1
)
∈ A

(
h1
)}
, (15)

Y−t ≡
{
g−t (h) ∈ X−t|for some h ∈ H t

}
, (16)

and for every g−t (h) ∈ Y−t:
Y t (g−t (h)) ≡ {gt (a (h)) ∈ X t (g−t (h)) |a (h) ∈ A (h) for some h ∈ H t} .

(17)
By their definitions as well as by the assumption that the dynamic mechanism Γ implements
in SPE the SCF f , one can check that f t [Θ|g−t (h)] ⊆ Y t (g−t (h)) and that f 1 [Θ] ⊆ Y 1.

Moreover, given that Γ is a dynamic mechanism, one can also check that for every period
t 6= 1:

g−t
(
ht
)
∈ Y−t ⇐⇒ g1

(
a1
)
∈ Y 1 and gτ (aτ ) ∈ Y τ

(
g−τ

(
a1, · · · , aτ−1

))
for every τ such that 2 ≤ τ ≤ t− 1, for every ht ≡ (a1, · · · , at−1) ∈ H t.

For every y−T ∈ Y−T , the period-T preference domain D
[
Θ|y−T

]
is nonempty, and this

follows from its definition in (2) and from the fact that Y T
(
y−T

)
is not empty. Let the

period-T function
ϕT : D

[
Θ|g−T (h)

]
→ Y T

(
g−T (h)

)
be defined by:

ϕT
(
R
[
θ|g−T (h)

])
= gT (sθ (h)), for every history h ∈ HT and state θ ∈ Θ, (18)

where sθ ∈ SPE (Γ, θ).
Fix any period t 6= 1, T and any t-head outcome path y−t ≡ g−t (h) ∈ Y−t for some

h ∈ H t. Since the set Y t (g−t (h)) is not empty and since Γ one-step-ahead implements f ,
one can see that the period-t domain of induced orderings D

[
Θ|y−t, f+(t+1)

]
as defined in (5)

is not empty. Similarly, one can see that period-1 domain of induced orderings D [(Θ|f+2)]
as defined in (8) is not empty.

For every t 6= 1, T , let the period-t function

ϕt : D
[
Θ|g−t (h) , f+(t+1)

]
→ Y t

(
g−t (h)

)
be defined by:

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
= gt(sθ (h)) for every h ∈ H t and every θ ∈ Θ. (19)
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Let the period-1 function
ϕ1 : D

[
Θ|f+2

]
→ Y 1

be defined by:
ϕ1
(
R
[
θ|f+2

])
= g1(sθ

(
h1
)
), for every θ ∈ Θ. (20)

To complete the proof, we need to show that the period-t function ϕt is a function for
every t ∈ T . The following claim establishes it for the case where t 6= 1, T . The same
arguments, suitably modified, can be used to show that ϕ1 and ϕT are functions.

Claim 4 If the SCF f over Θ is one-step-ahead implementable and R
[
θ|y−t, f+(t+1)

]
=

R
[
θ′|y−t, f+(t+1)

]
for some y−t ∈ Y−t with t 6= 1 and some θ, θ′ ∈ Θ, then f t [θ|y−t] =

f t [θ′|y−t].

Proof. Suppose that y−t = g−t (h) for some h ∈ H t and that R
[
θ|y−t, f+(t+1)

]
=

R
[
θ′|y−t, f+(t+1)

]
for some θ, θ′ ∈ Θ.

Since sθ ∈ SPE (Γ, θ) and since, moreover, R
[
θ|y−t, f+(t+1)

]
= R

[
θ′|y−t, f+(t+1)

]
, we

have that:

sθ (h) ∈ NE
(
Γ (h) , R

[
θ|y−t, f+(t+1)

])
∩NE

(
Γ (h) , R

[
θ′|y−t, f+(t+1)

])
,

and so, for every i ∈ I and ai (h) ∈ Ai (h), it holds that:

sθ (h)Ri

[
θ′|y−t, f+(t+1)

] (
ai (h) , sθ−i (h)

)
.

From the definition of Ri

[
θ′|y−t, f+(t+1)

]
and from (14), it follows that for every i ∈ I

and ai (h) ∈ Ai (h) it holds that:(
g−t (h) , gt

(
sθ (h)

)
, g+(t+1)

(
sθ
′ |
(
h, sθ (h)

)))
Ri (θ

′) (21)(
g−t (h) , gt

(
ai (h) , sθ−i (h)

)
, g+(t+1)

(
sθ
′|
(
h,
(
ai (h) , sθ−i (h)

))))
.

Let si denote agent i’s strategy according to which this i plays si (h′) = sθ
′
i (h′) for every

history h′ 6= h and according to which this i plays sti = sθi (h) after the history h. Note that
s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every history h′ 6= h since sθ

′
is a strategy profile

in SPE (Γ, θ′). Thus, to have that the strategy profile s is a SPE strategy profile of (Γ, θ′),
we need to show that s|h is a Nash equilibrium of (Γ (h) , θ′).

Since the action profile s (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
, it

follows that (21) holds for every i ∈ I and every ai (h) ∈ Ai (h). Thus, no agent i can
gain by deviating from the action si (h) and thereafter conforming to si. Since the one
deviation property (see, e.g., Osborne and Rubinstein, 1994; Lemma 98.2) holds for a finite-
horizon multi-period game with observed actions and simultaneous moves, it follows that
the strategy profile s|h ∈ SPE (Γ (h) , θ′), and so s|h ∈ NE (Γ, θ′). Therefore, we have
that s ∈ SPE (Γ, θ′). Since the dynamic mechanism Γ implements the SCF f in SPE and
g
(
sθ (h)

)
= g (s (h)) we have that f t [θ′|g−t (h)] = f t [θ|g−t (h)].

The statement follows by the above arguments.
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Proof of Theorem 2

Proof of Theorem 2. Let the premises hold. Thus, there exists a dynamic mechanism
Γ ≡ (I, H,A (H) , g) that one-step-ahead implements the SCF f . Therefore, for every θ̄ ∈ Θ,

f 1
[
θ̄
]

= g1
(
sθ̄
(
h1
))

and

f t
[
θ̄|g−t

(
ht
)]

= gt
(
sθ̄
(
ht
))

for every ht ∈ H t with t 6= 1

if and only if sθ̄ ∈ SPE
(
Γ, θ̄
)
. Consider any state θ̄. Fix any sθ̄ ∈ SPE

(
Γ, θ̄
)
. Then, sθ̄|ht

is a Nash equilibrium of
(
Γ (ht) , θ̄

)
for every history ht ∈ H. Moreover, by one-step-ahead

implementability of f , it also follows that:

f+t
[
θ̄|g−t (h)

]
= g+t

(
sθ̄|h

)
, for every h ∈ H t with 2 ≤ t ≤ T .

Since the SCF f satisfies the folding condition, define the set Y 1, the set Y−t and the
set Y t (g−t (ht)) as in (15), (16) and (17) of the proof of Theorem 1, respectively.

Fix any g−T (h) ∈ Y−T with h ∈ HT and suppose that for every i ∈ I and every
a (h) ∈ A (h), it holds that:

ϕT
(
R
[
θ|g−T (h)

])
Ri

[
θ|g−T (h)

]
gT (a (h)) =⇒

ϕT
(
R
[
θ|g−T (h)

])
Ri

[
θ′|g−T (h)

]
gT (a (h)) ,

(22)

for some R
[
θ|g−T (h)

]
and R

[
θ′|g−T (h)

]
in D

[
Θ|g−T (h)

]
.

Since the dynamic mechanism Γ implements the SCF f in SPE, we have that:

ϕT
(
R
[
θ|g−T (h)

])
= gT (sθ (h)) = fT

[
θ|g−T (h)

]
,

and that action profile sθ (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ|g−T (h)

])
.

From the definitions of Ri

[
θ|g−T (h)

]
and Ri

[
θ′|g−T (h)

]
given in (1), we have that:

gT (sθ (h))Ri

[
θ|g−T (h)

]
gT (a (h)) ⇐⇒(

g−T (h) , gT (sθ (h))
)
Ri (θ)

(
g−T (h) , gT (a (h))

)
,

(23)

and that:

gT (sθ (h))Ri

[
θ′|g−T (h)

]
gT (a (h)) ⇐⇒(

g−T (h) , gT (sθ (h))
)
Ri (θ

′)
(
g−T (h) , gT (a (h))

)
.

(24)

If there exist i ∈ I and ai (h) ∈ Ai (h) such that:

gT
(
ai (h) , sθ−i (h)

)
Pi
[
θ′|g−T (h)

]
gT (sθ (h)),

it follows from (22)-(24) that:

gT
(
ai (h) , sθ−i (θ) (h)

)
Pi
[
θ|g−T (h)

]
gT (sθ (h)),
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which contradicts the fact that the action profile sθ (h) is a Nash equilibrium of
(
Γ
(
hT
)
, R
[
θ|g−T (h)

])
.

Thus, this action profile sθ (h) is also a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−T (h)

])
. Also,

note that this profile sθ (h) is also a Nash equilibrium of (Γ (h) , θ′).
Since the period-T SCF fT is a function and since the action profile sθ (h) is a Nash

equilibrium of (Γ (h) , θ′), it needs to be the case that gT
(
sθ (h)

)
= fT

(
θ′|g−T (h)

)
. It

follows from the fact that the SCF f satisfies the folding condition that gT
(
sθ (h)

)
=

ϕT
(
R
[
θ′|g−T (h)

])
, as was to be proved.

Fix any t 6= 1, T and consider any g−t (h) ∈ Y−t with h ∈ H t. Furthermore, consider any
profile R

[
θ|g−t (h) , f+(t+1)

]
and any profile R

[
θ′|g−t (h) , f+(t+1)

]
in D

[
Θ|g−t (h) , f+(t+1)

]
.

Suppose that for every i ∈ I and every a (h) ∈ A (h):

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
Ri

[
θ|g−t (h) , f+(t+1)

]
gt (a (h)) =⇒

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
Ri

[
θ′|g−t (h) , f+(t+1)

]
gt (a (h)) .

(25)
Since the dynamic mechanism Γ implements the SCF f in SPE, we have that:

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
= f t

[
θ|g−t (h)

]
= gt

(
sθ (h)

)
.

Moreover, from the definitions of Ri

[
θ|g−t (h) , f+(t+1)

]
and Ri

[
θ′|g−t (h) , f+(t+1)

]
given in

(4) and from the fact that Γ one-step-ahead implements the SCF f , one can see that the
action profile sθ (h) is a Nash equilibrium of

(
Γ (h) , R

[
θ|g−t (h) , f+(t+1)

])
, that:

gt
(
sθ (h)

)
Ri

[
θ|g−t (h) , f+(t+1)

]
gt (a (h)) ⇐⇒(

g−t (h) , g+t
(
sθ|h

))
Ri (θ)

(
g−t (h) , gt (a (h)) , g+(t+1)

(
sθ| (h, a (h))

))
,

(26)

and that:

gt
(
sθ (h)

)
Ri

[
θ′|g−t (h) , f+(t+1)

]
gt (a (h)) ⇐⇒(

g−t (h) , gt
(
sθ (h)

)
, g+(t+1)

(
sθ
′|
(
h, sθ (h)

)))
Ri (θ

′)
(
g−t (h) , gt (a (h)) , g+(t+1)

(
sθ
′ | (h, a (h))

))
.

(27)
If there exist i ∈ I and ai (h) ∈ Ai (h) such that:

gt
(
ai (h) , sθ−i (h)

)
Pi

[
θ′|g−t (h) , g+(t+1)

(
sθ
′| (h, ·)

)]
gt(sθ (h)),

it follows from (25)-(27) that:

gt
(
ai (h) , sθ−i (h)

)
Pi
[
θ|g−t (h) , g+(t+1)

(
sθ| (h, ·)

)]
gt(sθ (h)),

which contradicts the fact that sθ (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ|g−t (h) , f+(t+1)

])
.

Thus, the action profile sθ (h) is also a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
.

Let si denote agent i’s strategy according to which this i plays si (h′) = sθ
′
i (h′) for every

history h′ 6= h and according to which this i plays sti = sθi (h) after the history h. Note that
s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every history h′ 6= h since sθ

′
is a strategy profile

in SPE (Γ, θ′). Thus, to have that the strategy profile s is a SPE strategy profile of (Γ, θ′),
we need to show that s|h is a Nash equilibrium of (Γ (h) , θ′).

Since the action profile s (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
, it
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follows from (27) that for every i ∈ I and every ai (h) ∈ Ai (h):(
g−t (h) , g+t (s)

)
Ri (θ

′)
(
g−t (h) , gt (ai (h) , s−i (h)) , g+(t+1) (s| (h, (ai (h) , s−i (h))))

)
.

Thus, no agent i can gain by deviating from the action profile s (h) and thereafter conforming
to si, and so the strategy profile s (h) is a NE of (Γ (h) , θ′). It follows that s ∈ SPE (Γ, θ′).

Since the dynamic mechanism Γ implements the SCF f in SPE and since, moreover, the
strategy profile s ∈ SPE (Γ, θ′), it follows that f t [θ′|g−t (h)] = gt (s (h)). Since f satisfies
the folding condition, we have gt (s (h)) = ϕt

(
R
[
θ′|g−t (h) , f+(t+1)

])
, as was to be shown.

Consider some R [θ|f+2] and some R [θ′|f+2] in D [Θ|f+2]. Suppose that for every i ∈ I
and every a (h1) ∈ A (h1):

ϕ1
(
R
[
θ|f+2

])
Ri

[
θ|f+2

]
g1
(
a
(
h1
))

=⇒ ϕ1
(
R
[
θ|f+2

])
Ri

[
θ′|f+2

]
g1
(
a
(
h1
))
. (28)

Since f satisfies the folding condition, we have that

ϕ1
(
R
[
θ|f+2

])
= f 1 [θ] = g1

(
sθ
(
h1
))
.

Moreover, it also follows from the definitions of Ri [θ|f+2] and Ri [θ
′|f+2] given in (7) and

from the fact that Γ one-step-ahead implements the SCF f that the action profile sθ (h1) is
a Nash equilibrium of (Γ (h1) , R [θ|f+2]), that:

ϕ1 (R [θ|f+2])Ri [θ|f+2] g1 (a (h1)) ⇐⇒(
g1
(
sθ (h1)

)
, g+2

(
sθ|sθ (h1)

))
Ri (θ)

(
g1 (a (h1)) , g+2

(
sθ|a (h1)

))
,
(29)

and that:

ϕ1 (R [θ|f+2])Ri [θ
′|f+2] g1 (a (h1)) ⇐⇒(
g1
(
sθ (h1)

)
, g+2

(
sθ
′ |sθ (h1)

))
Ri (θ

′)
(
g1 (a (h1)) , g+2

(
sθ
′ |a (h1)

))
.
(30)

Suppose that
g1
(
ai
(
h1
)
, sθ−i

(
h1
))
Pi
(
θ′|f+2

)
g1
(
sθ
(
h1
))

for some i ∈ I and some ai (h1) ∈ Ai (h1). Thus, it follows from (28)-(30) that:

g1
(
ai (h

1) , sθ−i (h
1)
)
Pi (θ|f+2) g1

(
sθ (h1)

)
⇐⇒(

g1
(
ai (h

1) , sθ−i (h
1)
)
, g+2

(
sθ|
(
ai (h

1) , sθ−i (h
1)
)))

Pi (θ)
(
g1
(
sθ (h1)

)
, g+2

(
sθ|sθ (h1)

))
,

which contradicts the fact that action profile sθ (h1) is a Nash equilibrium of (Γ (h1) , R [θ|f+2]).
Therefore, the profile sθ (h1) is also a Nash equilibrium of (Γ (h1) , R [θ′|f+2]).

As we did previously, let si ≡ (sτi )τ≥1 denote the agent i’s strategy according to which
this i plays s1

i ≡ sθi (h1) at the start of the game and thereafter she conforms to the strategy
sθ
′
i ; that is, s

t
i ≡

(
sθ
′
i

)t
for every t ≥ 2.

Note that s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every nontrivial history h′ ∈ H
since sθ

′
is a strategy profile in SPE (Γ, θ′). Thus, to have that the strategy profile s is a

SPE of (Γ, θ′), we need to show that s is also a Nash equilibrium of (Γ, θ′).
Since the action profile s (h1) is a Nash equilibrium of (Γ (h1) , R [θ′|f+2]), it follows from
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(30) that for every i ∈ I and every ai (h1) ∈ Ai (h1):

(g (s))Ri (θ
′)
(
g1
(
ai
(
h1
)
, s−i

(
h1
))
, g+2

(
s|
(
ai
(
h1
)
, s−i

(
h1
))))

.

Thus, no agent i can gain by deviating from si (h
1) and thereafter conforming to si, and so

the strategy profile s is a SPE of (Γ (h) , θ′).
Since the dynamic mechanism Γ implements the SCF f in SPE, we have that f 1 [θ′] =

g1 (s (h1)). Since f satisfies the folding condition, we have g1 (s (h1)) = ϕ1 (R [θ′|f+2]), as
was to be shown.

Proof of Theorem 3

Proof of Theorem 3. The proof is based on the construction of a dynamic mechanism
Γ, where each period-t mechanism is a canonical mechanism.

Period-1 mechanism:
Individual i’s period-1 action space is defined by:

Ai
(
H1
)
≡ D

[
Θ|f+2

]
× Y 1 ×Z+,

where Z+ is the set of nonnegative integers and H1 is the null set. Thus, a period-1 action
of agent i consists of an element of the set Y 1, an element of the period-1 domain of induced
preferences induced by the set Θ at the socially optimal 2-tail outcome paths f+2, and a
nonnegative integer. A typical period-1 action played by agent i is denoted by ai (h1) ≡((
R
[
θ̄|f+2

])i
, (x1)

i
, (z)i

)
.

Period-1 action space of agents is the product space:

A
(
H1
)
≡
∏
i∈I

Ai
(
H1
)
,

with a (h1) as a typical period-1 action profile.
The period-1 outcome function g1 is defined by the following three rules:

Rule 1: If ai (h1) ≡
(
R
[
θ̄|f+2

]
, x1, 0

)
for every i ∈ I and x1 = ϕ1

(
R
[
θ̄|f+2

])
, then

g1 (a (h)) = x1.

Rule 2: If n− 1 agents play aj (h1) ≡
(
R
[
θ̄|f+2

]
, x1, 0

)
with x1 = ϕ1

(
R
[
θ̄|f+2

])
but agent

i plays ai (h1) ≡
((
R
[
θ̄|f+2

])i
, (x1)

i
, (z)i

)
6= aj (h1), then we can have two cases:

1. If x1Ri

[
θ̄|f+2

]
(x1)

i, then g1 (a (h1)) = (x1)
i.

2. If (x1)
i
Pi
[
θ̄|f+2

]
x1, then g1 (a (h1)) = x1.

Rule 3: Otherwise, an integer game is played: identify the agent who plays the highest
integer (if there is a tie at the top, pick the agent with the lowest index among them.) This
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agent is declared the winner of the game, and the alternative implemented is the one she
selects.

Period-t mechanism with t 6= 1, T :
Individual i’s period-t action space after history h ∈ H t such that g−t (h) ∈ Y−t is

defined by:
Ai (h) ≡ D

[
Θ|g−t (h) , f+(t+1)

]
× Y t

(
g−t (h)

)
×Z+,

where Z+ is the set of nonnegative integers. Thus, a period-t action of agent i after his-
tory h ∈ H t consists of an element of the set Y t (g−t (h)), an element of the period-t
domain of induced preferences induced by the set Θ at the t-head outcome path g−t (h)
and at the socially optimal t + 1-tail outcome paths f+(t+1), and a nonnegative integer.
A typical period-t action played by agent i after history h ∈ H t is denoted by ai (h) ≡((
R
[
θ̄|g−t (h) , f+(t+1)

])i
, (xt)

i
, (z)i

)
.

Period-t action space of agents after history h ∈ H t is the product space:

A (h) ≡
∏
i∈I

Ai (h) ,

with a (h) as a typical period-t action profile after history h ∈ H t.
The period-t outcome function gt is defined by the following three rules for every h ∈ H t

such that g−t (h) ∈ Y−t:

Rule 1: If ai (h) ≡
(
R
[
θ̄|g−t (h) , f+(t+1)

]
, xt, 0

)
for every i ∈ I and xt = ϕt

(
R
[
θ̄|g−t (h) , f+(t+1)

])
,

then gt (a (h)) = xt.

Rule 2: If n− 1 agents play aj (h) ≡
(
R
[
θ̄|g−t (h) , f+(t+1)

]
, xt, 0

)
with

xt = ϕt
(
R
[
θ̄|g−t (h) , f+(t+1)

])
but agent i plays ai (h) ≡

((
R
[
θ̄|g−t (h) , f+(t+1)

])i
, (xt)

i
, (z)i

)
6= aj (h), then we can have

two cases:

1. If xtRi

[
θ̄|g−t (h) , f+(t+1)

]
(xt)

i, then gt (a (h)) = (xt)
i.

2. If (xt)
i
Pi
[
θ̄|g−t (h) , f+(t+1)

]
xt, then gt (a (h)) = xt.

Rule 3: Otherwise, an integer game is played: identify the agent who plays the highest
integer (if there is a tie at the top, pick the agent with the lowest index among them.) This
agent is declared the winner of the game, and the alternative implemented is the one she
selects.

Period-T mechanism:
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Individual i’s period-T action space after history h ∈ HT such that g−T (h) ∈ Y−T is
defined by:

Ai (h) ≡ D
[
Θ|g−T (h)

]
× Y T

(
g−T (h)

)
×Z+,

where Z+ is the set of nonnegative integers. Thus, a period-T action of agent i after history
h ∈ HT consists of an element of the set Y T

(
g−T (h)

)
, an element of the period-T domain

of induced preferences induced by the set Θ and the T -head outcome path g−T (h), and a
nonnegative integer. A typical period-T action played by agent i after history h ∈ HT is
denoted by ai (h) ≡

((
R
[
θ̄|g−T (h)

])i
,
(
xT
)i
, (z)i

)
.

Period-T action space of agents after history h ∈ HT is the product space:

A (h) ≡
∏
i∈I

Ai (h) ,

with a (h) as a typical period-T action profile after history h ∈ HT .
The period-T outcome function gT is defined by the following three rules for every

h ∈ HT such that g−T (h) ∈ Y−T :

Rule 1: If ai (h) ≡
(
R
[
θ̄|g−T (h)

]
, xT , 0

)
for every i ∈ I and xT = ϕT

(
R
[
θ̄|g−T (h)

])
, then

gT (a (h)) = xT .

Rule 2: If n−1 agents play aj (h) ≡
(
R
[
θ̄|g−T (h)

]
, xT , 0

)
with xT = ϕT

(
R
[
θ̄|g−T (h)

])
but

agent i plays ai (h) ≡
((
R
[
θ̄|g−T (h)

])i
,
(
xT
)i
, (z)i

)
6= aj (h), then we can have two cases:

1. If xTRi

[
θ̄|g−T (h)

] (
xT
)i
, then gT (a (h)) =

(
xT
)i
.

2. If
(
xT
)i
Pi
[
θ̄|g−T (h)

]
xT , then gT (a (h)) = xT .

Rule 3: Otherwise, an integer game is played: identify the agent who plays the highest
integer (if there is a tie at the top, pick the agent with the lowest index among them.) This
agent is declared the winner of the game, and the alternative implemented is the one she
selects.

Let
H ≡

⋃
t∈T

H t

be the set of all possible histories, let Ai ≡
⋃
h∈H

Ai (h) be the set of all actions for agent i ∈ I,

let A (H) be the set of all profiles of actions available to agents, defined by

A (H) ≡
⋃
h∈H

A (h) ,

and let g ≡
(
g1, · · · , gT

)
be the sequence of outcome functions, one for each period t ∈ T .

Note that g satisfies the following properties: a) the outcome function g1 assigns to period-1
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action profile a (h1) ∈ A (h1) a unique outcome in Y 1, and b) for every period t 6= 1 and every
nontrivial history ht ∈ H t, the outcome function gt assigns to each period-t action profile
a (ht) ∈ A (ht) a unique outcome in Y t (g−t (ht)). Thus, by construction, Γ ≡ (I, H,A (H) , g)
is a dynamic mechanism.

We now prove that (a) for every θ ∈ Θ, there exists a SPE strategy sθ ∈ S of (Γ, θ)
such that g1

(
sθ (h1)

)
= f 1 [θ], f t [θ|g−t (ht)] = gt

(
sθ (ht)

)
for every nontrivial ht ∈ H t, and

(b) for every θ ∈ Θ and for every sθ ∈ SPE (Γ, θ), g1
(
sθ (h1)

)
= f 1 [θ] and f t [θ|g−t (ht)] =

gt
(
sθ (ht)

)
for every nontrivial ht ∈ H t. Thus, fix any state θ ∈ Θ.

Let us first prove (a). Since the SCF satisfies the folding condition, we have that
f 1 [θ] = ϕ1 (R [θ|f+2]), that f t [θ|g−t (h)] = ϕt

(
R
[
θ|g−t (h) , f+(t+1)

])
for every nontrivial

h ∈ H t and every t 6= 1, T and that fT
[
θ|g−T (h)

]
= ϕT

(
R
[
θ|g−T (h)

])
for every h ∈ HT .

Let us define agent i ∈ I’s strategy sθi : H → Ai by:

sθi
(
h1
)

=
(
R
[
θ|f+2

]
, ϕ1

(
R
[
θ|f+2

])
, 0
)
,

sθi (h) =
(
R
[
θ|g−t (h) , f+(t+1)

]
, ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
, 0
)
, for every h ∈ H t with t 6= 1, T ,

sθi (h) =
(
R
[
θ|g−T (h)

]
, ϕT

(
R
[
θ|g−t (h)

])
, 0
)
, for every h ∈ HT .

For every period t and history ht ∈ H t, to show that sθ|ht ≡
(
sθ1|ht, · · · , sθI |ht

)
is a

SPE of (Γ (ht) , θ) it suffi ces to show that no agent i can gain by deviating from sθi |ht in a
single period τ ≥ t and conforming to sθi |ht thereafter. To this end, first note that for every
history h ∈ H, the strategy profile sθ (h) falls into Rule 1. Thus, by construction and the
fact that the SCF satisfies the folding condition, one can check that g1

(
sθ (h1)

)
= f 1 [θ],

f t [θ|g−t (ht)] = gt
(
sθ (ht)

)
for every ht ∈ H t and every t 6= 1.

Fix any period t and any history ht ∈ H t. Suppose that agent i deviates from sθi |hτ
with hτ ∈ H|ht by changing only the action sθi (hτ ) into ai (hτ ) ∈ Ai (h

τ ). Given that
no unilateral deviation from sθ (hτ ) can induce Rule 3, the outcome is thus determined
by Rule 2. But then, under this rule the outcome would only change to be the period-τ
outcome announced by this i in her deviation if this outcome is not better than the outcome
gτ
(
sθ (hτ )

)
according to the period-τ induced ordering Ri [θ|f+2] if τ = 1, to the period-τ

induced ordering Ri

[
θ|g−τ (hτ ) , f+(t+1)

]
if τ 6= 1, T , and to the period-τ induced ordering

Ri [θ|g−τ (hτ )] if τ = T . By noting that Ri [θ|f+2] is the true period-1 induced ordering
of agent i in state θ at the socially optimal 2-tail outcome paths f+2 [θ|·] if τ = 1, that
Ri

[
θ|g−τ (hτ ) , f+(τ+1)

]
is the true period-τ induced ordering of agent i in state θ at the

head-path g−τ (hτ ) and the socially optimal τ -tail outcome paths f+(τ+1) [θ|·] if τ 6= 1, T
and that Ri [θ|g−τ (hτ )] is the true period-τ induced ordering of agent i in state θ at the
head-path g−τ (hτ ) if τ = T , agent i will not benefit from such a deviation. Since the choice
of agent i as well as of the history hτ ∈ Hτ |ht are arbitrary, we conclude that the strategy
profile sθ|ht is a SPE of (Γ (ht) , θ). Hence, the proposed strategy profile sθ|h is a SPE
of (Γ (h) , θ) for every history h ∈ H, whose outcomes are such that g1

(
sθ (h1)

)
= f 1 [θ],

f t [θ|g−t (ht)] = gt
(
sθ (ht)

)
for every ht ∈ H t and every t 6= 1. This proves our goal (a)

stated above. The rest of the proof shows that our goal (b) holds, too.
To see this, assume that the strategy profile s is a SPE of (Γ, θ). Moreover, fix any history

h ∈ H. Thus, the strategy profile s|h is a SPE of (Γ (h) , θ). Assume, to the contrary, that
there is a period t ∈ T as well as a history ht ∈ H|h such that either f t [θ|g−t (ht)] 6= gt (s (ht))
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if t 6= 1 or f 1 [θ] 6= g1 (s (h1)) if t = 1. Among all such histories, let hτ ∈ H|h be one of the
longest histories. Thus, it must be the case that f τ [θ|g−τ (hτ )] 6= gτ (s (hτ )) and, moreover,
that f τ̂

[
θ|g−τ̂

(
hτ̂
)]

= gτ̂
(
s
(
hτ̂
))
for every hτ̂ ∈ H| (hτ , sτ (hτ )) if τ 6= T . Note that for the

case where τ 6= T the folding condition mplies that:

gτ̂
(
s
(
hτ̂
))

= ϕτ̂
(
R
[
θ|g−τ̂

(
hτ̂
)
, f+(τ̂+1)

])
for every hτ̂ ∈ H| (hτ , sτ (hτ )) with τ̂ 6= T , and that:

gT
(
s
(
hT
))

= ϕT
(
R
[
θ|g−T

(
hT
)])

for every hT ∈ H| (hτ , sτ (hτ )) .

Also, note that the true profile of period-τ induced orderings at true state θ is:

R
[
θ|f+(τ+1)

]
if τ = 1,

R
[
θ|g−τ (hτ ) , f+(τ+1)

]
if τ 6= 1, T ,

R
[
θ|g−τ (hτ )

]
if τ = T .

Let us suppose that τ 6= 1, T . Then, the action profile s (hτ ) is a Nash equilibrium of(
Γ (hτ ) , R

[
θ|g−τ (hτ ) , f+(τ+1)

])
.

Suppose that s (hτ ) falls into Rule 1 of period-τ mechanism. Thus, gτ (s (hτ )) =
ϕτ
(
R
[
θ̄|g−τ (h) , f+(τ+1)

])
for some θ̄, and this outcome is an element of Y τ (g−τ (hτ )).

Since f satisfies the folding condition, an immediate contradiction is obtained if gτ (s (hτ )) =
ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
. Therefore, let us suppose that gτ (s (hτ )) 6= ϕτ

(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
.

Since f satisfies one-step-ahead Maskin monotonicity and since

ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
6= ϕτ

(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
,

there exists an agent i and a period-τ outcome yτ ∈ Y τ (g−τ (hτ )) such that

ϕτ
(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
Ri

[
θ̄|g−τ (hτ ) , f+(τ+1)

]
yτ

and
yτPi

[
θ|g−τ (hτ ) , f+(τ+1)

]
ϕτ
(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
.

By changing si (hτ ) into ai (hτ ) =
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

]
, yτ , 1

)
, agent i can induce Rule 2

and obtain gτ (ai (h
τ ) , s−i (h

t)) = yτ , thereby contradicting the fact that the action profile
s (hτ ) is a Nash equilibrium of

(
Γ, R

[
θ|g−τ (hτ ) , f+(τ+1)

])
.

Suppose that s (hτ ) falls into Rule 2 of period-τ mechanism. Thus, for every agent
j 6= i, the period-τ outcome determined by this rule is maximal for this j in Y τ (g−τ (hτ ))
according to her period-τ induced ordering Rj

[
θ|g−τ (hτ ) , f+(τ+1)

]
. Moreover, given that

the action profile s (hτ ) is a Nash equilibrium of
(
Γ, R

[
θ|g−τ (hτ ) , f+(τ+1)

])
, for agent i it

holds that the outcome gτ (s (ht)) is such that gτ (s (ht)) is an element of the weak lower
contour set of Ri

[
θ̄|g−τ (hτ ) , f+(τ+1)

]
at ϕτ

(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
and that

gτ
(
s
(
ht
))
Ri

[
θ|g−τ (hτ ) , f+(τ+1)

]
xτ

for every xτ in the weak lower contour set ofRi

[
θ̄|g−τ (hτ ) , f+(τ+1)

]
at ϕτ

(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
.
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Since the SCF f satisfies the one-step-ahead weak no veto-power, this implies that

gτ (s (hτ )) = ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
.

The folding condition implies that ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
= f τ [θ|g−τ (hτ )], which is a

contradiction.
Suppose that s (hτ ) falls into Rule 3 of period-τ mechanism. Thus, for every agent j,

the period-τ outcome determined by this rule is maximal for this j in Y τ (g−τ (hτ )) according
to her period-τ induced ordering Rj

[
θ|g−τ (hτ ) , f+(τ+1)

]
. Since the SCF f satisfies the one-

step-ahead unanimity, we have that gτ (s (hτ )) = ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
. The folding

condition implies that ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
= f τ [θ|g−τ (hτ )], which is a contradiction.

We conclude the proof by mentioning that, suitably modified, the above proof provided
for the case where τ 6= 1, T applies to the case where τ = 1 as well as to the case where
τ = T .

Proof of Lemma 1

Proof of Lemma 1. Let the premises hold. Fix any x1 ∈ X1 and any θ ∈ Θ. Let x2 [η|x1]
be the solution to:

∂U(η, x1, x2)

∂x2
= 0.

By the implicit function theorem, we have that:

∂x2 [η|x1]

∂η
= −

∂2U(η,x1,x2[η|x1])
∂2x2

∂2U(η,x1,x2[η|x1])
∂η∂x2

> 0.

Therefore, the peak for the median type η = θmed is always the peak in the second voting
stage for each x1 ∈ X1. Write x2 [θmed|x1] for the peak of the median type in the second
voting stage conditional on x1.

Since it holds that:
∂U (θmed, x

1, x2 [θmed|x1])

∂x2
= 0,

from the implicit function theorem we obtain that:

∂x2 [θmed|x1]

∂x1
= −

∂2U(θmed,x1,x2[θmed|x1])
∂x1∂x2

∂2U(θmed,x1,x2[θmed|x1])
∂2x2

≥ 0.

Let us show that x2 [θmed|x1] is the Condorcet winner under R [θ|x1] for every x1 ∈ X1.
For every allowable type η ∈

(
η, η̄
)
and policy (x1, x2), let:

Φ(η, x1, x2) = U
(
η, x1, x2

[
θmed|x1

])
− U(η, x1, x2).
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Then, for every x2 < x2 [θmed, x
1], we have that:

Φ(θmed, x
1, x2) =

∫ x2[θmed|x1]

x2

∂U(θmed, x
1, z2)

∂z2
dz2.

Furthermore, for every η > θmed, it holds that:

Φ(η, x1, x2)− Φ(θmed, x
1, x2) =

∫ η

θk

∫ x2[θmed|x1]

x2

∂2U(α, x1, z2)

∂α∂z2
dz2dα > 0.

Since
Φ(θmed, x

1, x2) = U(θmed, x
1, x2

[
θmed|x1

]
)− U(θmed, x

1, x2) ≥ 0,

it follows that:
Φ(η, x1, x2) > 0,

which, in turn, guarantees that:

U(η, x1, x2
[
θmed|x1

]
) > U(η, x1, x2).

Therefore, for every voter j = k + 1, · · · , 2k − 1, it holds that:

U(θj, x
1, x2

[
θmed|x1

]
) > U(θj, x

1, x2).

Likewise, for every x2 > x2 [θmed|x1], one can show that for every voter j = 1, · · · , k− 1
it holds that:

U(θj, x
1, x2

[
θmed|x1

]
) > U(θj, x

1, x2).

Therefore, x2 [θmed|x1] is a Condorcet winner under R [θ|x1], that is, CW (R [θ|x1]) =
x2 [θmed|x1], and so the majority voting function f 2 [·|·] is a single-valued function for every
θ ∈ Θ and every x1 ∈ X1.

Let x [θmed] = (x1 [θmed] , x
2 [θmed]) be the global peak for the median type θmed. Next,

we show that x1 [θmed] is the Condorcet winner under R [θ|f 2].
Solving backward, given that the majority voting function f 2 [θ|x1] = x2 [θmed|x1] for

every x1 ∈ X1, we have that the reduced utility of type η is:

V (η, x1) = U(η, x1, x2
[
θmed|x1

]
).

Then, we have that:

∂V (η, x1)

∂x1
=
∂U(η, x1, x2 [θmed|x1])

∂x1
+
∂U(η, x1, x2 [θmed|x1])

∂x2

∂x2 [θmed|x1]

∂x1
,

and so, by Definition 12, it follows that:

∂2V (η, x1)

∂η∂x1
=
∂2U(η, x1, x2 [θmed|x1])

∂η∂x1
+
∂2U(η, x1, x2 [θmed|x1])

∂η∂x2

∂x2 [θmed|x1]

∂x1
> 0.
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Then, for every x1 ∈ X1, let:

Π(η, x1) = V (η, x1 [θmed])− V (η, x1)

Next, take any x1 < x1 [θmed]. Then, it holds that:

Π(θmed, x
1) =

∫ x1[θmed]

x1

∂V (θmed, z
1)

∂z1
dz1.

Moreover, for every η > θmed, it also holds that:

Π(η, x1)− Π(θmed, x
1) =

∫ η

θmed

∫ x1[θmed]

x1

∂2V (α, z1)

∂α∂z1
dz1dα > 0.

Since
Π(θmed, x

1) = V (θmed, x
1 [θmed])− V (θmed, x

1) ≥ 0,

we have that:
Π(η, x1) > 0,

which, in turn, guarantees that:

V (η, x1 [θmed]) > V (η, x1).

Therefore, for every voter j = k + 1, · · · , 2k − 1, we have that:

V (θj, x
1 [θmed]) > V (θj, x

1).

Likewise, for every x1 > x1 [θmed] one can also show that:

V (θj, x
1 [θmed]) > V (θj, x

1), for every voter j = 1, · · · , k − 1.

We conclude that x1 [θmed] is a Condorcet winner underR [θ|f 2], that is, CW (R [θ|f 2]) =
x1 [θmed], and so the majority voting function f 1 [·] is a single-valued function for every θ ∈ Θ.
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