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Abstract

We study buyer-optimal information structures under monopoly pricing. The

information structure determines how well the buyer learns his valuation and af-

fects, via the induced distribution of posterior valuations, the price charged by the

seller. Motivated by the regulation of product information, we assume that the

seller can disclose more if the learning is imperfect. Robust information structures

prevent such disclosure, which is a constraint in the design problem. Our main

result identifies a two-parameter class of information structures that implements

every implementable buyer payoff. An upper bound on the buyer payoff where

the social surplus is maximized and the seller obtains just her perfect-information

payoff is attainable with some, but not all priors. Generally, optimal information

structures may result in an inefficient allocation.
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1 Introduction

Before making a purchase decision, consumers typically try to assess how well the prod-

uct under consideration matches their preferences, using various sources of information.

Examples include technical specifications or a list of ingredients published by the seller,

advertising, (online) reviews, product samples, and testing the product during a trial

period. Whereas sellers often have considerable control over such information, its dis-

closure is regulated in many countries, with the aim of promoting consumer welfare.

The European Union, for example, has passed regulation ranging from food information

over insurance mediation to the content of financial security prospectuses. It has also

introduced a mandatory period of 14 days during which consumers can withdraw from

a sales contract concluded via the Internet.1 Effectively, this period amounts to a trial

period during which consumers can learn better to what extent the product fits their

preferences.

Sellers are usually free to provide more information than the regulator requires. A

trial period, for instance, can be extended beyond the obligatory number of days.2 When

setting minimum disclosure requirements, the regulator must therefore take into account

how the requirements affect sellers’ incentives to disclose more. More information is not

necessarily advantageous for buyers: it allows better purchasing decisions, but if the

information creates more dispersion in the buyers’ willingness to pay, sellers may raise

prices. Hence, what are buyer-optimal minimum disclosure requirements when the seller

can disclose more? This is the question we address in this paper.

We take an information-design approach and study buyer-optimal information struc-

tures under monopoly pricing. In our model, the seller has a single object for sale, which

she values at zero, and she faces one potential buyer. An information structure consists

of a set of signals and probability distributions over signals conditional on the buyer’s

1See, respectively, Regulation (EU) No 1169/2011, Directive 2002/92/EC, Regulation (EU)

2017/1129, and Directive 2011/83/EU.
2For example, in the European Union, the Apple online store accepts returns within the obligatory

14 days, whereas Amazon extended this period to 30 days, Zalando, an online fashion retailer, to 100

days, and IKEA to a full year.
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valuation, that valuation being unknown to the buyer and the seller. At the outset, the

buyer chooses an information structure. Afterwards, the seller sets a price and decides

about releasing additional information. Specifically, she can extend the information

structure by adding a signal component. At the end, the buyer privately observes the

signal of the (possibly extended) information structure, updates to a posterior valua-

tion, and decides whether or not to buy. Since any additional signal component can be

incorporated at the outset, we restrict attention to information structures under which

the seller has no incentive to disclose more. We call such information structures robust.

Our main result identifies a two-parameter class of information structures with the

property that for every buyer payoff that can be implemented by some information

structure, there exists an information structure in this class that implements this payoff.

The information structures are characterized as follows. The two parameters determine

an interval of valuations. All valuations outside this interval are disclosed perfectly. All

valuations inside it are pooled, pairwisely and such that the posterior valuation is always

the same. In particular, the pooling proceeds in a deterministic, negative assortative

fashion: high valuations are pooled with low ones according to a specific decreasing

matching function.

In the derivation of this result, we exploit a connection to matching, or optimal

transport. We consider the problem of inducing a given buyer payoff while minimizing

the seller’s gain from disclosing more. We confine this problem to information structures

that pool only the valuations inside some interval, pairwisely and such that the posterior

valuation is always the same. Here, the pooling might still be stochastic. The key

step is to establish an equivalence between such information structures and a certain

class of all bivariate distributions with given marginals. Working with the bivariate

distributions, we get an optimal-transport problem. This problem has a supermodular

objective function, which implies that pooling in a deterministic, negative assortative

fashion is optimal.

The main result narrows the search for buyer-optimal information structures down to

the two parameters of the negative assortative information structures. A natural upper

bound for the buyer payoff is characterized by trade with probability one, maximizing
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the social surplus, and the seller getting just her perfect-information payoff, which she

can always secure by disclosing perfect information. For some priors (e.g., the uniform

distribution) this upper bound can be attained, whereas for other priors it cannot. In

general, the robustness constraint is not sufficiently tractable to obtain an analytical so-

lution for the buyer-optimal values of the two parameters. The problem is, however, well

suited for simulation. By means of numerical examples, we demonstrate that optimal

information structures may result in the seller getting a strictly higher payoff than under

perfect information and, at the same time, in a probability of trade strictly less than

one and thus an inefficient allocation. Yet negative assortative information structures

are constrained-efficient: for any given buyer payoff, they induce the highest possible

corresponding seller payoff.

Our analysis contributes to the literature on information design (e.g., Kamenica and

Gentzkow, 2011; Bergemann, Brooks, and Morris, 2015; Li and Shi, 2017). The most

closely related paper is the one by Roesler and Szentes (2017), who also study buyer-

optimal information structures under monopoly pricing but without disclosure by the

seller. Their results provide a benchmark for evaluating the relevance of our robustness

constraint. The constraint always binds: unconstrained optimal information structures

yield the seller even less than her perfect-information payoff. Like us, Roesler and Szentes

identify a class of information structures that implements every implementable buyer

payoff. We show that their class need not contain an optimal information structure for

our setting. In both settings, however, optimal information structures typically do not

remove the buyer’s uncertainty completely (see also Kessler, 1998).

Several recent papers also study information structures that pool types in a negative

assortative fashion. Von Wangenheim (2017) shows that the same class of informa-

tion structures as here implements every implementable combination of buyer and seller

payoff in sequential screening.3 The key difference is that the buyer eventually learns

his valuation perfectly, whereas in our paper the seller endogenously decides how much

information to add. Nikandrova and Pancs (2017) consider sequential two-bidder auc-

tions with information acquisition. When recommending information acquisition to the

3We thank Jonas von Wangenheim for pointing us to this class.
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second bidder, the auctioneer optimally pools high and low bids of the first bidder to

mitigate incentive constraints. In an insurance model, Garcia, Teper, and Tsur (2018)

show that optimal information structures pool risk types in a negative assortative fashion

to minimize price dispersion.

Li and Norman (2017) study a general persuasion game where, as in our model, sev-

eral players can disclose information sequentially (see Gentzkow and Kamenica, 2017, for

simultaneous disclosure). Like here, attention can be restricted to equilibria in which

subsequent players have no incentive to add information (see also Perez-Richet and

Skreta, 2017). Concerning disclosure to a receiver who is privately informed, Kolotilin,

Li, Mylovanov, and Zapechelnyuk (2017) establish a payoff equivalence between ex-

periments and mechanisms that provide an experiment conditional on a report by the

receiver (see also Guo and Shmaya, 2017). One interpretation of our model is that the

buyer observes the signal from the original information structure before the seller decides

about her disclosure. For the main result, we assume that the seller can directly add a

correlated signal, but we also consider experiments.

While our focus is on buyer-optimal information structures, another strand of lit-

erature on information design studies seller-optimal information structures for various

selling environments (see, e.g., Lewis and Sappington, 1994; Bergemann and Pesendor-

fer, 2007; Eső and Szentes, 2007; Board and Lu, 2017). The buyer in our model has no

private information at the outset, and to maximize the social surplus, he should always

get the object. Thus, the seller-optimal information structure would simply provide no

information. A large and influential literature investigates the incentives of sellers to vol-

untarily disclose information that is objective (i.e., everybody can assess its relevance)

and certifiable (i.e., the seller can prove the true state). According to the “unraveling”

argument (Grossman and Hart, 1980; Milgrom, 1981), sellers automatically have an in-

centive to disclose such information. In our model, the argument does not apply: the

relevance of the information to the buyer depends on the buyer’s individual preferences,

which the seller does not know (see also Koessler and Renault, 2012).

The rest of the paper is organized as follows. The next section presents the model.

Section 3 illustrates our results for a uniform prior. In Section 4, we establish the
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main result on negative assortative information structures. Section 5 studies optimal

information structures. In Section 6, we discuss a weaker robustness constraint, how

the seller’s ability do add information changes the design problem, and an alternative

timing. Section 7 concludes. Most proofs are in the appendix.

2 Model

Payoffs and prior information. A seller has a single object to sell to a buyer. The

buyer’s valuation for the object is initially unknown to both parties. Both believe that

it is drawn from the cumulative distribution function (CDF) F over [0, 1], which admits

the strictly positive probability density function (PDF) f . The seller offers the object

at a take-it-or-leave-it price p. If the buyer accepts the offer and has valuation v, then

his payoff is v− p and the seller’s payoff is p. If the buyer rejects, payoffs are both zero.

Information structures. Before the buyer decides about the purchase, he receives

information about his valuation. Specifically, he observes a signal from some information

structure. An information structure is a combination (S, (Gv)) of a signal set S and CDFs

Gv on S such that if the buyer has valuation v, then a signal s ∈ S is drawn from Gv

and privately observed by the buyer. A perfect information structure, for example, has

CDFs Gv whose supports are disjoint across v, so that it reveals the valuation fully.

More generally, an information structure is partitional if there exists a partition of the

set of valuations [0, 1] such that if v′, v′′ belong to the same partition element, the CDFs

Gv coincide, and across partition elements the supports of the CDFs are disjoint. The

signal set S of an information structure is a subspace of some Euclidean space. Let Ḡ

denote the unconditional CDF on S, that is,

Ḡ(s) :=
∫ 1

0

∫
{e∈S:e≤s}

dGv(e)dF (v).

Actions and timing. There are three stages. First, the buyer (or a regulator) chooses

an information structure (Sa, (Ga
v)). In the second stage, the seller observes (Sa, (Ga

v))

and sets a price p. Moreover, she decides about releasing additional information. Specif-

6



ically, she can extend (Sa, (Ga
v)) to any information structure (S, (Gv)) with S = Sa×Sb

for some Sb and
∫
Sb dGv(·, sb) = Ga

v.4 In the third stage, the buyer observes the (possibly

extended) information structure and the signal, updates his belief about his valuation,

and decides whether or not to buy the object.

Posterior beliefs and posterior valuations. Upon observing signal s ∈ S from

information structure (S, (Gv)), the buyer updates his belief to a posterior distribution

function Fs over valuations v ∈ [0, 1]. Formally, the posteriors are characterized by the

condition that for all V ∈ B([0, 1]) and all M ∈ B(S),
∫
M

∫
V
dFs(v)dḠ(s) =

∫
V

∫
M
dGv(s)dF (v), (1)

where B(·) denotes the respective Borel σ-algebra.5 Hence, the posterior valuation upon

observing s is E[v|s] =
∫ 1

0 vdFs(v), and so the information structure induces the CDF of

posterior valuations

H(w) :=
∫
{s∈S:E[v|s]≤w}

dḠ(s).

Note that under a perfect information structure, H coincides with the prior F .

We assume that the buyer purchases the object if and only if E[v|s] ≥ p. Thus,

given price p and a CDF of posterior valuations H, the (ex-ante) probability of trade

is 1 − H(p) + ∆(H, p), where ∆(H, p) denotes the probability of posterior valuation p

under H.6 An information structure induces price p, buyer payoff U , and seller payoff Π

if p ∈ argmaxq[1−H(q)+∆(H, q)]q, U =
∫ 1
p (v−p)dH(v), and Π = [1−H(p)+∆(H, p)]p.7

In words, this means that without additional disclosure, the seller would be willing to

charge price p and this price results in buyer payoff U and seller payoff Π. When the

seller has no incentive to disclose more, we occasionally use the term implement instead

of ‘induce’.
4In Section 6.1, we consider the case that sb must be conditionally independent of sa.
5Thus, the posteriors Fs are the CDFs corresponding to a regular conditional distribution, which

exists and is unique almost everywhere (see, e.g., Dudley, 2002, Thm. 10.2.2).
6Formally, ∆(H, p) := H(p)− supx<p H(x), as in Roesler and Szentes (2017).
7Where no confusion results, we write “payoff” instead of “expected payoff”, and similarly for surplus.
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Our aim is to study the information structures that maximize the buyer payoff when

the seller can disclose more. Let (Sa, (Ga
v)) be any information structure, and suppose

it is optimal for the seller to extend (Sa, (Ga
v)) to (S, (Gv)). Then, (S, (Gv)) does not

induce further disclosure. Accordingly, we confine the analysis to information structures

under which the seller has no incentive to provide an extension (and we usually omit

the superscripts a, b). We call such information structures robust.

3 Example: The Uniform Case

To illustrate our results, we construct here a buyer-optimal robust information structure

for the special case where the prior is the uniform distribution (i.e., F (v) = v).

Because the seller can always extend to perfect information, she must get under any

robust information structure at least her perfect-information payoff maxp(1−p)p = 1/4.

The maximum total surplus is E[v] = 1/2, which materializes if trade happens with

probability one. Consequently, the buyer payoff, which is the difference between the

total surplus and the seller payoff, can be at most 1/4.

We will show that the following information structure attains this upper bound on

the buyer payoff: If v > 1/2, display s = v with probability one. Thus, the buyer learns

his valuation perfectly. If v ≤ 1/2, display s = |v− 1/4| with probability one. Thus, for

valuations v ≤ 1/2 the buyer only learns the distance between his valuation and 1/4,

which leads to posterior valuation 1/4. The distribution of posterior valuations is then

H(w) =



0 if w ∈ [0, 1
4),

1
2 if w ∈ [1

4 ,
1
2 ],

w if w ∈ (1
2 , 1].

(2)

It is straightforward to verify that this information structure induces price 1/4, that

is, 1/4 ∈ argmaxp[1−H(p) + ∆(H, p)]p. Moreover, as trade happens at this price with

probability one, the induced seller and buyer payoffs are both equal to 1/4.

We now demonstrate that the above information structure is robust, that is, the

seller cannot gain by extending it. To this end, we show that there is no combination
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of an extension and a price q that yields a seller payoff strictly greater than 1/4. Under

any extension, prices below 1/4 or above 1/2 are strictly dominated by price 1/2, which

just yields seller payoff 1/4. So take any price q ∈ (1/4, 1/2) and suppose the seller

chooses an extension that maximizes the probability of trade (and hence her payoff) at

q. First note that for some valuations v, the signal s is already sufficiently informative

such that no extension can change the buyer’s decision: he always buys if v ≥ 1/2 and

he never buys if v ∈ (1/2−q, q). To maximize the probability of trade for the remaining

valuations v, the seller can extend the information structure as follows: If v ∈ [q, 1/2],

display a signal BUY with probability one.8 If v ∈ [0, 1/2 − q], display BUY with

probability

x(v) :=
1
2 − v − q
q − v

.

The buyer’s posterior valuation upon observing s ≤ 1/4 and BUY is exactly q:

E[v|s, BUY ] =
x(1

4 − s) · (
1
4 − s) + 1 · (1

4 + s)
x(1

4 − s) + 1 = q.

Consequently, for any s, the extension persuades the buyer to buy with probability one

if v ≥ q and with the highest possible probability (i.e., x(v) or 0) if v < q. The seller

payoff with this extension is(
1− q +

∫ 1
2−q

0
x(v)dv

)
q <

(
1− q +

∫ 1
2−q

0

1
2 − q
q

dv

)
q = 1

4 .

Hence, the information structure is robust.

Note that there are many information structures that also induce the CDF of poste-

rior valuations (2) but are not robust. For example, suppose all valuations above 1/2 are

disclosed perfectly, whereas all valuations below are pooled into the same signal. In that

case, the seller could provide the additional information of whether or not the valuation

exceeds 1/4, charge price 3/8, and thereby obtain payoff (3/4) · (3/8) > 1/4. Hence,

for robustness the distribution of posterior beliefs matters, not just the distribution of

posterior valuations.

8For convenience, we occasionally use terms such as “BUY ” for particular signals.
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4 Negative Assortative Information Structures

We now return to the general case, where the prior F is arbitrary, and show that the

search for buyer-optimal information structures can be restricted to a two-parameter

class of information structures, which we call “negative assortative”. Every imple-

mentable combination of price and buyer payoff remains implementable when restricting

to this class, along with the highest possible corresponding seller payoff. The optimal

information structure for the uniform case in the preceding section belongs to this class.

We say that an information structure (S, (Gv)) is p-pairwise if for almost all signals

s there exist valuations vL, vH ∈ [0, 1], where vL ≤ vH , such that the posterior belief Fs
has support {vL, vH} and

either: vL = vH (3)

or: vL < p < vH and E[v|s] = Fs(vL)vL + [1− Fs(vL)]vH = p. (4)

Thus, under a p-pairwise information structure the buyer deems at most two valuations

possible upon observing the signal, and whenever he deems two valuations possible his

posterior valuation is exactly p. The optimal information structure in Section 3 is p-

pairwise (with p = 1/4) and partitional. In general, however, p-pairwise information

structure need not be partitional.

Lemma 1. For every robust information structure that induces price p, there exists

a robust p-pairwise information structure that induces the same price, the same buyer

payoff, and the same seller payoff.

Invoking this lemma, we can restrict attention to p-pairwise information structures.

The basic intuition is as follows. The price and the payoffs depend only on the CDF of

posterior valuations. To deter disclosure by the seller, the CDF of posterior valuations

should be implemented by an information structure that is already as informative as

possible. Every information structure that pools more than two valuations into the

same signal can be made more informative without changing posterior valuations. For

example, suppose three valuations v′ < v′′ < v′′′ are pooled into the same signal s, where
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E[v|s] ∈ (v′′, v′′′). Then, one can instead pool v′ with v′′′ and v′′ with v′′′ into two distinct

signals such that the posterior valuation is E[v|s] after either one.

We adapt our notation to p-pairwise information structures. Notice that (3) and

(4) uniquely pin down the posterior belief Fs. That is, if some signals induce posterior

beliefs that have the same support, then these posterior beliefs coincide almost surely.

All such signals can be merged. We therefore denote signals of a p-pairwise information

structure directly by s = (vL, vH), where {vL, vH} is the support of Fs. For valuations

v < p, we have almost surely either v = vL < vH or v = vL = vH , that is, the support of

Gv is contained in {v} × ({v} ∪ [p, 1]). Define for all v < p

GH
v (vH) := Gv(v, vH).

Similarly, for valuations v > p we have almost surely either v = vH > vL or v = vH = vL,

that is, the support of Gv is contained in ([0, p] ∪ {v})× {v}. Define for all v > p

GL
v (vL) := Gv(vL, v).

Observe that for valuations v < p, the first component of the signal equals v and the

second is drawn from GH
v , and the buyer learns v perfectly with probability GH

v (p).

Similarly, for valuations v > p, the first component is drawn from GL
v and the second

equals v, and the buyer learns perfectly with probability 1−GL
v (p).

Next, we turn to the seller’s response against a p-pairwise information structure. For

an arbitrary price q, we construct an extension that maximizes the probability of trade

given that price, analogously to Section 3. Regardless of the extension, there will be trade

with probability one after all signals s = (vL, vH) with vL = vH ≥ q. Moreover, there

will be no trade after all s with vH < q. Consider the following extension, performed for

all signals s with vL < vH ∈ [q, 1] (such signals exist only if q > p): If v = vH , display a

signal BUY with probability one. If v = vL, display BUY with probability

xq(vL, vH) := p− vL
vH − p

vH − q
q − vL

.

To see that this extension maximizes the probability of trade at price q, note that given

(4) the posterior valuation upon observing s and BUY is exactly q:

E[v|s, BUY ] = Fs(vL)xq(vL, vH)vL + [1− Fs(vL)]vH
Fs(vL)xq(vL, vH) + 1− Fs(vL) = q.
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We call this extension q-optimal. The following lemma summarizes.

Lemma 2. Under a q-optimal extension of a p-pairwise information structure, the prob-

ability of trade conditional on the true valuation v and the signal s = (vL, vH) is

• one if v = vH ≥ q,

• xq(vL, vH) if v = vL < vH ∈ [q, 1],

• and zero otherwise.

We now consider the problem of designing a p-pairwise information structure that

minimizes the seller’s gain from any q-optimal extension while inducing a given buyer

payoff. We will ultimately state this problem as an optimal transport problem, where

the choice set is a set of all bivariate distribution functions with given marginals.

First, we establish an equivalence between p-pairwise information structures and

certain bivariate distribution functions. We call a distribution function J on [0, p]× [p, 1]

p-pairwise if for a function α : [0, 1]→ [0, 1] such that
∫ p

0
α(v)(p− v)dF (v) =

∫ 1

p
α(v)(v − p)dF (v) =: c,

the marginals of J are

JL(vL) := J(vL, 1) = 1
c

∫ vL

0
α(v)(p− v)dF (v),

JH(vH) := J(p, vH) = 1
c

∫ vH

p
α(v)(v − p)dF (v).

A p-pairwise information structure (S, (Gv)) and a p-pairwise distribution function J

are equivalent if

J(vL, vH) = 1
c

∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v) and α(v) =


1−GH

v (p) for v < p,

GL
v (p) for v > p.

Lemma 3. For every p-pairwise information structure, there exists an equivalent p-

pairwise distribution function J and vice versa.
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Under a p-pairwise information structure, each valuation v is pooled into posterior

valuation p with some probability α(v) and is perfectly disclosed with probability 1 −

α(v). To see what J measures, suppose that the seller charges price p under a p-pairwise

information structure. If the buyer updates to posterior valuation p, and thus buys, he

makes a loss whenever his true valuation is smaller than p. The marginal JL expresses

how these ex-post losses are distributed over the valuations v ∈ [0, p]. Similarly, the

marginal JH expresses how the profits that the buyer makes if the posterior valuation

equals p while the true valuation is greater than p are distributed over [p, 1]. The

bivariate distribution function J , finally, measures for each signal s = (vL, vH) with

posterior valuation p the loss and profit, respectively, that vL and vH contribute when

pooled into that signal.

For our purposes, a p-pairwise information structure and the equivalent p-pairwise

distribution function J are interchangeable.9 Consider a p-pairwise distribution function

J that induces price p. Observe that the induced buyer and seller payoff are

U =
∫ 1

p
(v − p)dF (v)− c, (5)

Π =
[
1− F (p) +

∫ p

0
α(v)dF (v)

]
p. (6)

We use J to quantify the probability of trade under a q-optimal extension. Define

φq(vL, vH) := max
{

(vH − q)c
(vH − p)(q − vL) , 0

}
.

Then, according to Lemma 2, the probability of trade given price q is
∫ p

0

∫ 1

p
max{xq(vL, vH), 0}dGH

vL
(vH)dF (vL) + 1− F (q)

=
∫ p

0

∫ 1

p
φq(vL, vH)1

c
(p− vL)dGH

vL
(vH)dF (vL) + 1− F (q)

=
∫
S
φq(vL, vH)dJ(vL, vH) + 1− F (q).

Thus, using J the probability of trade under a q-optimal extension can be expressed as

an expectation of the function φq. Importantly, this function is supermodular.

9An equivalent p-pairwise information structure is unique almost everywhere.
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It turns out that we can concentrate on p-pairwise distribution functions J under

which each valuation is either always or never pooled into posterior valuation p (i.e.,

α(v) ∈ {0, 1} for all v) and under which those valuations that are pooled constitute and

interval. Observe that if the interval [v, v] is pooled into p, then
∫ v
v (v − p)dF (v) = 0,

and so v is uniquely determined by p and v. A p-pairwise distribution function J will

be called (p, v)-pairwise if for the corresponding v,

α(v) =


1 for v ∈ [v, v],

0 for v /∈ [v, v].

Lemma 4. For every robust p-pairwise distribution function that induces price p, there

exists a robust (p, v)-pairwise distribution function that induces the same price, the same

buyer payoff and a weakly higher seller payoff.

Now, fix p ∈ [0, 1] and v ≤ p such that (p, v)-pairwise distribution functions induce

price p. This also fixes the buyer and the seller payoff. Informally, it remains to pool the

valuations vL ∈ [v, p) pairwisely with the valuations vH ∈ (p, v], possibly in a stochastic

way, such that the posterior valuation is always p. Consider the problem of choosing a

(p, v)-pairwise distribution function J that is “as robust” as possible. Specifically, choose

J to minimize the probability of trade under any q-optimal extension:

min
J

∫
S
φq(vL, vH)dJ(vL, vH)

s.t. JL(vL) = 1
c

∫ vL

v
(p− v)dF (v),

JH(vH) = 1
c

∫ vH

p
(v − p)dF (v).

This is an optimal-transport problem. By the supermodularity of φq, the problem is

solved by the Fréchet-Hoeffding lower bound

J(vL, vH) := max{JL(vL) + JH(vH)− 1, 0}

(see, e.g., Marshall, Olkin, and Arnold, 2011, Corollary 12.M.3.a). We now state the

equivalent p-pairwise information structure: If v /∈ [v, v], display s = (v, v). If v ∈ [v, v],

display the signal s = (vL, vH) ∈ [v, p]× [p, v] that solves

v ∈ {vL, vH} and
∫ vH

vL
(p− v)dF (v) = 0,
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which is unique because F is strictly increasing.10 We call this the (p, v)-negative-assor-

tative information structure. Using Lemmas 1–4, we have established our main result.

Theorem 1. For every robust information structure that induces price p, there exists a

robust (p, v)-negative-assortative information structure that induces the same price, the

same buyer payoff, and a weakly higher seller payoff.

We conclude this section with an illustration of why negative assortative pooling is

most robust. Consider a discrete version of the model in which four valuations v1 <

v2 < v3 < v4 have the same probability. Suppose we want to pool them pairwisely such

that the posterior valuations is always p ∈ (v2, v3) and negative assortative pooling—v1

with v4, v2 with v3—would do the trick:

p− v1 = v4 − p and p− v2 = v3 − p. (7)

For robustness, we want to minimize the probability with which the seller can pool

the valuations v1, v2 into the BUY signal under any q-optimal extension. Observe that

if two valuations vi < p and vj > q > p are pooled with respective probability ζi, ζj into

a signal such that the posterior valuation equals p, then the q-optimal extension satisfies

ζixq(vi, vj) = ζj
vj − q
q − vi

. (8)

The fraction on the right-hand side states how much of the probability of vi can be pooled

into the BUY signal per unit of probability from vj. This fraction is supermodular.

Suppose the seller considers charging price q ∈ (p, v3). Under negative assortative

pooling, she can pool v1, v2 into the BUY signal with probability
v4 − q
q − v1

+ v3 − q
q − v2

. (9)

We compare this with a generic p-pairwise pooling, which is not necessarily negative

assortative. Specifically, suppose the valuations are pooled into signals s1, s2, s3, s4 with

the probabilities stated in Table 1, assuming that the posterior valuation is always p:

(1− ζ1)(p− v1) = (1− ζ2)(v3 − p) and (1− ζ2)(p− v2) = (1− ζ1)(v4 − p). (10)

Then, the seller can pool v1, v2 into the BUY signal with probability
10To see that this is equivalent to J , note that the support of J consists of all pairs (vL, vH) such

that JL(vL) + JH(vH)− 1 = 0, which is equivalent to
∫ vH

vL
(p− v)dF (v) = 0.
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s1 s2 s3 s4

v1 ζ1 0 1− ζ1 0

v2 0 ζ2 0 1− ζ2

v3 0 ζ2 1− ζ2 0

v4 ζ1 0 0 1− ζ1

Table 1: Generic p-pairwise pooling

ζ1
v4 − q
q − v1

+ (1− ζ1)v4 − q
q − v2

+ ζ2
v3 − q
q − v2

+ (1− ζ2)v3 − q
q − v1

. (11)

Subtracting (9) from (11), we get

(1− ζ1)
(
v4 − q
q − v2

− v4 − q
q − v1

)
− (1− ζ2)

(
v3 − q
q − v2

− v3 − q
q − v1

)
.

By (7) and (10), this difference has the same sign as

φq(v4, v2)− φq(v4, v1)− [φq(v3, v2)− φq(v3, v1)],

which is greater than zero by the supermodularity of φq. Hence, negative assortative

pooling is most robust.

5 Optimal Information Structures

By Theorem 1, the search for buyer-optimal information structures can be restricted to

(p, v)-negative-assortative information structures. We now study the remaining problem

of choosing the parameters p and v. Our first goal is to obtain a simple statement of

the optimization problem.

A (p, v)-negative-assortative information structure that induces price p yields buyer

payoff

U(p, v) :=
∫ 1

v
(v − p)dF (v) (12)

and seller payoff [1−F (v)]p. Because the seller can always extend to perfect information,

she must at least get her perfect-information payoff. Let Π∗ denote this payoff and let
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p∗ be the lowest price that the seller is willing to charge under perfect information, that

is,

Π∗ := [1− F (p∗)]p∗ and p∗ := min argmax
q

[1− F (q)]q.

Consequently, the (p, v)-negative-assortative information structure is robust and induces

price p only if [1−F (v)]p ≥ Π∗. Moreover, this condition is also sufficient for the (p, v)-

negative-assortative information structure to induce p.

The pairs of valuations that are pooled under a (p, v)-negative-assortative information

structure are determined by the strictly decreasing function µp : [v, v] → [v, v] that is

implicitly defined by

µp(v) 6= v and
∫ µp(v)

v
(p− u)dF (u) = 0

for v 6= p and µp(p) = p. Observe that µp(µp(v)) = v and µp(v) = v. Let the seller’s

gain in payoff from charging price q ∈ [p, µp(v)] and performing the q-optimal extension,

rather than charging p and performing no extension, be defined as

Ψ(q, p, v) :=
[
1− F (q) +

∫ µp(q)

v
xq(v, µp(v))dF (v)

]
q − [1− F (v)]p.

Robustness requires that the seller’s gain Ψ is non-positive for all q.

We conclude that a (p, v)-negative-assortative information structure induces price p

and is robust if and only if
[1− F (v)]p ≥ Π∗, (13)

Ψ(q, p, v) ≤ 0 for all q ∈ (p, µp(v)). (14)

Finding a buyer-optimal information structure thus amounts to solving

max
p,v

U(p, v) s.t. (13) and (14). (15)

We will denote by (pB, vB) a solution to problem (15).

5.1 Buyer Payoff at the Upper Bound

Since the seller payoff is at least Π∗ and the social surplus at most E[v] (obtained when

trade happens with probability one), the buyer payoff can never be larger than

U := Π∗ − E[v],
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as stated in Section 3 for the uniform case. We reach this upper bound on the buyer

payoff if and only if trade happens with probability one at price p = Π∗, that is, if the

(Π∗, 0)-negative-assortative information structure is robust. Thus, (Π∗, 0) solves (15) if

it satisfies (14).

In Section 3, we have shown that the (Π∗, 0)-negative-assortative information struc-

ture is robust under the uniform prior. Under many other priors, however, robustness

fails, and so the upper bound is not always attainable. We give here a simple necessary

condition for robustness of (Π∗, 0). Suppose the (Π∗, 0)-negative-assortative information

structure pools valuations v > p∗ into posterior valuation Π∗, that is, µΠ∗(0) > p∗. Then,

robustness fails, for if the seller performs the p∗-optimal extension then the probability

of trade at price p∗ strictly increases relative to perfect information, resulting in a seller

payoff strictly greater than Π∗. Consequently, the (Π∗, 0)-negative-assortative informa-

tion structure is robust only if µΠ∗(0) ≤ p∗. This is equivalent to Condition (16) below

since E[v|v ≤ µΠ∗(0)] = Π∗.

Proposition 1. The (Π∗, 0)-negative-assortative information structure is robust only if

the prior F satisfies

E[v|v ≤ p∗] ≥ Π∗. (16)

The following example identifies a class of priors for which (16) holds and for which

numerical simulations suggest that the (Π∗, 0)-negative-assortative information structure

is indeed robust. Priors that do not satisfy (16) are reported in Example 3 in the next

subsection.

Example 1. Suppose F (v) = vm for some m > 0. Then, p∗ = (1 +m)− 1
m and

E[v|v ≤ p∗] = m

1 +m
p∗ = Π∗.

Hence, (16) holds. Note that for m = 1, we have the uniform prior. To determine

whether the (Π∗, 0)-negative-assortative information structures is indeed robust, it re-

mains to check (14). In general, (14) is much less tractable than for the uniform prior.

For example, µp can typically not be expressed in closed form. It is, however, straight-

forward to simulate (14) numerically for specific priors. Figure 1 displays Ψ(q,Π∗, 0)

18



0.2 0.4 0.6 0.8
q

-0.015

-0.010

-0.005

0.000

Ψ(q, Π*, 0) m

0.1

0.2

0.4

0.67

1.5

2.5

5

10

Figure 1: Ψ(q,Π∗, 0) plotted for q ∈ [Π∗, µΠ∗(0)] in Example 1, varying parameter m.

as a function of q for eight different values of m, conveying that Ψ(q,Π∗, 0) is always

non-positive as required by (14).11 4

Condition (16) is not sufficient for the robustness of the (Π∗, 0)-negative-assortative

information structure. In the next example, no price q ∈ (Π∗, µΠ∗(0)) yields seller payoff

Π∗ under perfect information, but some price yields a payoff close to Π∗ and the q-optimal

extension raises the probability of trade significantly relative to perfect information. As

a consequence, robustness fails.

Example 2. Suppose the prior F has the PDF

f(v) =



1 + 4v if v ∈ [0, 1
8),

3
4 if v ∈ [1

8 ,
3
8),

3− 4v if v ∈ [3
8 ,

1
2),

1 if v ∈ [1
2 , 1].

Thus, F coincides with the uniform distribution for v ≥ 1/2 and is symmetric around 1/4

for v < 1/2. As in the uniform case, p∗ = 1/2 and Π∗ = 1/4 = E[v|v ≤ p∗]. Consider the

(1/4, 0)-negative-assortative information structure. For v ≤ 1/2, the symmetry around

11All numerical results reported in this paper were obtained using Mathematica. The source code is

available on request from the authors.
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1/4 implies µ1/4(v) = 1/2− v and

xq(v, µ1/4(v)) =
1
2 − v − q
q − v

,

just as in the uniform case. However, the robustness constraint (14) is violated: for

q = 3/8, one finds

Ψ(3
8 ,

1
4 , 0) = 1

128

(
13− 30 log

[3
2

])
> 0. 4

5.2 When the Upper Bound is Not Attainable

When the (Π∗, 0)-negative assortative information structure is not robust and the upper

bound on the buyer payoff thus unattainable, some progress in solving Problem (15) can

be made by narrowing down the choice variables (p, v). We first show that (14), the

robustness constraint, is monotone in v.

Lemma 5. (i) Ψ(q, p, v) is strictly increasing in v. (ii) If (p, v) violates (13) or (14),

then (p, v′) violates (13) or (14) for all v′ > v.

If (Π∗, 0) is not feasible, then there exists no information structure that implements

both trade with probability one and seller payoff Π∗. We will state the best prices that

implement either of the two and show that optimal prices lie in between. Consider trade

with probability one. Then, v = 0, and the best corresponding price is

p0 := min
{
p ≥ Π∗ : Ψ(q, p, 0) ≤ 0 for all q ∈ (p, µp(0))

}
.

This price always exists and is weakly smaller than both E[v] and p∗.12 Next, consider

implementing seller payoff Π∗. For any price p ≥ Π∗, denote by

v̂(p) := F−1
(

1− Π∗
p

)

the largest v such that (p, v) satisfies (13). Thus, the (p, v̂(p))-negative-assortative in-

formation structure induces exactly seller payoff Π∗. The best such price is

p1 := min
{
p ≥ p0 : Ψ(q, p, v̂(p)) ≤ 0 for all q ∈

(
p, µp(v̂(p))

)}
.

12If p∗ ≤ E[v], then (p∗, 0) is robust by Lemma 5(i) because (p∗, p∗) represents perfect information

and is robust, whereas (E[v], 0) represents no information and is always robust.
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This price also always exists, and it is weakly smaller than p∗.13

According to the following proposition, p0 is the lowest implementable price (by

Theorem 1, across all information structures), and prices above p1 are dominated for

the buyer. This narrows down the choice variables in Problem (15) to p ∈ [p0, p1] and

v ∈ [0, v̂(p1)].

Proposition 2. (i) There exists no price p < p0 such that (p, v) satisfies (13) and (14).

(ii) For every (p, v) that satisfies (13) such that p > p1, U(p, v) < U(p1, v̂(p1)).

We now report numerical results for optimal (pB, vB) under specific priors. Deter-

mining p0 and p1 numerically are relatively straightforward one-parameter problems.

For any given p ∈ (p0, p1), the best corresponding value for v ∈ [0, v̂(p)] is the lowest

value such that the robustness constraint (14) holds (noting Lemma 5(i) and that the

buyer payoff strictly increases in v). Finally, one identifies the optimal p.

Example 2 (continued). We found pB ≈ 0.27394 ∈ (p0, p1) and vB ≈ 0.06211, result-

ing in buyer payoff U(pB, vB) ≈ 0.24294 and seller payoff (1−F (vB))pB ≈ 0.25481. 4

As a final example, we consider a class of priors that does not satisfy (16), the

necessary condition for attaining the upper bound.

Example 3. Suppose F (v) = 1−(1−v)r for some r ∈ (0, 1). Then, p∗ = E[v] = (1+r)−1

and Π∗ = rr(1 + r)−(1+r), and one can show that (16) does not hold. For several values

of r, we have numerically determined p0, p1, and the optimal pair (pB, vB). The results

are reported in Table 2, along with the corresponding buyer payoffs and Π∗. In all cases,

vB > 0 and pB ∈ (p0, p1). Thus, the optimal information structures for these priors

neither result in trade with probability one nor limit the seller payoff to Π∗. 4

5.3 A Lower Bound on the Buyer Payoff

We conclude this section with a lower bound on the buyer payoff. An optimal informa-

tion structure must induce at least the perfect-information payoff
∫ 1
p∗(v−p∗)dF (v), since

13Since (p∗, v̂(p∗)) represents perfect information and is robust.
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r Π∗ p0 U(p0, 0) p1 U(p1, v̂(p1)) pB vB U(pB, vB)

0.90 0.26865 0.26867 0.25765 0.27090 0.25763 0.26938 0.00299 0.25765

0.75 0.30268 0.30282 0.26860 0.30957 0.26842 0.30485 0.00917 0.26865

0.50 0.38490 0.38586 0.28081 0.40508 0.27933 0.39085 0.02775 0.28109

0.30 0.49546 0.49841 0.27082 0.53511 0.26513 0.50646 0.06036 0.27158

0.25 0.53499 0.53881 0.26119 0.58114 0.25336 0.54758 0.07396 0.26212

0.20 0.58236 0.58724 0.24609 0.63542 0.23537 0.59658 0.09145 0.24721

0.10 0.71527 0.72264 0.18646 0.77909 0.16731 0.73151 0.14438 0.18775

0.05 0.81790 0.82549 0.12689 0.87659 0.10404 0.83178 0.17719 0.12778

0.01 0.94544 0.94915 0.04095 0.97278 0.02590 0.95054 0.16183 0.04109

Table 2: Simulation results for Example 3 with r < 1.

perfect information is always robust. We will give conditions under which the buyer can

do strictly better. In fact, already a relatively simple information structure will improve

over perfect information. We need the following lemma.

Lemma 6. If the prior F satisfies (16) or the PDF f is continuous on (p∗ − ε, p∗ + ε)

for some ε > 0, then there exists ṽ < p∗ such that

[1− F (ṽ)]E[v|v ∈ [ṽ, p∗]] ≥ Π∗. (17)

Suppose a valuation ṽ as described in the lemma exists. Consider the following

information structure: If v /∈ [ṽ, p∗], display s = v. If v ∈ [ṽ, p∗], on the other hand,

display always the same signal. Hence, if v ∈ [ṽ, p∗] then the posterior valuation is

E[v|v ∈ [ṽ, p∗]], and otherwise the learning is perfect. By (17), this information structure

induces price E[v|v ∈ [ṽ, p∗]]. If it is not robust, then the seller will ultimately charge a

price q ∈ (ṽ, p∗). In either case, the price is strictly smaller than p∗ and, therefore, the

buyer payoff strictly greater than
∫ 1
p∗(v − p∗)dF (v). We have thus shown the following.

Proposition 3. Under the conditions on the prior F in Lemma 6, there exists a robust

information structure that induces a buyer payoff strictly greater than
∫ 1
p∗(v− p∗)dF (v).

For our main result Theorem 1, we made no restrictions on the information structures

and the extensions that the buyer and the seller, respectively, can choose. The negative
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assortative information structures in the theorem pool at most two valuations with

each other and amount to a non-monotone partition of the set of possible valuations.

According to the above, these stark features are not necessary to improve over perfect

information.

6 Discussion

In this section, we study a weaker robustness constraint, investigate how the seller’s

ability to add information changes the design problem, and consider a variant of the

model where the seller chooses the information structure and the buyer can extend.

6.1 Weak Robustness

So far, we have assumed that the seller’s extension can be correlated with the signal

that the buyer receives from the original information structure. Such extensions may

be the appropriate notion when, for example, the disclosure concerns different product

attributes.14 Nevertheless, the seller’s choice of correlated extensions may be limited

(after all, the buyer privately observes the original signal). We now discuss how our

results change when correlation is impossible.

Formally, if (Sa, (Ga
v)) is the original information structure and (Sa × Sb, (Gv)) the

extended one, then the extension is independent if Gv = Ga
vG

b
v for some CDF Gb

v over Sb.

An information structure that provides the seller no incentive for independent extension

is weakly robust. Every robust information structure is, of course, also weakly robust. In

particular, being partitional, a (p, v)-negative-assortative information structure is weakly

robust if and only if it is robust. All insights in Section 5 on optimal (p, v)-negative-

assortative information structures therefore extend without change.

Our main result, Theorem 1, on the other hand, characterizes the implementable

buyer payoffs under the robustness constraint. In the derviation, we used the possibility

14For illustration, suppose the buyer’s valuation can be written v = η(θa, θb), the original information

structure perfectly disclosing θa and the extension θb. Abstracting from θa and θb, we may set sa =

E[η(θa, θb)|θa] and sb = η(θa, θb)− E[η(θa, θb)|θa]. Then unless η is linear, sa and sb are correlated.

23



BUY 1 BUY 2

vH1 1 0

vH2 ρ 1− ρ

vLi xq(vLi, vH1) (1− ρ)xq(vLi, vH2)

Table 3: Independent optimal extension

of correlated extensions to show that the restriction to p-pairwise information structures

is without loss of generality (Lemma 1) and for the q-optimal extension (Lemma 2).

This raises the question of whether certain payoffs are implementable by a weakly ro-

bust information structure but not by a robust one. We show here that the respective

information structure cannot be p-pairwise.

Proposition 4. A p-pairwise information structure is robust if and only if it is weakly

robust.

The proof constructs an independent extension that performs as well as the q-optimal

extension that conditions on the signal s = (vL, vH) and the true valuation v. In par-

ticular, there is trade with probability one if v ≥ q and with probability xq(vL, vH) if

v = vL < vH ∈ [q, 1]. For illustration, consider a p-pairwise information structure with

just four pooled valuations vL1 < vL2 < p < vH1 < vH2. Suppose q ∈ (p, vH1), and set

ρ := xq(vL1, vH1)
xq(vL1, vH2)

(
= vH1 − q
vH2 − q

vH2 − p
vH1 − p

= xq(vL2, vH1)
xq(vL2, vH2)

)
.

Our independent extension uses two BUY signals, BUY 1 and BUY 2. Table 3 gives the

likelihoods with which the valuations are pooled into these signals. Both vH1 and vH2

are pooled with probability one into the BUY signals, and the likelihood ratio of vLi to

vHj in each BUY signal is exactly xq(vLi,vHj). Hence, the posterior valuation is always

q, and we get the same probability of trade as under the q-optimal extension.

Intuitively, this result can be explained as follows. Under a p-pairwise information

structure, two distinct valuations vL, vH are pooled into at most one signal. To obtain

final posterior valuation q (maximizing the probability of trade at price q), the likeli-

hood ratio with which an extension needs to pool vL, vH is therefore independent of the

signal—the ratio must equal xq(vL, vH).
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Under the original robustness constraint, (16) is a necessary condition for the buyer

payoff to attain the upper bound U . We show now that it remains a necessary condition

also under weak robustness. We first establish an auxiliary result, which says that

valuations above p∗ must not be pooled with valuations below. Otherwise, the seller

could again trade at price p∗ with a greater probability than under perfect information,

obtaining a payoff larger than Π∗.

Lemma 7. An information structure (S, (Gv)) that induces buyer payoff U is weakly

robust only if ∫
{s∈S:Fs(p∗)∈(0,1)}

dḠ(s) > 0. (18)

Now, in order to induce trade at price Π∗ with probability one and thus to attain the

upper bound U , the lowest posterior valuation must be at least Π∗. By Lemma 7, the

valuations below p∗ must consequently be pooled in such a way that the lowest posterior

valuation is at least Π∗. This is possible only if if the prior mean of these valuations is

greater than Π∗, which is Condition (16).

Proposition 5. Weakly robust information structures that induce buyer payoff U exist

only if the prior F satisfies (16).

6.2 Comparison: No Disclosure by the Seller

Here, we compare our results with those of Roesler and Szentes (2017), who study buyer-

optimal information structures when the seller cannot disclose more. They identify a

class of information structures, from now on called RS class, with the property that

for every information structure there exists one in this class that generates the same

seller payoff and a weakly higher buyer payoff. Without the possibility of disclosure by

the seller, the only relevant property of an information structure is the induced CDF of

posterior valuations. The RS class is characterized by the family of CDFs

HB
q (w) =



0 if w ∈ [0, q),

1− q
w

if w ∈ [q, B),

1 if w ∈ [B, 1]

25



for q ∈ (0, 1] and B ∈ [q, 1]. Among these CDFs, only those for which the prior F is a

mean-preserving spread can indeed by induced by some information structure. Observe

that for a given HB
q , the seller is indifferent which price p ∈ [q, B] to charge. Hence, her

payoff is q, and trade happens with probability one if she charges price q.

According to Roesler and Szentes (2017, Theorem 1), the buyer-optimal information

structures in their setting result in trade with probability one at price

pRS := min
{
q : ∃B ∈ [q, 1] s.t. F is a mean-preserving spread of HB

q

}
.

It turns out that none of these information structures is (weakly) robust.

Proposition 6. pRS < Π∗. Hence, the information structures that are buyer-optimal

when the seller cannot provide an extension are not weakly robust.

Consequently, the (weak) robustness constraint binds for all priors F , and the seller’s

ability to add information always makes the buyer strictly worse off and the seller strictly

better off.

Roesler and Szentes (2017, Lemma 1) show that if some information structure results

in seller payoff q, then the CDF of posterior valuations is a mean-preserving spread of

the corresponding CDF HB
q . In this sense, the information structures in the RS class

are least informative. In the present setting, in contrast, the goal is to implement the

desired CDF of posterior valuations with an information structure that is as informative

(hence, as robust) as possible. This suggests that the restriction to the RS class may

not be without loss of generality when the seller can add information. Indeed, according

to the following result, the upper bound U on the buyer payoff in our setting is never

attainable with the RS class.

Proposition 7. There is no weakly robust information structure in the RS class that

induces buyer payoff U .

6.3 Reversed Timing

Suppose the seller chooses the information structure and the buyer can extend. When

deciding whether to extend, the buyer knows the information structure but not yet the
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signal. The seller, in turn, knows the extension, if any, when she sets the price. One can

interpret this model variant such that the extension is actually performed by a consumer

protection agency, which reacts to the seller’s disclosure.

When we examine the incentives to extend, we assume that the seller always sets

the lowest price that is optimal for her. We adapt our terminology and say that an

information structure induces price p (and the corresponding buyer and seller payoff) if

p = min argmax
q

[1−H(q)−∆(H, q)]q.

An information structure is buyer robust if the buyer has no incentive to extend it.

Analogously to the original model, we can restrict attention to buyer-robust informa-

tion structures. Notice that the seller payoff must again be at least Π∗, the maximum

payoff under a perfect information structure, as the seller can always provide perfect

information. We will show that the seller payoff must actually be equal to Π∗.

Virtually the same argument as in the original model allows to confine the analysis

to p-pairwise information structures (cf. Lemma 1).

Lemma 8. Every buyer-robust information structure that induces price p and seller

payoff Π ≥ Π∗ can be extended to a p-pairwise information structure that induces the

same price, the same buyer payoff, and the same seller payoff.

Consider any p-pairwise information structure that induces price p and a seller payoff

strictly greater than Π∗. Suppose the buyer additionally learns whether or not his

valuation is below some cutoff v′ < p. Thus, he learns the valuation perfectly for signals

s = (vL, vH) with vL < v′ < vH , whereas for all other signals he learns nothing new.

It is not hard to see that there exists a cutoff v′ such that, at price p, this extension

strictly decreases the probability of trade but the seller still obtains at least payoff Π∗.

As the extended information structure is still p-pairwise, the seller payoff at prices q > p

is still at most [1− F (q)]q ≤ Π∗. Hence, the seller will charge a price q ≤ p. But then,

the original information structure was not buyer robust. This establishes the following

proposition.

Proposition 8. Every buyer-robust information structure that is optimal for the seller

induces seller payoff Π∗.
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Perhaps surprisingly, the seller does not have a first-mover advantage: under the

original timing, where the buyer chooses the information structure and the seller can

extend, the seller payoff may be larger than Π∗ (see Example 3). Intuitively, the pos-

sibility to extend gives the buyer a more direct influence on the seller’s choice of the

price than the design of the information structure. The buyer may indeed prefer the

reversed timing. For example, suppose (16) holds. Then, the seller is willing to choose

the (Π∗, 0)-negative assortative information structure, for she can secure payoff Π∗ by

charging price p∗. Hence, unlike under the original timing, (16) is sufficient for attaining

the upper bound on the buyer payoff U .

According to Proposition 8, there always exists an equilibrium with full disclosure.

Generally, this will not be the only equilibrium, though. Whereas the seller must always

get the same payoff Π∗, the buyer is typically not indifferent which equilibrium is played.

7 Conclusion

The goal of this paper was to study buyer-optimal information structures when the seller

can disclose more. To prevent such disclosure, the design problem includes the constraint

that the information structure must be robust. The most robust information structures

pool the buyer’s valuation in a deterministic, negative assortative fashion: the negative

assortative information structures of Theorem 1 implement every implementable buyer

payoff. Indeed, they also implement the highest possible corresponding seller payoff

and every implementable price. Hence, if the designer seeks to maximize any increasing

function of buyer and seller payoff, possibly subject to price constraints, attention can be

restricted to negative assortative information structures. We also uncovered a connection

between information design and matching, or optimal transport. Suppose a given set of

states is to be pooled pairwisely into a given posterior mean. As we have shown, the

class of all such poolings is equivalent to a certain class of all bivariate distributions with

given marginals, and hence any problem of finding an optimal pooling is an optimal-

transport problem. Whenever not just the distribution of posterior means matters, but

also how states are pooled into posterior means, this connection might be useful.
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A Appendix: Proofs

Proof of Lemma 1. Let (Sa, (Ga
v)) be robust. We first extend (Sa, (Ga

v)) such that the

support of the posterior belief consists of at most two valuations almost surely and the

CDF of posterior valuations remains unchanged. The extended information structure,

denoted by (Sab, (Gab
v )), has signals (sa, sb), where sb ∈ Sb = [0, 1]2. In the following,

we define the CDF over sb conditional on v and sa, assuming without loss of generality

that the support of Fsa is not a singleton. Let

w(sa) := E[v|sa],

c(sa) :=
∫ w(sa)

0
(w(sa)− v)dFsa(v) =

∫ 1

w(sa)
(v − w(sa))dFsa(v).

We write sb = (vL, vH), where vL ≤ vH . If v ∈ [0, w(sa)], then (vL, vH) is drawn from

the set {(vL, vH) : vL = v, vH ∈ [w(sa), 1]} according to the CDF

Gv(vH |sa) = 1
c(sa)

∫ vH

w(sa)
(uH − w(sa))dFsa(uH). (A.1)

If v ∈ [w(sa), 1], on the other hand, (vL, vH) is drawn from the set {(vL, vH) : vL ∈

[0, w(sa)], vH = v} according to the CDF

Gv(vL|sa) = 1
c(sa)

∫ vL

0
(w(sa)− uL)dFsa(uL).

The distribution function of (vL, vH) conditional on sa is thus given by

Ḡ(vL, vH |sa) = 1
c(sa)

∫ vL

0

∫ vH

w(sa)
(uH − w(sa))dFsa(uH)dFsa(uL)

+ 1
c(sa)

∫ vH

w(sa)

∫ vL

0
(w(sa)− uL)dFsa(uL)dFsa(uH)

= 1
c(sa)

∫ vL

0

∫ vH

w(sa)
(uH − uL)dFsa(uH)dFsa(uL), (A.2)

where the last line follows from Fubini’s Theorem. Clearly, under the extended in-

formation structure the support of the posterior belief consists of at most two valu-

ations almost surely. Specifically, the posterior belief Fsa,(vL,vH) has support {vL, vH}

and is characterized by the probability Fsa,(vL,vH)(vL) that the valuation equals vL. For

M ∈ B([0, w(sa)] × [w(sa), 1]), let ML be the projection on [0, w(sa)] and MH the pro-

jection on [w(sa), 1]. Analogously to the definition of the posterior belief in (1),∫
M
Fsa,(vL,vH)(vL)dḠ(vL, vH |sa) =

∫
ML

∫
MH

dGvL(uH |sa)dFsa(vL). (A.3)
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Plugging (A.1) and (A.2) into (A.3) gives

1
c(sa)

∫
ML

∫
MH

Fsa,(vL,vH)(vL)(vH − vL)dFsa(vH)dFsa(vL)

= 1
c(sa)

∫
ML

∫
MH

(vH − w(sa))dFsa(vH)dFsa(vL).

Since this equation holds for Fsa,(vL,vH)(vL) = (vH−w(sa))/(vH−vL), and since Fsa,(vL,vH)

is unique for almost all (vL, vH), we have E[v|sa, (vL, vH)] = w(sa) almost surely. Thus,

the extended information structure (Sab, (Gab
v )) induces the same CDF of posterior valu-

ations as (Sa, (Ga
v)). Consequently, (Sab, (Gab

v )) induces the same price, the same buyer

payoff, and the same seller payoff. Moreover, (Sab, (Gab
v )) is also robust, because the

seller could have performed the extension herself.

Let p be any optimal price for the seller under (Sab, (Gab
v )). We now extend (Sab, (Gab

v ))

to a p-pairwise information structure (Sabc, (Gabc
v )). Conditional on signal (sa, (vL, vH)),

the extension acts as follows:

• If E[v|sa, (vL, vH)] = p, then E[v|sa, (vL, vH), sc] = p (no disclosure).

• If E[v|sa, (vL, vH)] > p and vL < p < vH , then E[v|sa, (vL, vH), sc] ∈ {p, vH}

(partial disclosure).

• In all other cases, E[v|sa, (vL, vH), sc] ∈ {vL, vH} (full disclosure).

Clearly, the such extended information structure is p-pairwise. Note that by the robust-

ness of (Sab, (Gab
v )), signals (sa, (vL, vH)) with E[v|sa, (vL, vH)] < p and vL < p < vH

have zero probability. Hence, by construction, E[v|sa, (vL, vH), sc] ≥ p if and only

if E[v|sa, (vL, vH)] ≥ p, and so at price p, the buyer payoff and the probability of

trade remain unchanged. By the latter, also the seller payoff remains unchanged at

p. Since (Sab, (Gab
v )) was robust, it follows that p remains optimal for the seller and that

(Sabc, (Gabc
v )) is robust as well.

Proof of Lemma 2. In the main text.

Proof of Lemma 3. Let (S, (Gv)) be p-pairwise. By (3) and (4), for s = (vL, vH) with

vL < vH we have almost surely ∫ 1

0
vdFs(v) = p. (A.4)
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Hence, for every measurable set M of such signals,
∫
M

∫ 1

0
vdFs(v)dḠ(s) = p

∫
M
dḠ(s),

which implies
∫
M

∫ 1

p
(v − p)dFs(v)dḠ(s) =

∫
M

∫ p

0
(p− v)dFs(v)dḠ(s).

Using the definition of the posterior Fs in (1), we obtain
∫ 1

p

∫
M

(v − p)dGv(s)dF (v) =
∫ p

0

∫
M

(p− v)dGv(s)dF (v). (A.5)

Now let M = [0, vL]× [p, vH ] for 0 ≤ vL ≤ p ≤ vH ≤ 1. (A.5) can then be written as
∫ vH

p

∫ vL

0
dGL

v (u)(v − p)dF (v) =
∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v). (A.6)

Hence, we can set

c =
∫ 1

p
GL
v (p)(v − p)dF (v) =

∫ p

0
[1−GH

v (p)](p− v)dF (v).

Then,

J(vL, vH) = 1
c

∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v)

is a bivariate distribution function on [0, p]× [p, 1] with marginals

J(vL, 1) = 1
c

∫ vL

0
[1−GH

v (p)](p− v)dF (v),

J(p, vH) = 1
c

∫ vH

p
GL
v (p)(v − p)dF (v).

Now let J be p-pairwise with given α. We construct an equivalent p-pairwise infor-

mation structure (S, (Gv)). For v < p, the support of Gv(v, vH) = GH
v (vH) is contained

in {v} × ({v} ∪ [p, 1]). Specifically, GH
v (p) = 1− α(v) and

J(vL, vH) = 1
c

∫ vL

0

∫ vH

p
d

(
GH
v (u)−GH

v (p)
α(v)

)
α(v)(p− v)dF (v)

= 1
c

∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v).

Hence, the CDFs [GH
v (u)−GH

v (p)]/α(v) of u on [p, 1] are the CDFs corresponding to a

regular conditional distribution, which exists and is unique almost everywhere (see, e.g.,
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Dudley, 2002, Thm. 10.2.2). Analogously, for v > p the support of Gv(vL, v) = GL
v (vL)

is contained in ([0, p] ∪ {v})× {v}, and we have GL
v (p) = α(v) and

J(vL, vH) = 1
c

∫ vH

p

∫ vL

0
d

(
GL
v (u)
α(v)

)
α(v)(v − p)dF (v)

= 1
c

∫ vH

p

∫ vL

0
dGL

v (u)(v − p)dF (v).

This gives (A.6). Proceeding as in the first part of the proof but in reverse order to

(A.4), (A.6) can be transformed into
∫ vL

0

∫ vH

p
E[v − p|s]dḠ(s) = 0. (A.7)

To show that (S, (Gv)) is p-pairwise, we use (A.7) to show that (4) holds for almost

all signals s = (vL, vH) ∈ [0, p] × [p, 1]. A function whose integral is zero on every

measurable set is zero almost everywhere (see, e.g., Rudin, 1987, Thm. 1.39(b)). Since

the probability measure corresponding to Ḡ is regular (cf, e.g., Rudin, 1987, Thm. 2.18),

every measurable set in [0, p]× [p, 1] can be approximated by a countable union of closed

balls. By (A.7) and since Ḡ is atomless, the integral of E[v − p|s] with respect to Ḡ is

zero on every closed ball. Hence, E[v − p|s] = 0 for almost all s ∈ [0, p]× [p, 1].

Proof of Lemma 4. Let J be a robust p-pairwise distribution function that induces

price p. Denote by C the copula of J , that is, J(vL, vH) = C(JL(vL), JH(vH)). For v

such that ∫ p

v
(p− v)dF (v) =

∫ p

0
α(v)(p− v)dF (v) = c, (A.8)

let J̃ be a (p, v)-pairwise distribution function that also has copula C, which exists by

Sklar’s Theorem. If J̃ induces price p, the buyer payoff (5) is
∫ 1
p (v − p)dF (v) − c as

under J , and the seller payoff (6) is weakly higher under J̃ than under J because (A.8)

implies ∫ p

v
dF (v) ≥

∫ p

0
α(v)dF (v).

Observe that for vL ∈ [0, v], we have JL(vL) ≥ 0 = J̃L(vL), whereas for vL ∈ [v, p],

1− JL(vL) = 1
c

∫ p

vL
α(v)(p− v)dF (v) ≤ 1

c

∫ p

vL
(p− v)dF (v) = 1− J̃L(vL).
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Moreover, for vH ∈ [p, v],

JH(vH) = 1
c

∫ vH

p
α(v)(v − p)dF (v) ≤ 1

c

∫ vH

p
(v − p)dF (v) = J̃H(vH),

whereas for vH ∈ [v, 1], JH(vH) ≤ 1 = J̃H(vH). Consequently,

JL(vL) ≥ J̃L(vL) for all vL and JH(vH) ≤ J̃H(vH) for all vH . (A.9)

For any p-pairwise distribution function Ĵ , the difference in the seller’s payoff when

she charges price q 6= p and performs the q-optimal extension, rather than charging p

and disclosing no further information, equals[∫
S
φq(vL, vH)dĴ(vL, vH) + 1− F (q)

]
q −

[∫
S
φp(vL, vH)dĴ(vL, vH) + 1− F (p)

]
p

=
∫
S
[φq(vL, vH)q − φp(vL, vH)p]dĴ(vL, vH) + [1− F (q)]q − [1− F (p)]p.

We will show that the integral is smaller for Ĵ = J̃ than for Ĵ = J . Accordingly, since

J is robust and induces price p, so does J̃ . We will use the shorthand notation

δ(vL, vH) := φq(vL, vH)q − φp(vL, vH)p = max
{

q(vH − q)c
(vH − p)(q − vL) , 0

}
− pc

(p− vL) .

Straightforward calculus shows that δ is decreasing in vL and increasing vH .

Define vL := p − vL. Let K be the joint distribution function of vL and vH that is

implied by J . The marginals of K are KL(vL) = 1−JL(p−vL) and KH(vH) = JH(vH).

Let D be the copula of K and recall that C is the copula of J . By Nelsen (2006,

Thm. 2.4.4), D(u1, u2) = u2 −C(1− u1, u2). Let K̃, K̃L, and K̃H be the corresponding

distribution functions implied by J̃ . Note that K̃ also has copula D.

Because of (A.9), we have KL(vL) ≤ K̃L(vL) for all vL and KH(vH) ≤ K̃H(vH)

for all vH . Together with the fact that K and K̃ have a common copula, this implies

according to Shaked and Shanthikumar (2007, Thm. 6.B.14) that K̃ is smaller than K

in the usual stochastic order. Hence, since δ(p− vL, vH) is increasing in vL and vH ,∫ p

0

∫ 1

p
δ(vL, vH)dJ̃(vL, vH) =

∫ p

0

∫ 1

p
δ(p− vL, vH)dK̃(vL, vH)

≤
∫ p

0

∫ 1

p
δ(p− vL, vH)dK(vL, vH)

=
∫ p

0

∫ 1

p
δ(vL, vH)dJ(vL, vH).

33



Proof of Theorem 1. In the main text.

Proof of Proposition 1. In the main text.

Proof of Lemma 5. (i) Ψ is strictly increasing since for any v1 < v2 and q ∈ (p, µp(v2)),

Ψ(q, p, v2)−Ψ(q, p, v1) =
∫ v2

v1
p− qxq(v, µp(v))dF (v) > 0,

where the inequality follows from

xq(v, µp(v)) = (p− v)[µp(v)− q]
(q − v)[µp(v)− p] <

p− v
q − v

≤ p

q
.

(ii) Consider v′ > v. Obviously, if (p, v) violates (13), then so does (p, v′). Hence,

suppose (p, v) violates (14), that is, there exists q ∈ (p, µp(v)) such that Ψ(q, p, v) > 0.

Note that µp(v′) < µp(v). Now, if q ∈ (p, µp(v′)), then Ψ(q, p, v′) > Ψ(q, p, v) implies

that (p, v′) violates (14). If q ∈ [µp(v′), µp(v)), which is equivalent to µp(q) ∈ (v, v′],

then

0 < Ψ(q, p, v) < Ψ(q, p, µp(q)) = [1− F (q)]q − [1− F (µp(q))]p ≤ Π∗ − [1− F (v′)]p

and thus (p, v′) violates (13).

Proof of Proposition 2. (i) For p < Π∗, (13) cannot hold. Hence, suppose Π∗ < p0

and consider a price p ∈ [Π∗, p0). By the definition of p0, for any such p there exists

q ∈ (p, µp(0)) such that Ψ(q, p, 0) > 0, that is, (p, 0) violates (14). By Lemma 5(ii),

(p, v) violates (13) or (14) for any v.

(ii) Suppose (p, v) with p > p1 satisfies (13). Then v ≤ v̂(p), and so

U(p, v) ≤ U(p, v̂(p)) =
∫ 1

v̂(p)
vdF (v)− Π∗ <

∫ 1

v̂(p1)
vdF (v)− Π∗ = U(p1, v̂(p1)),

where the first inequality holds because U(p, v) is strictly increasing in v and the second

inequality because v̂(p) is strictly increasing in p.

Proof of Lemma 6. Under (16) this is clear. So let ε > 0 be such that f is continuous

on (p∗ − ε, p∗ + ε). For ṽ in that interval, define Ω(ṽ) := [1 − F (ṽ)]E[v|v ∈ [ṽ, p∗]]. We

show that the derivative Ω′ exists, is continuous, and satisfies Ω′(p∗) < 0. Noting that

Ω(p∗) = Π∗, this will imply the existence of ṽ < p∗ with Ω(ṽ) ≥ Π∗.

34



Using integration by parts,

E[v|v ∈ [ṽ, p∗]] =
∫ p∗
ṽ vf(v)dv

F (p∗)− F (ṽ) = ṽ +
∫ p∗
ṽ (F (p∗)− F (v))dv
F (p∗)− F (ṽ) .

By the continuity of f , the derivative exists everywhere on (p∗ − ε, p∗ + ε) and equals

d

dṽ
E[v|v ∈ [ṽ, p∗]] = f(ṽ)

∫ p∗
ṽ (F (p∗)− F (v))dv

[F (p∗)− F (ṽ)]2 < f(ṽ) p∗ − ṽ
F (p∗)− F (ṽ) ,

which gives

Ω′(ṽ) < −f(ṽ)E[v|v ∈ [ṽ, p∗]] + [1− F (ṽ)]f(ṽ) p∗ − ṽ
F (p∗)− F (ṽ) .

By the continuity of f , Ω′ is continuous as well on (p∗ − ε, p∗ + ε), and so

Ω′(p∗) = lim
ṽ→p∗

Ω′(ṽ) < −f(p∗)p∗ + 1− F (p∗) = 0.

For the last equality, we have used that p∗ = min argmaxp[1− F (p)]p satisfies the first-

order condition f(p∗)p∗ = 1− F (p∗).

Proof of Proposition 3. In the main text.

Proof of Proposition 4. We will show that for any p-pairwise information structure it

is possible to construct an independent extension that induces same probability of trade

at price q, and hence the same seller payoff, as the q-optimal extension. Consequently,

robustness and weak robustness are equivalent.

Let (Sa, (Ga
v)) be p-pairwise. For prices q < p, the q-optimal extension is to disclose

nothing, so choose q ∈ (p, 1]. Regardless of the extension, there will be trade with

probability one after all signals sa = (vL, vH) for which vL = vH ≥ q. Moreover, there

will be no trade after all sa with vH < q. Only after signals sa with vL < q ≤ vH , the

probability of trade depends on the extension. We denote the set of such signals by

Ŝa := {sa ∈ Sa : vL < q ≤ vH}.

Consider the following independent extension. The second signal component is drawn

from Sb = [q, 1]. The CDFs Gb
v condition on v such that:

• If v ∈ [0, p), then

Gb
v(sb) = p− v

q − v
sb − q
sb − p

+ 1− p− v
q − v

1− q
1− p.
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Hence, Gb
v has an atom at sb = q, support [q, 1], and for sb ∈ (q, 1] a PDF gbv with

gbv(sb) = p− v
q − v

q − p
(sb − p)2 .

• If v ∈ [q, 1], then

Gb
v(sb) = v − p

v − q
sb − q
sb − p

.

Hence, Gb
v is atomless, has support [q, v], and a PDF gbv with

gbv(sb) = v − p
v − q

q − p
(sb − p)2 .

Conditional on sa = (vL, vH) ∈ Ŝa and sb ∈ (q, vH ], there is trade with probability

one since

E[v|sa, sb] =
Fsa(vL) gbvL(s

b) vL + [1− Fsa(vL)] gbvH(sb) vH
Fsa(vL) gbvL(sb) + [1− Fsa(vL)] gbvH(sb)

=
Fsa(vL) p−vL

vH−p
vH−q
q−vL

vL + [1− Fsa(vL)]vH
Fsa(vL) p−vL

vH−p
vH−q
q−vL

+ 1− Fsa(vL)

= Fsa(vL)xq(vL, vH)vL + [1− Fsa(vL)]vH
Fsa(vL)xq(vL, vH) + 1− Fsa(vL) = q.

Consequently, there is also trade with probability one conditional on sa ∈ Ŝa and v = vH .

Conditional on sa ∈ Ŝa and v = vL, on the other hand, there is trade if sb ∈ (q, vH ],

which happens with probability

Gb
vL

(vH)−Gb
vL

(q) = p− vL
vH − p

vH − q
q − vL

= xq(vL, vH).

By Lemma 2, we thus have the same probability of trade as under the q-optimal exten-

sion.

Proof of Lemma 7. Suppose (18) holds. By the right-continuity of distribution func-

tions, there exists a δ > 0 and a subset of signals

M := {s ∈ S : 0 < Fs(p∗) and Fs(p∗ + δ) < 1}

such that
∫
M dḠ(s) > 0. We will construct an independent extension of (S, (Gv)) that

induces trade at price p∗ with a probability strictly larger than 1−F (p∗), and thus yields

the seller a payoff strictly larger than Π∗.

36



Consider the following independent extension. If v ∈ (p∗, p∗ + δ], display a signal

BUY 1 with probability one. If v > p∗+δ, display BUY 2 with probability one. If v ≤ p∗,

display BUY 2 with some probability ε > 0 and otherwise ¬BUY . Hence, the posterior

valuation given s and BUY 2 is

wε(s, BUY 2) := εFs(p∗)
εFs(p∗) + 1− Fs(p∗ + δ)E[v|s, v ≤ p∗]

+ 1− Fs(p∗ + δ)
εFs(p∗) + 1− Fs(p∗ + δ)E[v|s, v > p∗ + δ].

Let Mε := {s ∈ M : wε(s, BUY 2) < p∗}. The probability of trade given price p∗ is

then at least

Q := 1− F (p∗) +
[∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
]
ε−

∫
Mε

(1− Fs(p∗ + δ))dḠ(s).

By the definition of Mε,

E[wε(s, BUY 2)|s ∈Mε]

=
ε
∫
Mε
Fs(p∗)dḠ(s)

ε
∫
Mε
Fs(p∗)dḠ(s) +

∫
Mε

1− Fs(p∗ + δ)dḠ(s)
E[v|s ∈Mε, v ≤ p∗]

+
∫
Mε

1− Fs(p∗ + δ)dḠ(s)
ε
∫
Mε
Fs(p∗)dḠ(s) +

∫
Mε

(1− Fs(p∗ + δ))dḠ(s)
E[v|s ∈Mε, v > p∗ + δ]

< p∗,

which implies
∫
Mε

(1− Fs(p∗ + δ))dḠ(s) <
∫
Mε

Fs(p∗)dḠ(s) p∗ − E[v|s ∈Mε, v ≤ p∗]
E[v|s ∈Mε, v > p∗ + δ]− p∗ ε

≤
∫
Mε

Fs(p∗)dḠ(s)p
∗

δ
ε.

Consequently,

Q > 1− F (p∗) +
[∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
(

1 + p∗

δ

)]
ε.

Now, limε→0wε(s, BUY 2) = E[v|s, v > p∗ + δ] > p∗. By Ergorov’s Theorem, it follows

that

lim
ε→0

∫
Mε

Fs(p∗)dḠ(s) = 0.
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On the other hand,
∫
M Fs(p∗)dḠ(s) > 0. Hence, there exist ε > 0 such that
∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
(

1 + p∗

δ

)
> 0

and thus Q > 1− F (p∗).

Proof of Proposition 5. Consider any weakly robust information structure (S, (Gv))

that induces buyer payoff U , that is, trade with probability one at price Π∗. The CDF

H of posterior valuations thus satisfies H(w) = 0 for all w < Π∗. Then,
∫ p∗

0
wdH(w) ≥ H(p∗)Π∗

⇐⇒
∫
{s∈S:Fs(p∗)=1}

∫ 1

0
vdFs(v)dḠ(s) ≥

∫
{s∈S:Fs(p∗)=1}

∫ 1

0
dFs(v)dḠ(s)Π∗

⇐⇒
∫
S

∫ p∗

0
vdFs(v)dḠ(s) ≥

∫
S

∫ p∗

0
dFs(v)dḠ(s)Π∗

⇐⇒
∫ p∗

0
vdF (v) ≥ F (p∗)Π∗,

where the second line follows from Lemma 7 and the last line from the definition of the

posterior in (1).

Proof of Proposition 6. According to Roesler and Szentes (2017, Corollary 1), pRS ≤

Π∗. In the following we will show that this inequality is strict. Consequently, any

information structure that is buyer optimal in the setting of Roesler and Szentes is

not weakly robust: the seller can increase her payoff from pRS to Π∗ by independently

extending to a perfect information structure.

We start with an auxiliary result. According to Roesler and Szentes (2017, Lemma

1), there is a unique B∗ ∈ [Π∗, 1] such that F is a mean-preserving spread of HB∗
Π∗ . We

strengthen this as follows.

Claim 1. B∗ ∈ (Π∗, 1).

Proof. Note that Π∗ = maxp[1− F (p)]p implies 0 < Π∗ <
∫ 1

0 vdF (v).

As [1 − F (w)]w ≤ Π∗, we have 1 − Π∗
w
≤ F (w) and hence H1

Π∗(w) ≤ F (w) for all

w ∈ [0, 1]. Moreover, H1
Π∗(w) = 0 < F (w) for all w ∈ (0,Π∗]. Therefore

∫ 1

0
wdH1

Π∗(w) >
∫ 1

0
vdF (v) > Π∗ =

∫ 1

0
wdHΠ∗

Π∗ (w).
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As
∫ 1

0 wdH
B
Π∗(w) is continuous and strictly increasing in B, there must be a unique

B∗ ∈ (Π∗, 1) such that
∫ 1

0 wdH
B∗
Π∗ (w) =

∫ 1
0 vdF (v).

F being a mean-preserving spread of HB∗
Π∗ means

∫ w

0
F (z)dz ≥

∫ w

0
HB∗

Π∗ (z)dz for all w ∈ [0, 1], with equality for w = 1.

We next show that the above inequality is strict for all w ∈ (0, 1).

Claim 2.
∫ w

0 F (z)dz >
∫ w

0 HB∗
Π∗ (z)dz for all w ∈ (0, 1).

Proof. Define

Γ(w) :=
∫ w

0
(F (z)−HB∗

Π∗ (z))dz.

We have to prove that Γ(w) > 0 for all w ∈ (0, 1). For w ∈ (0,Π∗], Γ(w) =
∫ w

0 F (z)dz >

0. For w ∈ [Π∗, B∗), F (w)−HB∗
Π∗ (w) is continuous, and so we can differentiate Γ to get

Γ′(w) = F (w)−HB∗

Π∗ (w) = Π∗ − w[1− F (w)]
w

≥ 0,

where the inequality holds since Π∗ = maxp[1 − F (p)]p. Therefore, Γ(w) > 0 also for

w ∈ (Π∗, B∗). For w ∈ [B∗, 1),

Γ(w) =
∫ w

0
(F (z)−HB∗

Π∗ (z))dz = −
∫ 1

w
(F (z)−HB∗

Π∗ (z))dz

=
∫ 1

w
(1− F (z))dz > 0.

We can now establish Claim 3, the main step of the proof.

Claim 3. There exists q < Π∗ and B ∈ [q, 1] such that F is a mean preserving spread

of HB
q .

Proof. Take any B ∈ (B∗, 1], which exists by Claim 1. For q ≤ Π∗,
∫ 1

0 H
B
q (w)dw

is strictly decreasing in q. By the Dominated Convergence Theorem,
∫ 1
0 H

B
q (w)dw is

furthermore continuous in q. As
∫ 1

0 H
B
0 (w)dw >

∫ 1
0 H

B∗
Π∗ (w)dw and

∫ 1
0 H

B
Π∗(w)dw <∫ 1

0 H
B∗
Π∗ (w)dw, it follows that there is a unique q(B) < Π∗ such that

∫ 1

0
HB
q(B)(w)dw =

∫ 1

0
HB∗

Π∗ (w)dw =
∫ 1

0
F (w)dw. (A.10)

39



For every w ∈ [0, 1] and every sequence of values B ∈ (B∗, 1], the Dominated Con-

vergence Theorem gives

lim
B→B∗

∫ w

0
HB
q(B)(z)dz =

∫ w

0
HB∗

Π∗ (z)dz,

noting that limB→B∗ q(B) = Π∗. Choose B′, B′′ ∈ (B∗, 1] such that B′ < B′′. For

w ∈ [0, B′), we have ∫ w

0
HB′

q(B′)(z)dz ≤
∫ w

0
HB′′

q(B′′)(z)dz

since q(B′) > q(B′′). Similarly, for w ∈ [B′, 1]∫ w

0
(HB′

q(B′)(z)−HB′′

q(B′′)(z))dz = −
∫ 1

w
(HB′

q(B′)(z)−HB′′

q(B′′)(z))dz

=
∫ 1

w
(HB′′

q(B′′)(z)− 1)dz ≤ 0.

By Dini’s Theorem, the convergence is thus uniform across w.

Claim 2 and the uniform convergence imply that there exists B̂ ∈ (B∗, 1] such that∫ w

0
HB̂
q(B̂)(z)dz −

∫ w

0
HB∗

Π∗ (z)dz <
∫ w

0
F (z)dz −

∫ w

0
HB∗

Π∗ (z)dz ∀w ∈ (0, 1).

By (A.10), F is thus a mean-preserving spread of HB̂
q(B̂)

.

Recall that pRS is the smallest price q for which there exists B ∈ [q, 1] such that F

is a mean-preserving spread of HB
q . Hence, Claim 3 implies pRS < Π∗.

Proof of Proposition 7. According to Roesler and Szentes (2017, Lemma 1), there

exists a unique B∗ such that F is a mean-preserving spread of HB∗
Π∗ . The information

structures in the RS class that induce buyer payoff U are thus all (S, (Gv)) that induce

the CDF of posterior valuations HB∗
Π∗ . Consider any such (S, (Gv)). We will show that∫

{s∈S:Fs(p∗)∈(0,1)} dḠ(s) > 0. By Lemma 7, this implies that (S, (Gv)) is not weakly robust.

By contradiction, suppose
∫
{s∈S:Fs(p∗)∈(0,1)} dḠ(s) = 0. Then,∫ 1

p∗
wdHB∗

Π∗ (w) =
∫
{s∈S:Fs(p∗)=0}

∫ 1

0
vdFs(v)dḠ(s) =

∫
S

∫ 1

p∗
vdFs(v)dḠ(s)

=
∫ 1

p∗
vdF (v), (A.11)

where the last equality follows from the definition of the posterior in (1). We consider

two cases. Case 1: B∗ ≤ p∗. As HB∗
Π∗ (w) = 1 for all w ≥ B∗, we have a contradiction to
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(A.11). Case 2: B∗ > p∗. By the definition of the RS class, [1−HB∗
Π∗ (p)]p = Π∗ for all

p ∈ [Π∗, B∗]. On the other hand, [1−F (p)]p < Π∗ for all p < p∗. Consequently, HB∗
Π∗ (p) <

F (p) for all p ∈ (0, p∗), whereas HB∗
Π∗ (p∗) = F (p∗). We thus have

∫ p∗
0 wdHB∗

Π∗ (w) >∫ p∗
0 vdF (v). Given (A.11), this implies that F is not a mean-preserving spread of HB∗

Π∗ ;

a contradiction.

Proof of Lemma 8. The proof of Lemma 1 shows that every information structure

that induces price p can be extended to a p-pairwise information structure such that

buyer and seller payoff at price p remain unchanged. Under every p-pairwise information

structure, H(q) ≥ F (q) for all q > p. Hence, [1 − H(q)]q ≤ [1 − F (q)]q ≤ Π∗ for all

q > p, and so the extended information structure does not induce any price q > p. If it

induces a price q < p, then the original information structure was not buyer robust.

Proof of Proposition 8. In the main text.
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