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A.1. COMPETITIVE EQUILIBRIA AND ABSOLUTE MAXIMALITY

As noted in Section 3.2, several classes of games are known to have separable allo-
cations. Each such payoff allocation corresponds to an absolutely maximal farsighted
stable set. Remark 2 identifies another important case: a competitive equilibrium when
preferences satisfy local non-satiation and strict convexity.

Proof of Remark 2. Consider a competitive equilibrium ({ξi}, p). We claim that u ≡
{ui(ξi)} is separable. Suppose there is a coalition S such that uS ∈ V (S). This means
that there exists a feasible allocation ξ′ for the economy with agent set S such that∑

i∈S ξ
′
i =

∑
i∈S ωi and ui(ξ′i) ≥ ui for all i ∈ S. Since preferences are locally non-

satiated, condition (i) of a competitive equilibrium implies that p · ξ′i ≥ p · ωi for all
i ∈ S. In fact, it must be the case that

(1) p · ξ′i = p · ωi for all i ∈ S,

otherwise we contradict the feasibility condition
∑

i∈S ξ
′
i =

∑
i∈S ωi. Next, we claim

that ξ′i = ξi for all i ∈ S. If not, there is some i ∈ S with ξ′i 6= ξi. By the strict convexity
of ui, there is a strict convex combination of ξ′i and ξi which is strictly preferred to ξi. By
(1) it is also affordable. But this contradicts condition (i) of a competitive equilibrium. It
follows that

∑
i∈S ξi =

∑
i∈S ξ

′
i =

∑
i∈S ωi. Because

∑
i∈N ξi =

∑
i∈N ωi, this implies

that
∑

j∈N−S ξj =
∑

j∈N−S ωj , and uN−S ∈ V (N − S); i.e., u is separable.

Although Remark 2 applies even to economies in which the interior of the core is empty,
it does depend crucially on preferences being strictly convex. Consider an exchange
economy with three consumers and two commodities that are perfect complements:
ui(xi) = min{xi1, xi2} for all i; preferences are convex but not strictly convex. If
the endowment of consumer 1 is (1, 0) and the endowments of the other two are (0, 1),
the unique competitive payoff is (1, 0, 0). This is not separable because agents 2 and 3
can achieve this on their own but agent 1 cannot get 1 on her own.1

Greenberg, Luo, Oladi and Shitovitz (2002) study what they call “the sophisticated sta-
ble set” of an exchange economy. This is based on a version of the Harsanyi stable set
in which every step of a blocking chain is also required to be a myopic objection. The
core is consequently a subset of the sophisticated stable set. In general, therefore, the

1The coalitional game in this case is the same as the veto game of Example 4 in Appendix A.5.
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competitive equilibrium is not a single-payoff sophisticated stable set. A second differ-
ence between the farsighted stable set and the sophisticated stable set is that the latter,
as in Harsanyi (1974), allows a deviating coalition to choose any feasible payoff for
the complementary coalition, a notion that is critiqued and dropped in Ray and Vohra’s
(2015) development of the farsighted stable set. Last but not least, our focus here is on
maximality.

A.2. ABSOLUTE MAXIMALITY IN SIMPLE GAMES

Simple games have proved to be fertile ground for studying stable sets as well as far-
sighted stable sets. In this section, we prove Remark 3 in the main text.

We identify all configurations with no winning coalitions with a single state, and call
this the zero state. The first part of Remark 3 is a consequence of farsighted internal
stability. To prove it, suppose there is a farsighted stable set F for which Property B
fails. Then there are states a and b in F and a coalition T — it must be winning —
such that uT (b) � uT (a) and

∑
i∈T ui(b) ≤ 1. Because T is winning, its complement

is losing. So at state a, T can precipitate the zero state (by breaking up into singletons),
counting on the winning coalition for state b to move to b, making T better off. Therefore
b farsightedly dominates a, which contradicts the farsighted internal stability of F . So
Property B must hold.

To proceed further, recall that a veto player in a simple game is an individual with a
losing complement (she can single-handedly precipitate the zero state). If the set of all
veto players is winning, say that the game is oligarchic. Oligarchic games have singleton
farsighted stable sets (Ray and Vohra 2015, Theorem 3).

To examine larger stable sets in non-oligarchic games, consider discriminatory sets:

D(K, c) = {x ∈ X | ui(x) = ci for i ∈ K}
for some fixed player set K ⊆ N and associated payoff vector c ∈ IRK

++. Those in
K, the “discriminated players,” each get a fixed (positive) amount, while the remaining
surplus is divided arbitrarily among the remainder, the “bargaining players.” As shown
in Ray and Vohra (2015, Theorem 5), such sets exist in every standard simple game.2

The following Remark proves Remark 3:

REMARK 4. Every discriminatory farsighted stable set satisfies Property A as well as
Property A′.

Proof. Let a, b ∈ D(K, c), with uj(b) > uj(a) for some j. Clearly, j /∈ K, which
means that there is z ∈ D(K, c) with uk(z) = ck for all k ∈ K, ui(z) > ui(b) for all

2Note that they use the term nonelitist (rather than “standard”) to refer to a veto coalition with replace-
able members.
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i ∈ N −K− j, and uj(z)uj(a). Therefore D(K, c) satisfies Property A. If b is a regular
state, then so is z, which means that D(K, c) also satisfies Property A′.

Recall that in Example 1 there is a farsighted stable set which is not absolutely max-
imal. That game is a regular non-oligarchic simple game; coalition {1, 2, 3} is a veto
coalition with replaceable members. So it has a discriminatory farsighted stable set, e.g.,
D({4}, 0.1), which is absolutely maximal.

For simple games, another well-studied set — with a discrete collection of payoffs —
is a potential candidate for a stable set (von Neumann and Morgenstern 1944). For any
vector m ∈ IRN with m � 0 and

∑
i∈Smi = 1 for every minimal winning coalition S,

define

Z(m) = {x ∈ X | S(x) is minimal winning and ui(x) = mi for i ∈ S}

to be a main simple set. von Neumann and Morgenstern (1944) showed that if a game is
strong — every coalition is either winning, or its complement is — then the set of utility
profiles corresponding to a main simple set is a vNM stable set. Ray and Vohra (2015)
showed that a main simple set (of a strong, simple game) is a farsighted stable set.

In general, a main simple set may not satisfy Property A, as we saw in Example 1. But
an important subclass of simple games yields a different answer. Say that a simple game
is symmetric if there is some k, where (n+1)/2 ≤ k ≤ n, such that every coalition with
k players is a minimal winning coalition. (Supermajority games have this property.)
Every symmetric simple game has a main simple set Z(m), with mi = 1/k for all i.
Observe that a symmetric game may not be strong. Yet its main simple set is indeed a
farsighted stable set, though it may fail to be a vNM stable set.3

Moreover, if the game is non-oligarchic (k < n), Z(m) satisfies Property A. To see this,
suppose a and b are in Z(m), with ui(b) > ui(a). This implies that there is a minimal
winning coalition S such that i ∈ S, ui(b) = 1/k, and uj(a) = 0 for all j /∈ S. Since
k < n, there exists j /∈ S. Let S ′ = S− i+ j. Given the symmetry of the game, this is a

3Consider the non-strong, symmetric simple game with n = 5 and k = 4. Then Z(m) is not vNM
stable: the state x with u(x) = (1/3, 1/3, 1/3, 0, 0) has no objection from Z(m). However, there is
a farsighted objection through the zero state initiated by players 4 and 5 (a veto coalition), leading to
Z(m). Indeed, farsighted stability holds for all such games. To see why Z(m) satisfies farsighted external
stability, consider x /∈ Z(m). Clearly, S = {i ∈ N | ui(x) ≥ 1/k} must then be a losing coalition. If
the complement of S, N − S = {i ∈ N | ui(x) < 1/k}, is winning, any minimal winning coalition in
N − S can (myopically) block x with a state in Zm. Otherwise, because S is losing, N − S is a veto
coalition and can farsightedly block x by first precipitating the zero state and then moving (via a suitable
minimal winning coalition) to obtain 1/k for all its members. The main simple set also satisfies farsighted
internal stability (under a mild monotonicity restriction on the effectivity correspondence); see Ray and
Vohra (2015) or Dutta and Vohra (2017). Thus Z(m) is a farsighted stable set. These arguments can be
extended to show that a main simple set of any (not necessarily symmetric) simple game is a farsighted
stable set, although absolute maximality cannot be assured, as shown by Example 1.
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minimal winning coalition and the corresponding state in Z(m), say z, has the property
that ui(z) = 0 and uj(z) ≥ uj(b) for all j 6= i, which yields Property A. Because S ′ is
a minimal winning coalition, z is a regular state, and so Property A′ is also satisfied. To
summarize:

REMARK 5. Any non-oligarchic, symmetric simple game possesses a main simple set
which is a farsighted stable set and satisfies Property A as well as Property A′.

A.3. MORE REMARKS ON COALITIONAL ACCEPTABILITY

In Section 4 of the paper, we discuss a parallel to Theorem 1 to blocking processes;
that is, to ambient processes that employ blocking chains following every history. The
resulting Proposition 1 is, however, quite restrictive and does not apply to all character-
istic functions. We re-do that Proposition here by imposing a still stronger version of
Property A. Recall that σ is a blocking process if for each history h, if S(h) is nonempty,
then uS(h)(xσ(h)) > uS(h)(x(h)).

Recall also the discussion from the main text. To extend Theorem 1 to blocking pro-
cesses, it suffices to strengthen Lemma 2 so that the coalitionally acceptable chain con-
structed to deter deviations is in fact a blocking chain. At a minimum, this will require
that when we dissuade an off-path deviation by by finding a coalitionally acceptable
chain from y to z ∈ F , all players involved in this chain must receive a strictly posi-
tive payoff at z. That motivated a modification of our Property A to regular states; see
Property A′ in the main text. We go still further here by allowing for strict inequalities.

Property A′′. Suppose there are two regular states a and b in F such that uj(b) > uj(a)
for some j. Then there exists a regular state z ∈ F such that uj(z) ≤ uj(a), and
ui(z) ≥ ui(b) for all i 6= j, with strict inequality holding for player i 6= j if and only if
i’s coalition in state z is different from her coalition in state b.

THEOREM 2. If a farsighted stable set satisfies Properties A′′ and B, then it can be
embedded in an absorbing, absolutely maximal blocking process.

Observe that a single-payoff farsighted stable set trivially satisfies Property A′′.

We leave it to the reader to check that to prove Theorem 2 it suffices to prove the fol-
lowing version of Lemma 2 in which the conclusion relates to a blocking process rather
than a coalitionally acceptable process.

LEMMA 3. Consider a farsighted stable set F that satisfies Properties A′′ and B. Sup-
pose T moves from state x /∈ F to state y, Ψ(x) = a and Ψ(y) = b. Then there is a state
z ∈ F and a blocking chain from y to z such that uj(z) ≤ uj(a) for some j ∈ T .
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Proof. Consider states x, y, a, b and a coalition T as in the statement of Lemma 3. If
the conclusion of the Lemma is false, uT (b) � uT (a). As in the proof of Lemma 2,
Condition B implies that y 6= b, so that y /∈ F . Moreover, as in that proof, we have a
player j ∈ T and a blocking chain c′ = {y, y1, . . . , ym−1, y′, ym}, {S1, . . . , Sm−1,W −
j, Sm} where ym = b and Sm = ∪m−1j=1 S

j∪W is the set of all players who actively move
in the blocking chain c′. By Condition A′′, there is a regular state z such that uj(z) ≤
uj(b) and ui(z) ≥ ui(b) for all i 6= j, with strict inequality holding for player i 6= j if
and only if i’s coalition in state z is different from her coalition in state b. Modify c′ by
replacing the terminal state with z to construct the chain c̄ = {y, y1, . . . , ym−1, y′, z},
{S1, . . . , Sm−1,W − j, S ′}, where S ′ is a minimal set of players needed to replace y′

with z. We will show that c̄ is a blocking chain. Recall from the proof of the Claim that
there can be only two possible reasons why c̄ may be a coalitionally acceptable but not
a blocking chain:

(a) there exists a player k ∈ S ′ − Sm for whom uk(z) = uk(y
′) = uk(b), or

(b) j ∈ S ′ and uj(z) = uj(y
′) = 0.

To complete the proof we will rule out each of these possibilities.

Suppose (a) holds and k ∈ S ′−Sm is such that uk(z) = uk(y
′) = uk(b). Let Sk ∈ π(y′)

be the coalition that contains player k. Given the construction of z, this must mean that
k continues to belong to coalition Sk in π(z), even though k, being a member of S ′, is
an active mover from y′ to z. In fact, by Property A′′, ui(z) = ui(y

′) for all i ∈ Sk. But
this contradicts the fact that S ′ is a minimal set of players needed to replace y′ with z.

Suppose j ∈ S ′. Since z is a regular state, uj(z) > 0, so (b) cannot hold.

A.4. OTHER APPROACHES TO MAXIMAL FARSIGHTEDNESS

We seek conditions under which a farsighted stable set might satisfy maximality. The
underlying idea is to begin with a solution concept that is the natural farsighted exten-
sion to a classical notion — vNM stability — and attempt to embed that concept within
an ambient negotiation process satisfying the desideratum of absolute maximality. Al-
ternatively, one might directly seek to understand the absorbing states of a negotiation
process, without asking that any existing solution concept be embedded in it. Such an
approach is followed in Konishi and Ray (2003) and Dutta and Vohra (2017), along with
the additional restriction that the negotiation process σ is Markovian or history inde-
pendent: for any two histories h and h′, x(h) = x(h′) implies that σ(h) = σ(h′).4 A
comparison of these two approaches is instructive.

4History-dependent versions of these solutions are studied in Hyndman and Ray (2007), Ray and Vohra
(2014) and Dutta and Vartiainen (2018).
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1. While unclear from its original definition (Harsanyi 1974, Ray and Vohra 2015), a
farsighted stable set is fundamentally a history-dependent object. There is little hope
of being able to embed a farsighted stable set in a Markovian process, and this is so
even if we ignore the maximality requirement. On the other hand, as our main results
demonstrate, permitting history dependence can make it possible to embed a farsighted
stable set in a process that is absolutely maximal.

2. Absolute maximality can be a more stringent requirement than maximality or strong
maximality even if the focus is on absorbing states that are not necessarily a farsighted
stable set.5

EXAMPLE 4. A three-player veto game: N = {1, 2, 3}, ν(N) = ν{1, 2} = ν{1, 3} = 1
and ν(S) = 0 for all other S.

Ray and Vohra (2015) show that every farsighted stable set of this game is a discrimina-
tory set of the form Za = D({1}, a) in which player 1 receives a fixed payoff a ∈ (0, 1)
and the remaining surplus is divided in any arbitrary way between players 2 and 3. (In
fact, for every a ∈ (0, 1), Za is a farsighted stable set.) By Remark 4 it is absolutely
maximal.

But this result depends crucially on allowing the process to be history dependent. As
Dutta and Vohra (2017) point out, a set of this form cannot be supported by a Markov-
ian process that is consistent with farsighted external stability. The farsighted external
stability of Za implies that from any state x with u(x) � 0 and u1(x) > a there is a
blocking chain ending in Za. It can be shown that any such chain involves players 2 and
3 leaving the grand coalition at state x, resulting in the zero state. This is then followed
by a move by N to a state in Za; see Ray and Vohra (2015) for details. It turns out that
the last step of any such blocking chain must depend on the history.

To see this, suppose σ is a Markovian process that defines, for every state not in Za, a
blocking chain that ends in Za. Consider the zero state, x0, and suppose σ prescribes a
path from x0 that ends at y ∈ Za. Since the process is Markovian, this is the continuation
paths for all histories where the current state is x0. Consider x such that u(x) � 0 and
u1(x) > a. As already observed, any blocking chain from x leading intoZa must involve
coalition {2, 3} moving to x0, followed by a move by N to y (with u(y′) � 0). Since
u(y′) � 0, we can find x such that u1(x) > a, u2(x) > u2(y) and u3(x) > 0. The
process must specify a blocking chain from x to a state in Za. But any such blocking
chain must be one in which {2, 3} first moves to x0 followed by a move to y. Since
u2(x) > u2(y) player 2 cannot gain. In other words, the path prescribed by σ from x is
not a blocking chain, a contradiction.

5With respect to farsighted stable sets this point has already made; through Example 1 for simple games
and through the examples in Dutta and Vohra (2017) for abstract games.
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This example also illustrates the difference between our approach and one that directly
examines the absorbing states of a process, without seeking to embed a particular so-
lution. Consider the Dutta and Vohra (2017) notion of a strong rational expectations
farsighted stable set (SREFS) which is defined to be the set of absorbing states, Z, of a
Markovian process σ that satisfies strong maximality, as well as both internal and exter-
nal stability when blocking chains are restricted to be consistent with σ. In particular, if
a coalition moves from a state in Z, it cannot eventually gain provided the continuation
following this move is given by σ. There may, however, exist a farsighted blocking chain
that is not consistent with σ, and for this reason Z may not be a farsighted stable set.6

Indeed this is a feature of the present example. Dutta and Vohra (2017) show that there
is a SREFS consisting of states with payoffs ({a+ b, b, 0), (a+ b, 0, b), (a, b, b)}), where
a ∈ (0, 1) and b = (1− a)/2. Of course, this is not a discriminatory set in which player
1 gets a fixed payoff, so it cannot be a farsighted stable set.7

While this SREFS satisfies strong maximality, it does not satisfy absolute maximality.
To see this, consider the state x with π(x) = N and u(x) = (a+ b− 1/3ε, b− 2/3ε, ε).
Coalition {1, 2} can block this is one step to get payoffs (a + b, b). No coalition that
includes either player 1 or 2 can construct a better deviation, as is required for strong
maximality. However, absolute maximality may not hold because of a deviation by
player 3. Suppose that a departure by player 3 results in the other two sharing the extra
surplus equally. Now, if player 3 leaves the grand coalition, the new state leaves player 2
with a payoff strictly less than b. This only lead to the zero state followed by N moving
to the stationary state with payoffs (a, b, b). Thus, player 3, has a profitable deviation at
state x, and the process is not absolutely maximal.

We make a final comment on folk-theorem-like arguments. In Section 3.4, we remarked
that there are tight restrictions on the structure of absolutely maximal farsighted stable
sets, so it isn’t the case that anything goes. That argument carries over to the set of
states that comprise any farsighted stable set: “anything doesn’t go” because the internal
stability of a (farsighted) stable set precludes it from being too inclusionary. However,
what would happen under the alternative approach of this section, where we do not
insist in embedding any farsighted stable set? Might that span the entire set of feasible
payoffs? In general, in our model, the answer is still no. That follows from absolute
maximality and our notion of an absorbing state which requires once such a state is
reached, regardless of the history, it does not change. Together, these two properties
imply that a non-core state and a state that (myopically) dominates it can’t both be

6The same is true of the solutions constructed by Dutta and Vartiainen (2018), allowing for history
dependence, and using a weaker notion of absorption that we have defined above. Indeed, their solutions
may not even satisfy myopic internal stability.

7There is a farsighted objection from ((a, b, b), N), led by player 1, to ((a+ b, b, 0), {1, 2}).
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absorbing states.8 Thus, in general, the absorbing states cannot span the entire set of
feasible payoffs.

A loosening of these restrictions could lead to outcomes in which almost the entire set of
feasible payoffs is supportable. Under the weaker notion of absorption used by Dutta and
Vartiainen (2018), “stable states” need not satisfy internal stability even if the process
is maximal. In fact, in a strictly superadditive game, they coincide with the set of all
strictly positive, feasible payoffs.

A.5. PROPERTIES OF EXAMPLES 1, 2 AND 3

Properties of Example 1

To show that F is not absolutely maximal, we impose a “monotonicity condition” on the
effectivity correspondence E.9 Assume that if a winning coalition loses some members
but remains winning, the resulting nonnegative surplus (captured from the departing
members) is shared equally among the players that remain. Now suppose by way of
contradiction that there is an absorbing σ that embeds F and satisfies coalitional ac-
ceptability and absolute maximality. Consider state x with u(x) = (0, 0, 0.36, 0.64) and
winning coalition W (x) = N . Because x /∈ F , there is x′ ∈ F that farsightedly dom-
inates it; i.e., σ leads from history h = {x} to x′. Ray and Vohra (2015, Lemma 2)
show that there are just two possibilities: either (i) x′ myopically dominates x, or (ii)
W+ = {i ∈ N | ui(x′) > ui(x)} and W (x) −W+ are both losing coalitions.10 But
W (x) equals N and our game is strong, so the second option must be eliminated here.
It follows that (i) is true: x′ myopically dominates x. But the only two states in F that
do so are x′ = ((1/3, 0, 0, 2/3), {1, 4}) or x′ = ((0, 1/3, 0, 2/3), {2, 4}). In either case,
u3(x

′) = 0. We use this last fact to argue that player 3 can profitably deviate from the
stipulated move at x (to x′), thus violating absolute maximality.

Suppose player 3 leaves the grand coalition at x resulting in state y. Note that the residual
coalition, {1, 2, 4} is winning. Given that the residual players share equally in the surplus
released by 3’s departure, u(y) = (0.12, 0.12, 0, 0.76). Since y /∈ F , σ must prescribe
a continuation that is coalitionally acceptable. Using the same kind of argument as in
the previous paragraph, it can be shown that xσ(y) = ((1/3, 1/3, 1/3, 0), {1, 2, 3}).11

Player 3 can therefore gain by interfering in this way with any process that attempts to
proceed from x to x′. In other words, F does not satisfy absolute maximality.

8In other words, the set of absorbing states must satisfy myopic internal stability.
9See Ray and Vohra (2015) for a more general version that applies to all games.
10In case (ii), W+ can precipitate the zero state by leaving W (x), followed by a move by W (x′) to x′.
11For example, if xσ(y) = ((1/3, 0, 0, 2/3), {1, 4}) coalitional rationality implies that in the first step

player 1 must leave W (y), resulting in the state y′ = ((0, 0.18, 0, 0.82), {2, 4}). But from y′ it is not
possible, by coalitional rationality, to end up at ((1/3, 0, 0, 2/3), {1, 4}).
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Properties of Example 2

We first show that F is a farsighted stable set. Figure 1 shows all the payoff equivalent
states, with arrows indicating the states in F that farsightedly dominate a state not in F .

X3

{2,3,4}, ∏0({1,5,6})
(0,4,2,4,0,0)

{1,2}, {4,5}, ∏0({3,6})
(3,3,0,3,3,0)

x4
{1}, {2,3,4,5,6}
(0,4,2,4,3,0)

F
X1

{1,2}, {3,5}, ∏0({4,6})
(3,3,2,0,2,0)

{1,2}, ∏0({3,4,5,6})
(3,3,0,0,0,0)

{4,5}, ∏0({1,2,3,6})
(0,0,0,3,3,0)

{3,5}, ∏0({1,2,4,6})
(0,0,2,0,2,0)

{1,3}, ∏0({2,4,5,6})
(2,0,2,0,0,0)

∏0({1,2,3,4,5,6})
(0,0,0,0,0,0)

x5
{2}, {1,3,4,5,6}
(3,0,2,4,3,0)

x6
{4}, {1,2,3,5,6}
(3,4,2,0,3,0)

x7
{5}, {1,2,3,4,6}
(3,4,2,4,0.0)

X2

{1,3}, {4,5}, ∏0({2,6})
(2,0,2,3,3,0)

X8

{1,3,5}, ∏0({2,4,6})
(1,0,2,0,1,0)

FIGURE 1. External Farsighted Stability of F in Example 2

To see that F satisfies external farsighted stability: A state with payoff (3, 3, 0, 3, 3, 0) is
dominated by one inX3 through coalition {2, 3, 4}. The state with payoff (3, 3, 0, 0, 0, 0)
is directly dominated by one in X1 through {3, 5} and by one in X3 through {2, 3, 4}.
A state in X8, with payoff profile (1, 0, 2, 0, 1, 0), is farsightedly dominated by a state in
X1 through the formation of coalition {1, 2}, and also by a state in X2 through coalition
{4, 5}. It is easy to see from Figure 1 that other states not in F are also farsightedly
dominated by some state(s) in F .

To see that F satisfies internal farsighted stability: First observe that states x4, x5, x6

and x7 cannot dominate any other state (these states are in F only because they cannot
be dominated by a state in X1∪X2∪X3). This is so because such a state can emerge in
only one of two ways: either a singleton precipitates it by leaving the grand coalition or
it involves the active participation of player 6. Either case is inconsistent with farsighted
dominance because both the singleton as well as player 6 receive 0. Secondly, none of
these states can be farsightedly dominated by any other state. All players except for the
excluded singleton are receiving the maximum possible payoff. Only the singleton has
an incentive to change the state, but on her own she is powerless to do so. Thus, in
checking internal stability we only need to compare states in X1, X2 and X3.

FromX1 the only players who could gain by ending up at a state inX2 are players 4 and
5. They can’t move there directly. They could form a coalition of their own, resulting in
payoffs (3, 3, 0, 3, 3, 0), but that can only be dominated by a state in X3, not one in X2,
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resulting in a payoff of 0 to player 5, which is of course not a farsighted improvement
for {4, 5}. Player 5 could exit coalition {3, 5} resulting in payoffs (3, 3, 0, 0, 0, 0) but
from there the only possible moves are into X1 or X3, again making it impossible for
player 5 to gain.

A state in X1 cannot be farsightedly dominated by one in X3 because any such move
must begin by player 2 leaving coalition {1, 2} which results in payoffs (0, 0, 2, 0, 2, 0)
from which the only further move that is possible is to X1 or to X2, not X3, because
players 3 or 5 the only ones who could initiate a move toX3 have no interest in doing so.
A similar argument shows that no state in X2 can be farsightedly dominated by another
state in F . Finally, note that at a state in X3, all the non-zero payoff players are getting
the highest possible amount and they together belong to one coalition, so no profitable
deviation is possible.

This completes the proof that F satisfies farsighted internal stability.

Finally, we show that F is not absolutely maximal; that is, any coalitionally rational and
absorbing process in which it is embedded must fail to satisfy absolute maximality. Con-
sider a state in X8 with payoffs (1, 0, 2, 0, 1, 0). The only possible farsighted blocking
chain from such a state ends in X1 or X2, not in X3. This is so because the only players
who would prefer to have it replaced by one in X3 are 2 and 4, but without the active
participation of player 3 they are unable to carry out such a move. Suppose F is embed-
ded in a coalitionally acceptable and absorbing process. Consider the history consisting
of a single state in X8. Since the only blocking chains from such a state are into X1 or
X2, the continuation must be a single step into X1 (through coalition {1, 2}) or into X2

(through coalition {4, 5}). In the former case, coalition {4, 5} has a profitable deviation
into X2 and in the latter coalition {1, 2} has a profitable deviation into X1. Thus, F is
not absolutely maximal, which also shows that Property B cannot be dispensed with in
our main theorem.

Properties of Example 3

The farsighted stability of F follows from arguments we already provided in the discus-
sion of Example 2. In Figure 2 the arrows from states outside F represent a process that
embeds F . We leave it to the reader to check that it satisfies absolute maxlimality.
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