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Abstract

We study a coordination game among agents on a network, who
choose whether or not to take an action that yields value increasing in
the actions of neighbors. In a standard global game setting, players
receive noisy information of the technology’s common state-dependent
value. At the noiseless limit, equilibrium strategies are threshold strate-
gies: each agent adopts if the signal received is above a certain cutoff
value. We characterize properties of the cutoffs as a function of the net-
work structure. This characterization allows to partition players into
coordination sets, i.e., sets of players where all members take a com-
mon cutoff strategy and are path connected. We also show that there
is a single coordination set (all players use the same strategies, so they
perfectly coordinate) if and only if the network is balanced, i.e., the av-
erage degree of each subnetwork is no larger than the average degree of
the network. Comparative statics exercises as well as welfare properties
are investigated. We show that, in order to maximize aggregate wel-
fare or adoption, the planner needs to target coordination sets and not
individuals.
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1 Introduction

Settings with binary actions and positive network effects are ubiquitous: the choice to

adopt a technology or platform, such as in social media, where the value of the tech-

nology/platform is increasing in the adoption by friends; the choice to partake in crime

when the proficiency of crime, and thus the likelihood of not getting caught, is increasing

in the criminality of accomplices; or, in immigration policy when the influx of migrants

depends on anti-immigration policies employed in neighboring countries. In each of these

examples, uncertainty in a common state can also influence the value of adoption: the

underlining value of the technology; the strength or presence of the police force; the state

of the economy.

In a network setting, this paper studies coordination in these uncertain environments.

We show that we can partition players into coordination sets of players so that all members

of these sets have the same decision strategy and are path connected. We also show if

the network is balanced (i.e., the average degree of each subnetwork is no larger than

the average degree of the network), then all players in a network have the same decision

strategy: they will all adopt the technology or nobody will, they will all partake in crime

or nobody will, etc. Networks that are symmetric (such as the circle or the complete

network), but also many networks that are asymmetric, such as stars, satisfy this property.

The ensuing model employs the tools of global games embedded into a network game.

Players’ positions in the network define their preferences over the action choices of others.

Using the language of technology adoption, the total value an agent receives from adopting

the technology is increasing in the technology’s underlining value (the state) and in the

adoption by neighbors. Agents receive noisy signals informing them of the state. In

equilibrium, agents further use their private information to infer the observations and

actions of neighboring agents, and anticipate the ultimate value they will enjoy from

adopting the technology.

The classic equilibrium selection of global games obtains. In our setting with bi-

nary actions, the equilibrium selected in the noiseless limit comes in the form of cutoff

strategies. Each agent adopts the technology when their private signal exceeds their equi-

librium cutoff, a cutoff determined by the agent’s position in the network. We explore the

role of the network’s architecture in determining who coordinates their adoption choices

with whom. The analysis begins by calculating limiting cutoffs, which allocate play-

ers to coordination sets. These coordination sets are defined by path-connected agents

taking a common cutoff strategy. The analysis then provides necessary and sufficient
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conditions for all agents to inhabit a common coordination set. To establish this char-

acterization, we construct a network flow problem, and apply Gale’s Demand Theorem

(see Gale (1957 [23])) to establish a balance in incentives to adopt across all members of

the coordination set.1

To study the role of network structure, we first consider the case of homogeneous values

where the network alone introduces (ex ante) heterogeneity across agents. We give an

exact condition for which a single coordination set exists in the network. This condition

says that the network structure must be balanced, that is, that the average degree of

each sub-network (composed of any nonempty subset of agents in the network) is not

greater than the average degree of the original network. To understand this, consider any

core-periphery network, with regular core of degree dc and size nc, and with np periphery

nodes, each connected to k core nodes symmetrically. This graph is balanced if and only

if dc ≤ 2k, which means that either the core is not very dense (as, for example, in a star

network), or the number of links to the core is very large. Otherwise the periphery agents

will have a strictly higher cutoff than the core agents and there will be more than one

coordination set.

This network characterization to global coordination implies that under homogeneous

values, remarkably, agents with arbitrarily different degrees may belong to the same co-

ordination set. For example, in a star network, regardless of the number of peripheral

agents, all agents coordinate together in the limit, meaning that they adopt the technol-

ogy under the same set of states.2 To better understand this result, near the noiseless

limit equilibrium cutoffs for the center and the peripheral agents must lie within each

others’ noise supports. Therefore, in the limit, the center and periphery agents must take

identical cutoff strategies. Upon increasing the size of the core, network effects within

the core become sufficiently reinforcing so that the core agents may take a strictly lower

cutoff than the peripheral agents. In fact, the selection of an equilibrium that exhibits

a common cutoff across all agents within the network is shown to extend to all regular

networks, tree networks and regular-bipartite networks.3 For regular networks, the ho-

mogeneity of degree leads to a common cutoff. In trees, it is the absence of multiple

cycles (closed walks) which guarantees a common cutoff. In regular-bipartite networks,

1Online Appendix D.3 generalizes the characterization to describe common coordination among sub-
sets of agents. The intuition of balanced incentives to adopt generalizes.

2Indeed, using the notations above, for the star network, dc = 0 < 2k = 2, so this network is balanced.
3A formal definition to regular-bipartite networks is provided in Section 6. A common cutoff is also

shown to obtain in networks that have at most one cycle (e.g. trees) and those that have at most four
agents.
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the short side of the network modulates the cutoff shared by both sides.

The robust coordination exhibited in the model is no less interesting when multiple

cutoffs obtain. As an initial illustration of this, we provide conditions under which ad-

ditional links between coordination sets impose zero influence on the equilibrium play

of the coordination set taking a lower cutoff. For example, as a lone peripheral agent

sequentially links to a clique, each link influences the lone agent’s cutoff while the clique

remains unaffected, until a threshold number of links are established, after which the

full network begins to coordinate together. We explore these properties in help-decision

networks in rural India and in friendship networks in the U.S.

Upon introducing heterogeneous values, we extend and more broadly characterize

the robust coordination described under homogeneous values. First, the attainment of a

common cutoff within each coordination set is shown to be robust to perturbations to the

intrinsic (state independent) value of the technology to any given agent. Holding fixed

other parameters of the model, we characterize the range of intrinsic values that support

an agent’s coordination with her coordination set. The size of this support is shown

to be strictly increasing in the relative size of network effects: coordination becomes

increasingly sticky as network effects strengthen. Perturbations are shown to influence

equilibrium adoption only across members within the perturbed agent’s coordination

set. Thus, the contagion of such perturbations extends within coordination sets, but

discontinuously drops to zero across coordination sets: contagion is contained. On the

contrary, large changes to intrinsic values can alter the composition of coordination sets

across the network.

We explore the welfare and policy implications of the model. We derive the marginal

gains to a policy designer aiming to maximize (i) ex-ante adoption and (ii) welfare (i.e.

the benevolent planner) across the network, via subsidizing the adoption of one agent.

We show that the marginal impact of these targeted policies become independent of the

particular target chosen from the target’s coordination set. That is, optimal policy design

becomes a problem of targeting a given coordination set rather than a particular agent.

For policies maximizing ex-ante adoption, the designer faces the following tradeoff.

If she subsidizes adoption within large interconnected coordination sets where strategic

contagion is relatively broad, the influence of the intervention on the targeted coordination

set will be limited due to the stickiness of coordination. That is, while the intervention

reaches a large set of agents, the impact of the intervention on each member decreases

with the total number of agents coordination together (i.e. the size of the coordination

set). We show that in the limit these effects perfectly balance, with the planner’s objective
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reducing to a function of only the targeted coordination set’s equilibrium cutoff.

The tradeoffs faced by the benevolent planner are more complex. The contagion-

versus-sticky-coordination tradeoff remains. In addition, however, policy interventions

also impose positive (expected) externalities on agents adjacent to the target’s coordi-

nation set and who take lower cutoffs, though having no influence on their equilibrium

behaviors. This establishes a fundamental wedge between the objectives of planners aim-

ing to maximize adoption versus ex-ante welfare. Now, the benevolent planner must

account for the direct impact on the target’s welfare, the value from contagion across

the target’s coordination set, and the positive externalities to adjacent agents in other

coordination sets. Despite this complexity, as with the adoption-maximizing target, the

welfare-maximizing target is shown to depend only on which coordination set the target

inhabits, and not the target’s particular location within the coordination set. Strikingly,

under homogenous values and some conditions on primitives, the adoption- and welfare-

maximizing target coordination sets take opposite extremes, the former being the highest

coordination set (where agents take the highest cutoff), and the latter being the lowest

coordination set, which takes the lowest cutoff.

The paper is organized as follows. In the next section, we relate our paper to the

relevant literature. Section 3 provides some examples to motivate our analysis. Section

4 introduces the model. Section 5 solves for the limiting equilibrium in cutoff strategies,

and defines the notion of agent coordination sets. In Section 6, we characterize the

equilibrium when the network structure provides all of the heterogeneity in the model. In

Section 7, we address comparative statics with respect to intrinsic valuations, to formally

describe sticky coordination and contained contagion. Section 8 discusses the welfare

and policy implications for targeted adoption subsidies. Section 9 discusses extensions

and applications to platform adoption, crime, and immigration policy. Finally, Section

10 concludes. All proofs can be found in the Appendix. An Online Appendix collects

extensions and numerical solutions discussed in the sequel.

2 Related Literature

This paper adds to the growing literature on network games.4 Ballester et al. (2006) [5],

and more recently Bramoullé et al. (2014) [10] characterize conditions for equilibrium

4See Jackson (2008) [33] chapter 9, Jackson and Zenou (2015) [35] and Bramoullé and Kranton
(2016) [9] for surveys.
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existence and uniqueness when actions are continuous and best replies are linear.5 Gale-

otti et al. (2010) [25] obtain multiplicity of equilibria in games under more general best

replies, under incomplete and symmetric information of the extended network structure

(beyond own degree).

The present paper takes strategic complements under incomplete information. While

multiple equilibria again obtain under complete information, noisy information of a com-

mon fundamental state provides a unique equilibrium selection in the noiseless limit of

our game. Also, in terms of policy implications, while the literature on network games

advocates to target individual agents in terms of their centrality (key players), in the

current paper, we show that one should target instead key coordination sets.

This paper also adds to a younger literature on network games with incomplete infor-

mation. Calvó-Armengol et al. (2007) [11] and De Marti and Zenou (2015) [18] study the

linear-quadratic setting of Ballester et al. (2006) [5] under the enrichment of a Bayesian

game. Calvó-Armengol et al. (2015) [12], Leister (2017) [37] and Myatt and Wallace

(2017) [45] incorporate endogenous investment in signal precision in these settings. And

in a different vein, Hagenbach and Koessler (2010) [31] and Galeotti et al. (2013) [24]

study cheap-talk in networks. Golub and Morris (2017a,b [29,30]) study consistency and

convergence in higher order expectations in Bayesian network games under linear best

replies.

The current paper diverges from these contributions by focusing the analysis near and

in the noiseless limit, and taking actions to be binary.

Carlsson and van Damme (1993) [13] first exhibited this selection devise for global

games of two players and two actions.6 Frankel et al. (2003) [22] extend the result

to arbitrary games of strategic complements. In a two-sided environment, Morris and

Shin (1998) [41] provide closed forms to their common limit-equilibrium cutoff, toward

studying the interaction of a government defending a currency from a continuum of

currency speculators.7 Sákovics and Steiner (2012 [50]) study policy impact in a global

game with a continuum of agents who value an agent-weighted average action. Dai and

Yang (2017) [16] study a similar model to Sákovics and Steiner (2012) in which the

continuum of agents carry private information regarding idiosyncratic costs of adoption,

incorporating multiple cutoffs in the noiseless limit. In this setting, the authors focus on

the role of organizations in mitigating miscoordination.

5These conditions involve bounding eigenvalues of transformations of the network’s adjacency matrix.
6They show the risk-dominant equilibrium to be selected in these games.
7Related applications include crises and banks runs; see Dasgupta (2004) [17], Goldstein and Pauzner

(2004, 2005) [27] [28], and Rochet and Vives (2004) [49].
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Compared to this literature, our main contribution is to characterize properties of

the cutoffs as a function of the network structure and then to partition players into

coordination sets of players, i.e., set of players where all members take a common cutoff

strategy and are path connected. We are also able to show under which condition of

the network structure a single coordination set exists. Furthermore, our policy analysis

contrasts adoption-based with welfare-based policies to establish a basic wedge between

the two benchmarks, a wedge which only obtains under multiple cutoffs.8

Our results also bare on those of the network contagion literature. Chwe (2000) [14],

Morris (2000) [40], and recently Jackson and Storms (2017) [32] study coordination games

on a network under complete information9, focusing on variants of network “cohesion”

(Morris 2000) to characterize equilibrium adoption. These settings are similar to ours in

the sense that agents decide to adopt or not under the presence of network externalities,

but differ in the sense that, here, payoffs depend on a common unobserved state. While

connectivity within agent sets similarly plays an important role in the present model, the

global games selection of a unique equilibrium gives an elementary departure from these

works.10 Elliot et al. (2014) [21] and Acemoglu et al. (2015) [3] model the clearing of

liabilities between institutions. The contagion of the ensuing model offers an alternative

prediction to the spread of perturbations over the network, while incorporating strategic

play, be it under a more elemental machinery.

3 Motivation

The basic question driving this paper is as follows. When agents’ adoption of a technology

affects the technology’s value experienced by others, which agents will tend to adopt

together? Consider for example the network of agents depicted in Figure 1. Assume that

the value of the technology to any two connected agents, such as agents 1 and 2, increases

when the agents simultaneously adopt. And, assume that all agents perfectly observe the

state of the world, defined by a common component to the technology’s value.

Now consider agents 1 and 3. Agent 3, like agent 2, takes a more central position

8Sákovics and Steiner find the optimal adoption-minimizing subsidy targets agents with high influence
while being relatively uninfluenced by others.

9Chwe (2000) does incorporate two idiosyncratic states “willing” and “unwilling” (to adopt), but
focuses on network properties sufficient for adoption by all willing agents independent of others’ states.

10In a setting similar but more general than Morris (2000) [40] where an infinite population of players
interact locally and repeatedly, Oyama and Takahashi (2015) [47] determine when a convention spreads
contagiously from a finite subset of players to the entire population in some networks.
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1

2

3

Figure 1: Who coordinates with whom?

in the network than does agent 1, who is positioned on the periphery. Given agent 3’s

advantageous position, having 7 times the degree of agent 1, will she adopt in strictly

more states than agent 1? As is common in games with peer effects and two actions,

multiple Nash equilibria obtain under complete information. And indeed, there will exist

multiple equilibria in which player 3 and her neighbors (other than 2) adopt more often

than agents 1 and 2, by coordinating together when agents 1 and 2 do not.11

As is well studied by the global games literature, if the quality of the technology

(state of the world) is unknown and agents observe private signals of the state, with

even the mildest noise, things change considerably. In particular, a unique equilibrium

obtains upon introducing this mild strategic uncertainty into the environment. And in the

noiseless limit, a unique Nash equilibrium of the complete information game is selected.

What can we say about the properties of this equilibrium selection?

Currently, there is no prediction in the literature regarding exactly who, as a function

of agents’ position in the network, take a common action together in the noiseless limit.

The main methodological contribution of this paper is to give an exact prediction by

putting forward the notion of coordination sets, which gives an endogenous unique parti-

tioning of the agents in a network. Agents within a coordination set are path connected

within the coordination set and adopt the technology together.

The impact of incomplete information on synchronizing adoption in the network can

11In fact, there exists a continuum of such equilibria, each defined by the cutoff 1 and 2 coordinate on.
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be extensive. As the sequel will show, all agents in tree networks (i.e. networks without

any cycles) and in networks with at most one cycle (as in Figure 1) will adopt the

technology simultaneously in the noiseless limit. As depicted in Figure 2, in the noiseless

limit and for some unique, common threshold, all agents in the network will not adopt

when the state is below this threshold, and will all simultaneously adopt upon the state

rising above this threshold.

(a) low technology value: no adoption. (b) low technology value + “epsilon”: all adopt.

−→

Figure 2: Global coordination.

The intuition behind this result is as follows. In equilibrium, when agents hold noisy

signals of the technology’s value, conditional expectations of others adopting must be (in

some sense) consistent. This means that if one agent adopts under low states when a

neighbor does not, the two neighbors must place probabilities zero and one, respectively,

on the other adopting under these states. One can show that for the network structure

in Figure 1 there is never a division of agents, with agents in one subset adopting and in

the other not adopting, such that consistent expectations can be maintained. Therefore,

in the noiseless limit, all agents must coordinate on adopting the technology together. In

this paper, we will solve for the exact threshold at which this global adoption occurs.

Importantly, while this example may suggest that the network structure is incon-

sequential in determining who coordinates with whom, indeed the full structure of the

network is crucial to deriving agents’ coordination sets.12 In particular, we show that mul-

tiple coordination sets obtain if and only if there is imbalance in average-local network

effects across different locations of the network.13 We show that once the coordination

12While the prior literature has focused on aggregative games to describe a common cutoff, here, the
network of local interactions allows for a characterization of coordination sets.

13Section 6 formally defines our notion of network balance.
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sets are determined from the network structure, this partition serves as a basic statistic

shaping the properties of equilibrium play.

The implications for policy are reaching. First, if we empirically test coordination in

networks, we need to have a unique equilibrium. Our framework supplies this. Second,

we need to have predictions regarding who is and is not adopting under various states,

and what properties of the environment affects this. Our framework supplies these rela-

tionships. The conclusions will be seen far distant from many policies suggested in the

literature. In the context of microfinance, for example, Banerjee et al. (2013) advise

adoption subsidies toward the agents with the highest eigenvector centrality. In Figure

1, agent 3 has a much higher eigenvector centrality than agent 1.14 Contrary to these

classical results, in Section 8, we show that optimal targeting is not about targeting indi-

viduals, but rather about targeting an optimal coordination set. If we follow eigenvector

targeting, in our model, the policy impact in the example is exactly the same, indepen-

dent of whether the subsidy goes to agent 3 (the center) or agent 1 (the periphery), or

any other agent in this network. More generally, subsidies will increase the frequency

of adoption by all agents within the target’s coordination set, but at most increase the

expected value of the technology enjoyed by agents (when they adopt) that are adjacent

to the target’s coordination set. Therefore, identifying the key coordination set requires

accounting for large aggregate strategic effects within a coordination set while internaliz-

ing any external effects on adjacent agents’ values. These basic tradeoffs become central

to policy design. As a result, compared to the literature on games on networks (Jack-

son and Zenou (2015) [35]), which advocates to target key players in order to maximize

adoption by others (Banerjee et al. (2013) [2]), here we put forward the importance of

key coordination sets.

4 Model Setup

A finite set of agents N simultaneously choose whether or not to adopt a technology.15

ai ∈ {0, 1} will denote agent i’s choice to adopt. The components of the model are defined

as follows. We reserve bold symbols to denote vectors (e.g., a := (a1, . . . , a|N |)).

Payoffs. Payoffs from adopting the technology depend on the underlying fundamental

14Agent 3 has the largest eigenvector centrality 0.522, while agent 1 has eigenvector centrality 0.071.
15For the sake of the exposition, we use the example of technology adoption but, of course, all results

subsume arbitrary binary action sets.
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state θ, continuously distributed over bounded, interval support Θ ⊆ R. Moreover, the

agents are connected via a network G = (N,E). E defines the set of edges between

unordered pairs ij taken from N . We assume a connected and undirected graph: i ∈ Nj

if and only if j ∈ Ni, where Ni := {j : (i, j) ∈ E} is the set of i’s neighbors, and di := |Ni|

her degree. Then, each i obtains the following payoff from adopting (ai = 1):

ui(a−i|θ) = vi + σ(θ) + φ
∑

j∈Ni

aj (1)

where vi ∈ R, σ : Θ 7→ R, and φ > 0. vi gives the intrinsic (state independent) value

to i from adopting, σ the state dependent value, with each of i’s neighbors’ adoption

positively influencing the technology’s value. σ(θ) is assumed to be differentiable and

strictly increasing in θ. The network effect φaj in (1) captures the positive externality

that j’s adoption imposes on i, while φ uniformly scales the size of network effects. The

value to each agent from not adopting the technology is normalized to zero.

Dominance Regions. For each i, we assume vi, σ and φ are such that there exist θi and θi

such that vi+σ(θ)+φdi < 0 when θ < θi and vi+σ(θ) > 0 when θ > θi. Thus, there exist

dominant regions [minΘ, θ] and [θ,maxΘ], with θ := mini{θi} and θ := maxi{θi}, such

that not adopting and adopting the technology (respectively) are dominant strategies

for all players. When the realization of θ is common knowledge amongst agents, with σ

continuous in θ and φ > 0, there can exist a strictly positive measure of θ realizations

within [θ, θ] at which multiple pure strategy Nash equilibria occur.

Information Structure. In the perturbed game, θ is observed with noise by all agents.

Each i realizes signal si = θ + νǫi, ν > 0, where ǫi is distributed via density function

f and cumulative function F with support [−1, 1]. All signals are independently drawn

across agents conditional on θ. For each ν > 0, we write G(ν) the corresponding global

game.16,17

16The assumption of a common noise structure is without loss of generality as the limit-equilibrium
selection is robust to arbitrary, idiosyncratic Fi. Moreover, all results in the limit hold under unbounded
supports (e.g. Gaussian state and noise).

17As is standard in the global game literature, we assume agents hold a dispersed prior of θ; see
Sákovics and Steiner (2012 [50]) for discussion. This is inconsequential for the equilibrium selection and
properties in the limit ν → 0.
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5 Characterizing the Limit Equilibrium

G(ν) gives a Bayesian game of strategic complements between agents. Agent i chooses

(possibly mixed) signal-contingent strategy πi : S 7→ [0, 1], mapping each signal realiza-

tion to the likelihood i adopts. We write π := (π1, . . . , πN). For ν > 0, define i’s cutoff

strategy at ci ∈ S by:

πi(si) :=

{

1 if si ≥ ci

0 if si < ci
.

Given cutoff strategy π−i (at ci) and conditional on signal realization si, i’s expected

payoff from adopting is given by:

Ui(π−i|si) := Eθ

[
Es−i

[ui(a−i|θ) |π−i, θ ]
∣
∣ si
]

= vi + Eθ [σ(θ)|si] + φ
∑

j∈Ni

Eθ

[
Esj [πj(sj)| θ]

∣
∣ si
]

(2)

That is, i takes expectations of the technology’s state-dependent value and of her neigh-

bors’ actions, conditioning on her private signal si. Then, a Bayesian Nash Equilibrium

π
∗ of G(ν) in cutoff strategies satisfies Ui(π

∗
−i|si = c∗i ) = 0 for all i ∈ N , with each

i indifferent between adopting and not adopting when observing signal si equal to her

equilibrium cutoff c∗i . Frankel et al. (2003) [22] Theorem 1 establishes uniqueness of a

limiting equilibrium in general global games of strategic complements.18 Indeed, in set-

tings with binary actions, a pure Bayesian Nash Equilibrium in cutoff strategies obtains,

which implies the unique limit equilibrium is also in cutoff strategies. Online Appendix

B formally discusses existence and uniqueness of the limit equilibrium.

Any Bayesian Nash Equilibrium π
∗ can now be equivalently characterized by its

cutoffs c∗. Moreover, we can characterize the unique limit equilibrium limν→0 π
∗ of G(0)

by solving for the limiting state cutoffs θ
∗ := (limν→0 c

∗
i )i∈N , with each i choosing to

adopt when θ rises above θ∗i . Calculating cutoffs θ
∗ requires finding a consistent set of

limiting expectations, for each agent, on other agents’ adoption choices. For this, denote

w∗ the limiting expectations placed on neighbors adopting in equilibrium π
∗ when each

agent i realizes signal si equal to her equilibrium cutoff c∗i . Precisely:

w∗
ij := lim

ν→0
Esj [π

∗
j (sj)|si = c∗i ] ∈ [0, 1].

18In their generalized setting, this equilibrium may be in mixed strategies. Our contribution relative
to this is to fully characterize a unique pure-strategy limit equilibrium in binary-action network games
of strategic complements.
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We give the following lemma.

Lemma 1. For each (i, j) ∈ E, the following identity holds:

w∗
ij + w∗

ji = 1. (3)

Moreover, if θ∗i < θ∗j , then

w∗
ij = 0, and w∗

ji = 1. (4)

To interpret (3), consider the special case when ci = cj = c∗ near the noiseless limit.

A signal realization of si = c∗ leaves i placing a fifty-fifty gamble on j adopting. This

probability weighting persists in the noiseless limit, as captured by w∗
i = w∗

j = 1/2. The

fact that these limiting likelihoods sum to one holds generally, including when c∗i 6= c∗j

in a neighborhood of the shared limit cutoff θ∗i = θ∗j = θ∗. For (4), when θ∗i < θ∗i , then

indeed, agent i places a zero percent likelihood on j adopting and j places a 100 percent

likelihood on i not adopting when each realizes their respective cutoff.

Now, define the set of feasible weighting functions for G:

W = {w = (wij, (i, j) ∈ E)|wij ≥ 0, wji ≥ 0, wij + wji = 1; ∀(i, j) ∈ E}.

Clearly, W is compact, convex, and isomorphic to [0, 1]e(N), where e(N) denotes the

number of links in G. Note that (3) implies w∗ ∈ W . For each i ∈ N , given intrinsic

value vi, scale factor φ and edges E we can define the affine mapping Φi : W → R:

Φi(w) =: vi + φ
∑

j∈Ni

wij, ∀i ∈ N. (5)

Let Φ(W) ⊂ R
n denote the image of W under the mapping Φ. Given linearity of Φ(·),

Φ(W) is a compact, convex polyhedron. Denote 〈·, ·〉 the inner product in R
n and ||x−

y|| :=
√

〈x,y〉 the Euclidean norm. The following theorem is used to calculate the limit

cutoffs θ∗.

Theorem 1. For any v, φ, and network G, the equilibrium limit cutoffs θ∗ are given by:

σ(θ∗i ) + q∗i = 0, ∀i ∈ N, (6)

where q∗ = (q∗1, · · · , q
∗
n) is the unique solution to:

q∗ = argmin
z∈Φ(W)

||z||. (7)
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Theorem 1 gives the equilibrium cutoff value for each agent i. It is very powerful because

it determines exactly which agents will adopt and which ones will not for each θ, for any

arbitrary network structure G and any vector of intrinsic valuations v. The solution of

Theorem 1 is expressed in terms of q∗, which maps one-to-one to and is monotonically

decreasing with θ
∗, as defined by (6). Strikingly, q∗ solves a simple quadratic program

with linear constraints, as defined by (7). q∗ maps back to weighting matrix w∗, via

Φ(·). That is, q∗ = Φ(w∗). Note that Lemma 1 guarantees that q∗ satisfies the necessary

condition of belief consistency. Even more, these conditions with the agents’ indifference

conditions are sufficient for q∗ to solve program (7) of Theorem 1.

More generally, to characterize the (noiseless) limit equilibrium cutoffs, we proceed in

three steps. First, we have Lemma 1, which characterizes a key property of beliefs for

any two players i, j. Then, we use this belief property to pin down the equilibrium signal

cutoffs in the limit (as ν → 0). Such cutoffs need to satisfy the system of indifference

conditions:

vi + σ(θ∗i ) + φ
∑

j∈Ni

lim
ν→0

E[π∗
j (sj)|si = c∗i ] = 0, ∀i ∈ N.

The third step is stated in Theorem 1. To characterize equilibrium cutoffs, we use the

above property of beliefs (Lemma 1) to show that solving the system of indifference

conditions is equivalent to solving a quadratic program with linear constraints. Indeed,

the minimization program (7) in Theorem 1 solves for a set of cutoffs by way ofminimizing

miscoordination in adoption across agents, in a manner which is compatible with a set of

consistent beliefs.

For any agent subset S ⊆ N , denote ES the subset of edges in E corresponding

with the subgraph GS := (S,ES) of G restricted to vertices S.19 The limit equilibrium

limν→0 π
∗ must then define an ordered partition C∗ := (C∗

1 , . . . C
∗
m̄∗) of N (i.e. ∪mC

∗
m = N

and C∗
m ∩ C∗

m′ = ∅ for m 6= m′). The following notion of a coordination set will account

for both coordination and miss-coordination in general network structures.

Definition 1 (Coordination sets). The limit equilibrium ~π maps to a unique ordered

partition C∗ := (C∗
1 , . . . C

∗
m̄∗) of N satisfying:

1. common adoption: for each m, C∗
m 7→ θ∗m ∈ Θ with θ∗i = θ∗j = θ∗m for each i, j ∈ C∗

m,

and θ∗m ≤ θ∗m′ for each m < m′,

2. within-set path connectedness: for each m, GC∗
m
is connected,

3. coarse partitioning: for each m 6= m′ such that θ∗m = θ∗m′, EC∗
m∪C∗

m′
= EC∗

m
∪ EC∗

m′
.

19Precisely, (i, j) ∈ ES if and only if i, j ∈ S and (i, j) ∈ E.
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Each C∗
m defines a coordination set of agents. By condition 1, each agent within a

coordination set shares the same cutoff, which we are free to order when defining C∗. By

condition 2, these agents are connected via paths within their coordination set. Condition

3, which establishes coordination sets sharing the same cutoff as being disconnected,

ensures that each set is maximally inclusive without violating Conditions 1 and 2.20

The agents’ coordination sets constitute the basic architecture and accompanying

properties of the limit equilibrium. Importantly, the grouping of agents according to

Definition 1 is without loss of generality, as the exhaustive partition (i.e. C = {{i}; i ∈

N}) satisfies conditions 1, 2 and 3, with agents coordinating away from each other by

taking distinct cutoffs. When convenient, m(i) will denote i’s coordination set: i ∈ C∗
m(i).

Upon determining the limiting coordination sets C∗ using Theorem 1 and Definition

1, we can easily recover q∗, as follows. Through the sequel, di(S) := |Ni ∩ S| will denote

the within-degree of i, or the number of edges between i and members of agent set S.

Define for any disjoint agent sets S and S ′:

e(S, S ′) =
∑

i∈S

di(S
′),

the number of edges from S to S ′. And for any agent set S, define:

e(S) =
1

2

∑

i∈S

di(S),

the number of edges between members of S. v(S) :=
∑

i∈S vi denotes the sum of intrinsic

values among members of S. For each C∗
m ∈ C∗ denote

¯
C∗

m := ∪m′<mC
∗
m′ , which includes

all neighbors to C∗
m taking cutoffs below θ∗m . We can now give a reduced characterization

of q∗.

Proposition 1. For each C∗
m ∈ C∗, each q∗i = q∗m, i ∈ C∗

m, where:

q∗m =
v(C∗

m) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m))

|C∗
m|

. (8)

That is, each q∗m gives exactly the average (across i ∈ C∗
m) of vi, plus φ times the average

number of links to agents taking strictly lower cutoffs, plus φ times one-half the average

within-degree di(C
∗
m). With θ∗i = σ−1(−q∗i ) for each i ∈ N (i.e. condition (6)), this

20Conditions 1 through 3 pin only a partial ordering of {C1, . . . , Cm̄∗}, and thus there can be multiple
orderings satisfying the conditions. It is without loss to select one arbitrarily.
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provides a calculation of θ∗ solely in terms of counting intrinsic values and degrees, both

within and across coordination set. Strikingly, Proposition 1 shows that, while G plays

a key rule in determining the limit partition C∗, upon conditioning on C∗ the network

structure within coordination sets plays no role in determining limiting cutoffs. Precisely,

given v(C∗
m), e(C

∗
m, ¯
C∗

m), and e(C∗
m), moving the position of links within C∗

m carries no

impact on θ∗m as long as the coordination sets are not affected. In other words, while

the structure of G plays a global role determining who coordinates with whom, its role is

muted at the local level.

Let us summarize the main results of this section, which we believe is one of the main

contributions of this paper. First, in Lemma 1, we characterize a key property of beliefs

for any two players i, j, that is: E[π∗
i (si)|sj = c∗j ] + E[π∗

j (sj)|si = c∗i ] = 1, in the limit,

with limν→0 E[π
∗
i (si)|sj = c∗j ] = 0 if θ∗i > θ∗j . Then, we use this belief property to pin

down the equilibrium signal cutoffs in the limit; such cutoffs need to satisfy a system of

indifference conditions. Theorem 1 characterizes these equilibrium cutoffs, showing that

consistency in beliefs with the system of indifference conditions imply that the cutoffs

solve a simple quadratic minimization program with linear constraints. This program

effectively minimizing miscoordination over the network in a manner which respects belief

consistency.

It turns out that the vector of cutoffs, q∗, is a projection of the origin onto the compact,

convex space Φ(W), which is the image ofW under the mapping Φ: q∗ = ProjΦ(W)[0], for

0 the vector of zeros in R
n. In the Online Appendix C.1, we provide a simple example for

the dyad network. In this example, solving the minimization program in (7) in Theorem

1 is equivalent to minimize the distance between Φ(W) and the 45 degrees line, that is

where q1 = q2. By setting q∗1 = q∗2 when possible, the two agents can capitalize on each

others’ network effects in all states in which they adopt.

In the Online Appendix C.2, we provide an algorithmic approach for calculating the

limiting coordination sets (see Algorithm 1), by recursively constructing the sets begin-

ning with C∗
1 . Proposition C1 formally establishes the relationship between Algorithm

1 and Theorem 1, showing that the two approaches can be viewed as dual problems.

Theorem 1 calculates q∗ yielding the partition C∗ as a bi-product, while Algorithm 1

constructs C∗ yielding q∗ as a bi-product.

Finally, in Proposition 1, we calculate the cutoff values as a function of the coordina-

tion sets. Indeed, for any set S of connected agents that converge on a common cutoff

θ∗, we can average over expected network effects and apply the belief property to obtain

16



a limiting average network externality between members of S when θ∗ is observed:

∑

i∈S

∑

j∈Ni∩S
φE[π∗

j (sj)|si = c∗i ]

|S|
ν→0
−−→ φ

# edges between agents in S

2|S|
(9)

If we take S = C∗
m, and sum up the indifference condition qi = vi+φ

∑

j∈Ni
wij, we obtain

that:

|Cm|q
∗
m =

∑

i∈C∗
m

qi =
∑

i∈C∗
m

vi + φ
∑

i∈C∗
m

∑

j∈Ni∩C∗
m

wij + φ
∑

i∈C∗
m

∑

j∈Ni∩(N\C∗
m)

wij

The first term is just v(C∗
m) in (8) while the second term is φe(C∗

m) by (9). For the third

term, we need to differentiate between neighbors of agent i who take higher versus lower

cutoffs. By Lemma 1, neighbors with strictly lower cutoff contribute exactly 1 to the sum

while neighbors with strictly higher cutoff contribute exactly 0 to the sum. As a result,

the third term gives the total number of edges from C∗
m to C∗

m. Therefore, as stated in

Proposition 1, we can retrieve limit cutoffs only using the information about the number

of links between coordination sets.

6 Network Characterizations

Throughout this section, we assume homogenous intrinsic values, that is, vi = v for

each i. By imposing such homogeneity, the structure of G solely determines the limiting

coordination sets amongst agents.

6.1 Determining coordination sets

Let us provide necessary and sufficient conditions for a single coordination set in the

network.

Proposition 2 (Single coordination set). Under homogeneous intrinsic values, a single

coordination set exists (i.e. C∗ = {C1}) if and only if the network is balanced, in the

sense that for every nonempty S ⊂ N ,

e(S)

|S|
≤
e(N)

|N |
. (10)

Condition (10) says that a network G is balanced if the average degree of each subnetwork
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GS is no greater than the average degree of the original network G. When G is balanced,

we see from (8) that the common cutoff in the network is θ∗1 = σ−1(−v − φ e(N)
|N |

).21

We can apply Proposition 2 to show a unique coordination set for the following families

of network structures. We say network G is regular if di = d for all i. A tree is any

connected network without cycles. We say network G is a regular-bipartite network with

disjoint within-set symmetric agent sets B1 and B2, with B1 ∪ B2 = N and of sizes

ns := |Bs| and degrees ds := di, i ∈ Bs, for sides s = 1, 2. Note that regular-bipartite

networks satisfy e(N) = n1d1 = n2d2.

Proposition 3 (Single coordination set: examples). Under homogenous intrinsic values,

there exists a single coordination set if G takes at least one of the following properties:

1. is a regular network, or

2. is a tree network, or

3. is a regular-bipartite network, or

4. has a unique cycle, or

5. has at most four agents.

Proposition 3 exhibits the striking extent to which network-wide coordination may obtain.

Members of all trees, regardless of their size and complexity, adopt using a common limit

cutoff. Parts 2 and 4 establish the existence of at least two distinct cycles in G as a

necessary condition for multiple limit cutoffs to obtain in equilibrium. This establishes

trees as the family of network structures exhibiting the highest limit cutoffs. Still, regular-

bipartite networks (and regular networks) may carry arbitrary numbers of cycles, yet all

of these structures yield a unique coordination set.22

Where peer effects within subsets of agent are sufficiently imbalanced across the net-

work, multiple coordination sets arise. The next proposition establishes two basic prop-

erties of the partition C∗ under homogeneous intrinsic values. Denote q̂∗ to give the q∗

at v = 0 and φ = 1.

Proposition 4 (Limit partition homogeneity). Under homogeneous intrinsic values, C∗

is independent of v and of φ. Moreover, q∗ = v1+ φq̂∗.

21See Online Appendix D.3 for the analogous condition incorporating heterogeneous intrinsic values.
22Proposition 3 part 5 can be extended to show that |C∗

1 | ≥ 4 whenever |N | ≥ 4; see Proposition
D2 of Online Appendix D.1. Remark 2 of that section provides general bounds on θ∗1 for tree and
regular-bipartite networks.
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Scaling the size of valuations or network effects has no effects on the limit partition.

Moreover, q∗ is linearly augmented by the size of values v and of network effects φ.

Again, we see that C∗ constitutes the basic structure of the limit equilibrium, in that

coordination across players is invariant to the relative strengths of intrinsic values, state-

dependent value and peer effects.

To summarize, in order to determine the (possible) different coordination sets in a

network, one needs to check that the balanced condition given in (10) is verified.23 If

this condition is verified for each subset of agents, then we know that there is a unique

coordination set with a common cutoff given by (8). If this condition is not satisfied for

at least a subset of agents, then one can either use Theorem 1, which gives an exact cutoff

value for each agent, leading to the determination of agents’ coordination sets, or, use

the Algorithm 1 given in the Online Appendix C.2 to determine the coordination sets.

The following examples illustrate the first approach, and show how multiple coordination

sets can arise. We focus on star and simple core-periphery networks.

Example 1. Figure 3 gives the star and three core-periphery networks of differing core

sizes. In each case we apply Proposition 2, focusing on agent sets which are symmetric

over their respective agents. For these cases, the relevant e(S, S ′) reduce to di(S
′) and

e(S) to di(S) for each i ∈ S. We set v = 0 and φ = 1, giving q∗ = q̂∗.24

For the star, if multiple coordination sets were to exist, the most natural case is for

the center to take a strictly lower cutoff to the periphery. Defining agent set S = {c} we

see that (10) is satisfied with:

e({c})

|{c}|
= dc(∅) = 0 <

3

4
=
e(N)

|N |
. (11)

This implies that when the center takes a strictly lower cutoff in the limit, it does not

enjoy strictly strictly greater expected network effects than the periphery: a contradiction

under homogenous intrinsic values. Upon establishing (10) for all S (inequalities which

are only more easily satisfied), we establish that all members of the star indeed coordinate

together. Note that the analogous inequalities to (11) hold for any arbitrary number of

peripheral agents, establishing that all agents of star networks coordinate on a common

cutoff in the noiseless limit (Proposition 3).

For the triad-core-periphery network depicted, set S = {1c, 2c, 3c}. (10) is now weakly

23This is when agents are ex ante identical in terms of intrinsic valuation of the technology; when they
are ex ante heterogeneous, condition (D2) in the Online Appendix D.3 provides the equivalent condition.

24Given independence of C∗ in v1 and φ by Proposition 4, this is without significant loss of generality.
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(a) Star network.
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(c) Quad-core-periphery network.
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Figure 3: Coordination and network structure.

satisfied:
e({1c, 2c, 3c})

|{1c, 2c, 3c}|
=

3

3
=

6

6
=
e(N)

|N |
.

That is, the core and periphery hold equivalent expected network effects when the core

takes a lower cutoff. As with the star, this violates the premise that the core takes a lower

cutoff.

Once the size of the core exceeds three, as with the quad-core-periphery network, the

expected network effects within the core suffice for it to break away from the periphery.
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We violate (10) by setting S = C∗
1 = {1c, . . . , 4c}:

e(C∗
1)

|C∗
1 |

=
6

4
>

10

8
=
e(N)

|N |
,

for each j = 1, . . . , 4, and thus each periphery agent is in its own coordination set, C∗
2

through C∗
5 .

This is similar for the Large core-periphery network. Here, we can use Theorem

1,25 which calculates the q∗m’s provided in Figure 3, which from Definition 1 imply that

C∗
1 = {1c, . . . , 6c}, C∗

2 = {r}, C∗
3 = {1q, 2q}, with each periphery agent jp, j = 1, . . . , 4

inhabiting their own coordination sets C∗
4 , . . . , C

∗
7 . Note that the number of peripheral

cliques connecting to the core, each taking a local structure depicted in Figure 3, is in-

consequential to the equilibrium cutoff of the core. This is precisely because core agents,

upon observing their cutoff, place probability zero on all periphery agents adopting.

Extending beyond Example 1, consider any core-periphery structure with regular core

of degree dc and size nc, and with np periphery agents, each connected to k core agents

symmetrically. This graph is balanced if and only if dc ≤ 2k. Either the core is not very

connected, or the number of links to the core is very large. Otherwise the periphery agent

will have a strictly higher cutoff (i.e. adopt less often) than the core agents.

6.2 Coordination in real-world networks

Here we explore our model’s prediction in four examples of small real-world networks. We

consider three components from the “help decision” network26 in rural India studied in

Banerjee et al. (2013) [2], and the friendship network of adolescents in the United States

sourced from the Add Health data set. Figure 4 depicts coordination in each of these

networks. In each network, vi is set to zero for each i and φ = 1. Each coordination set’s

q∗m (from Theorem 1) is provided with each figure and different colors indicate different

coordination sets.

We see that multiple coordination sets can obtain in small networks. For example,

with the Banerjee et al. (2013) data, in network 2, there are six coordination sets from

only twenty agents in total. Note the presence of one cycle in the Add Health network,

which implies that agents coordinate on a common cutoff (see Proposition 3). Applying

25Algorithm 1 given in the Online Appendix C.2 can alternatively be used; the Online Appendix steps
through the algorithm for the Large core-periphery network example.

26The exact question is: “If you had to make a difficult personal decision, whom would you ask for
advice?”.
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(10) of Proposition 2, in this network, an equilibrium q∗1 = 1 obtains given that the

number of links is equal to the number of agents. Upon deleting one link within the

cycle, global coordination would persist with q∗1 dropping to e(N)
|N |

= 22
23
.

These real-world network examples show that it is not immediately apparent which

agents will coordinate by a casual inspection of the network’s structure. For example,

the Add Health network is as irregular as the other networks but the adoption decisions

are very different. Our analysis demonstrates that network effects are crucial in adoption

decisions, which are captured by coordination sets. The latter, however, are not derived

from standard centrality measures, network density, clustering coefficient, etc., used in

the network literature. Indeed, in standard network games with strategic complemen-

tarities (e.g. Ballester et al. (2006) [5]), actions are aligned with individual’s centrality.

Our analysis changes this perspective by looking at a more aggregate measure: the coor-

dination set. For adoption decisions, it is not the individual centrality that matters but

the coordination set the agent belongs to. Even more, as the following section shows,

the coordination set a player belongs to will define exactly how she responds to policies

targeting individuals’ incentives to adopt.

7 Intrinsic Valuations Comparative Statics

In what follows, we reintroduce heterogeneous vi. Our balanced-network characterization,

Proposition 2, generalizes to this more general framework; see Proposition D4 of Online

Appendix D.3.

We consider changes to intrinsic values v, which may be the result of exogenous

factors or the introduction of adoption-subsidization policies. In particular, we would

like to investigate how changes in intrinsic values to one agent reverberate through that

agent’s entire coordination set. The first result shows that each member adjusts their

cutoffs in step, independent of their network position within the coordination set.

Proposition 5 (Local contagion). In the limit, the mapping q∗(v) is piecewise linear,

Lipschitz continuous, and monotone. For generic v, when i, j ∈ Cm and k /∈ Cm, then:

∂q∗j
∂vi

=
1

|Cm|
, and

∂q∗k
∂vi

= 0, (12)

This proposition shows that increasing vi, the instrinsic value for the technology of agent

i belonging to coordination set Cm, reduces the common cutoff value θ∗m for all agents

22



(a) Banerjee et al. (2013) network 1
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(b) Banerjee et al. (2013) network 2
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(d) Add Health friendship network
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Figure 4: Coordination in real-world networks.

in the coordination set Cm so that all these individuals are now more likely to adopt.27

Strikingly, the effect of increasing vi lowers cutoffs at a rate inversely proportional to

the size of the coordination set, |Cm|. That is, as the number of agents coordinating

together increases, with each additional agent imposing strategic uncertainty on other

members near the limit, the coordination set responds more slowly to a given increase in

vi. Another observation is that, for any i, i′ ∈ Cm, we have
∂q∗

l

∂vi
=

∂q∗
l

∂vi′
= 1

|Cm|
if l ∈ Cm,

∂q∗
l

∂vi
=

∂q∗
l

∂vi′
= 0 if l /∈ Cm. In other words, the comparative statics results for any

two agents in the coordination set Cm are exactly the same (see Proposition 7 for an

illustration of this result to some policy problems). Again we see the local network

27Note the one-to-one inverse relationship between q∗j and θ∗j , given by σ(θ∗j ) + q∗j = 0, so that when

partial
∂q∗j
∂vi

exists,
∂θ∗

m

∂vi
=

∂q∗m
∂vi

−1
σ′(θ∗

j
) .
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structure becomes muted in the limit, with (12) dependent on network G only through

it’s determination of limit partition C∗.

Proposition 5 further establishes that a local change in the intrinsic value of the

technology to agent i carries only an influence on members of i’s coordination set, while

having zero influence on adoption strategies of other coordination sets. The intuition

is straight forward: for each C∗
m′ with θ∗m′ 6= θ∗m, when members of C∗

m′ observe signals

si′ ≈ s∗i′ in the perturbed game G(ν), members of C∗
m are either all adopting or all not

adopting the technology, depending on m < m′ or m > m′, respectively. Thus, while vi

carries influence on cutoffs within C∗
m, these strategic effects carry zero repercussion for

coordination within C∗
m′ .

The fact that
∂q∗j
∂vi

> 0 from (12) implies that
∂c∗j
∂vi

< 0 near the limit, by equilibrium

cutoffs c∗ continuously differentiable in v and in ν. Moreover, we can show that the

discontinuous drop-to-zero in contagion across coordination sets persists near the limit.28

Remark 1. Near the limit, for k /∈ Cm(i),
∂c∗

k

∂vi
= 0 when ν < ν̄ for some ν̄ > 0.

Regardless of the proximity of any two (connected) coordination sets’ limit cutoffs, as ν

diminishes the noise supports of agents positioned across the two coordination sets must

ultimately separate, leaving each agent’s cutoff locally invariant to subsidies to a member

of the other set.29

The limiting coordination sets inevitably adjust as v is significantly shifted in a given

direction. Lipschitz continuity in q∗(v) assures that the limit cutoffs do not discontin-

uously jump as we continuously change v, including when the coordination sets adjust.

The next result shows that as the network interactions are strengthened, the range of

intrinsic values that support coordination amongst agents expands. This characterizes a

stickiness in coordination as a result of network effects.

Take any G, v and φ, and resulting limit partition C∗. Then, for any i ∈ N denote:

v̂∗i (v−i) := argmax{vi : θ
∗
i = θ∗j , j ∈ C∗

m(i)\{i};v−i},

ˇ
v∗i (v−i) := argmin{vi : θ

∗
i = θ∗j , j ∈ C∗

m(i)\{i};v−i}.

That is, [
ˇ
v∗i (v−i), v̂

∗
i (v−i)] gives the ranges to i’s intrinsic values that support i and mem-

bers of C∗
m(i)\{i} (for at least one j ∈ C∗

m(i)\{i}) coordinating on the same limiting

28Remark 1 requires agents’ signal noise to be bounded. If, instead, signal noise follows a Gaussian
distribution, for example, Proposition 5 obtains only in the limit.

29A formal proof of Remark 1 is provided with Online Appendix D.3.
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adoption cutoff, holding v−i fixed.30 When C∗
m(i)\{i} coordinate on a common cutoff

θ∗m(i) over all vi ∈ (v̂∗i (v−i),
ˇ
v∗i (v−i)), then v̂∗i (v−i) = argmax{vi : θ∗i = θ∗m(i);v−i} and

ˇ
v∗i (v−i) := argmin{vi : θ

∗
i = θ∗m(i);v−i}.

31 The next result shows that v̂∗i (v−i) −
ˇ
v∗i (v−i)

increases with the number of links between i’s and her coordination set.

Proposition 6 (Sticky coordination). Take coordination set C∗
m ∈ C∗ with |C∗

m| > 1.

Then for each i ∈ C∗
m:

v̂∗i (v−i)−
ˇ
v∗i (v−i) ≥ φdi(C

∗
m). (13)

When C∗ is constant for vi ∈ (v̂∗i (v−i),
ˇ
v∗i (v−i)), then:

v̂∗i (v−i)−
ˇ
v∗i (v−i) =

|C∗
m|

|C∗
m| − 1

φdi(C
∗
m). (14)

Expression (13) establishes that v̂∗i (v−i)−
ˇ
v∗i (v−i) is strictly positive and bounded below

by φ times the number of neighbors i has in C∗
m. i’s coordination with agents in C∗

m(i)

becomes more robust as network effects increase, either through an increase in φ or

from additional links placed between i and members of C∗
m(i). When C∗ is constant

over vi ∈ (v̂∗i (v−i),
ˇ
v∗i (v−i)) (that is, all coordination sets do not change as vi varies in

the interval [
ˇ
v∗i (v−i), v̂

∗
i (v−i)]), then v̂∗i −

ˇ
v∗i scales linearly with di(C

∗
m(i)), with slope

increasing in φ and the size of C∗
m(i).

32 This proposition thus shows that, when social

interactions in the network increase –either in number or in scale– the ranges of intrinsic

values that support coordination amongst agents expand.

To interpret (13) and φdi(C
∗
m(i)) as an underlining lower bound to v̂∗i (v−i)−

ˇ
v∗i (v−i),

consider the analogues to v̂∗i (v−i) and
ˇ
v∗i (v−i) near the limit:

v̂∗i (v−i, ν) := argmax{vi : |θ
∗
i − θ∗j | < 2ν, j ∈ C∗

m(i)\{i};v−i},

ˇ
v∗i (v−i, ν) := argmin{vi : |θ

∗
i − θ∗j | < 2ν, j ∈ C∗

m(i)\{i};v−i},

which obtain limν→0 v̂
∗
i (v−i, ν) = v̂∗i (v−i) and limν→0

ˇ
v∗i (v−i, ν) =

ˇ
v∗i (v−i). When vi =

v̂∗i (v−i, ν) in the perturbed game G(ν), c∗i < c∗j for each j ∈ Ni ∩ C∗
m(i), and thus the

likelihoods that i and j place on the other adopting –when realizing signals equal to their

respective equilibrium cutoffs– equal zero and one, respectively. When vi =
ˇ
v∗i (v−i, ν),

30Existence of v̂∗i (v−i) and
ˇ
v∗i (v−i) follow from existence of their counterparts near the noiseless limit,

which obtain by continuity of equilibrium cutoffs in all parameters for each ν > 0.
31The star in Example 2 below satisfies this property. The property can be violated when i is a bridge

between two cliques, and with i = 6 in Example D1 of Online Appendix D.2.
32Observe that regular networks of n agents with vj = v, ∀j 6= i give v̂∗i (v−i)−

ˇ
v∗i (v−i) = nφ.
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then c∗i > c∗j , and the likelihoods that i and j place on the other adopting –realizing signals

equal to equilibrium cutoffs– revert to equal one and zero. Therefore, the difference in

v̂∗i (v−i) and
ˇ
v∗i (v−i) measures the necessary compensation to i’s adoption that offsets the

loss in probability (one) placed on each of i’s neighbors in C∗
m(i) adopting, when moving

between the two extremes.

The following example illustrates these properties for the star network.

0.5 1 1.5 2 2.5
0.56

0.6

0.64

0.68

                     ,

θ∗i

v1p

θ∗c , θ
∗
2p, θ

∗
3p

θ∗1p

Figure 5: Intrinsic values and local contagion: equilibrium cutoffs in the noiseless limit,
versus v1p in the star network.

Example 2. Take the star network with four agents of Figure 3, Example 1. We take

equivalent specifications, but set vi = 1 for i 6= 1p, and vary the intrinsic value from

adopting of the peripheral agent 1, v1p, over [0.5, 2.5]. All calculations are for limit

equilibria. We assume the following specification:33

ui(a−i|θ) = vi − 3
(1− θ)

θ
+
∑

j∈Ni

aj. (15)

Figure 5 plots each agent’s equilibrium adoption cutoff, both for agents c, 2p, 3p (solid

line) and for agent 1p (dashed line). For values of v1p below
ˇ
v∗1p(1) = 2/3, agent 1p lies

outside of the coordination set {c, 2p, 3p}. As v1p rises above
ˇ
v∗1p(1), agent 1p belongs to

the same coordination set as the other agents and thus has the same adoption strategy.

33Note that θ, θ ∈ (0, 1) obtain for all vi, φ > 0.
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When v1p rises above v̂∗1p(1) = 2, agent 1p separates from the others and the agents no

longer coordinate together.

One can verify from Figure 5 that all agents coordinate together for each v1p ∈

(
ˇ
v∗1p(1), v̂

∗
1p(1)). To see this, all agents’ cutoffs in the perturbed game converge on the

common θ∗m as ν → 0, over this range of v1p. As predicted by Proposition 5, expression

(14), v̂∗i (1)− ˇ
v∗i (1) =

4
4−1

(0 + 1) = 1.33 = 2− 2
3
.

The above results establish a stark segmentation across coordination sets. This seg-

mentation obtains both in and near the noiseless limit. As one might imagine, this

carries implications for comparative statics on the network structure G. Proposition D3

of Online Appendix D.2 derives such comparative statics, with respect to inclusion of

additional links into E. The result extends the segmentation to linkage effects, where

links between coordination sets only impact the cutoff of the coordination set taking a

higher cutoff (when the two cutoffs are ordered). Example D1 of that section illustrates

this for networks where one agent bridges two cliques.

The next section considers the welfare and policy implications of our model.

8 Welfare and Policy Implications

Proposition 5 establishes a discontinuity in the effects of perturbations to intrinsic values,

with agents outside of the perturbed agent’s coordination set remaining unresponsive in

equilibrium. Proposition 6 reveals an increased robustness in coordination between agents

to such perturbations as network effects strengthen. Important questions to any planner

remain. In particular, what marginal benefits are realized with adoption subsidies? And,

which agents’ adoption should be subsidized?

To address these questions, we first develop our welfare analysis near the limit, then

quantify the relevant welfare measures as ν → 0. Consider a policy designer with either

of the following two objectives. First, a designer may aim to maximize the aggregate

ex-ante adoption likelihood. Denote by H(·) the marginal cdf of the state θ and H ′(·) its

density. Observe that H(·) defines the planner’s prior in terms of the distribution of the

states of the world θ.34 As a result, such a designer realizes a marginal increase to this

34Note that, as ν → 0, priors play no role for each agent’s adoption decision. See footnote 17 for more
discussion.
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likelihood from increasing vi of:

ma∗i :=
∂

∂vi

∑

j∈N

Es

[
π∗
j

] ν→0
−−→

∂

∂vi

∑

j∈N

Eθ

[
χ(θ ≥ θ∗j )

]
,

χ(·) denoting the indicator function. Alternatively, a benevolent planner may aim to

maximize the ex-ante aggregate welfare across agents. This planner realizes a marginal

gain from increasing vi of:

mw∗
i :=

∂

∂vi

∑

j∈N

Esj [Uj(π
∗|sj)]

ν→0
−−→

∂

∂vi
Eθ




∑

j∈N

χ(θ ≥ θ∗j )



vj + σ(θ) + φ
∑

k∈Nj

χ(θ ≥ θ∗k)







 .

The following obtains.

Proposition 7 (Policy impact). For each C∗
m ∈ C∗ and i ∈ C∗

m:

1.

lim
ν→0

ma∗i =
H ′(θ∗m)

σ′(θ∗m)
, (16)

2.

lim
ν→0

mw∗
i = (1−H(θ∗m)) + φ

(
e(C∗

m, ¯
C∗

m) + e(C∗
m)

|C∗
m|

)
H ′(θ∗m)

σ′(θ∗m)
. (17)

The main result of this proposition is to show that, whether she maximizes aggregate

adoption likelihood or aggregate welfare, the planner needs to target coordination sets

and not individuals. Indeed, it is easily verified that expressions (16) and (17) both

reduce to functions of coordination-set-level variables. That is, in the noiseless limit,

any targeted policy’s aggregate impact, on both adoption and ex ante welfare over the

network, is left independent of the particular choice of target i ∈ C∗
m, that is, for any

i and i′ in C∗
m, limν→0ma

∗
i = limν→0ma

∗
i′ , and limν→0mw

∗
i = limν→0mw

∗
i′ . Optimal

policy design becomes a problem of targeting a given coordination set rather than a

particular agent. This contrasts to the literature on games on networks with strategic

complementarities, where the planner targets key players (Zenou (2016) [56]) to maximize

aggregate welfare or adoption. Here, on the contrary, the planner targets key coordination

sets.

Expression (16) can be interpreted as follows. A subsidy to i’s adoption increases

adoption amongst C∗
m, while carrying zero influence amongst members of other coordina-
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tion sets. The effect on the adoption of each member in C∗
m is inversely proportional to

|C∗
m| by Proposition 5. Therefore, the aggregate marginal effect of these adoption-based

policies is left only as a function of the targeted coordination set C∗
m through the steepness

of H (which captures the probability of occurrence of the state) and σ (which captures

the elasticity of the value of the technology) at θ∗m. As a result, the key coordination set

to the adoption-maximizing planner will yield the cutoff that maximizes H′(θ∗m)
σ′(θ∗m)

.35

To interpret expression (17), first, the aggregate marginal welfare is now decreasing

in θ∗m through the direct effect on target i’s ex-ante welfare, quantified by (1 −H(θ∗m)).

Second, the benevolent planner values the additional externalities between members of

the targeted coordination set, as these agents jointly increase their total adoption. Third,

subsidies to adoption can generate positive welfare gains to coordination sets that may

not contain the target agent i. Precisely, provided an agent j is either in C∗
m(i), or takes

cutoff θ∗j < θ∗i and is a neighbor to a member of C∗
m(i), j then realizes additional value in

all additional state realizations in which her neighbors in C∗
m(i) begin to adopt. Each of

these components factor into the calculation of mw∗
i , stated in (17).

Substituting φ
(

e(C∗
m,

¯
C∗

m)+e(C∗
m)

|C∗
m|

)

= −σ(θ∗m) −
v(C∗

m)
|C∗

m|
into (17), we see that the benev-

olent planner will broadly target low coordination sets, i.e. coordination sets with low

cutoff values, but will penalize coordination sets when exhibiting high average valua-

tion v(C∗
m)

|C∗
m|

. This is precisely because these coordination sets realize high incentive for

adoption without providing adequate network externalities to others.36 Remember that

C∗ := {C∗
1 , . . . , C

∗
m̄∗}. We have the following result:37

Corollary 1 (Key coordination sets). Assume homogenous intrinsic values, uniform

H(·) and σ′(θ) decreasing. Then, the key adoption-maximizing coordination set is C∗
m̄∗,

the highest coordination set, whereas, if v is sufficiently large, the key welfare-maximizing

coordination set is C∗
1 , the lowest coordination set.

In other words, when agents are ex ante identical, H(·) is uniform, v large, and σ(θ)

satisfies decreasing marginal returns, then maximizing adoption leads to target exactly

the opposite coordination set than when maximizing welfare, i.e. respectively, the highest

and lowest coordination set.38 Indeed, when H ′(θ) = 1 (uniform distribution), values of

35The particular shape of this function, and thus the key coordination set, will depend on the particular
application being modeled, and may be arbitrary.

36Appendix Section D.3 illustrates targeting under the heterogeneous intrinsic values of Example 2.
Indeed, this penalty can alter the welfare-maximizing key coordination set.

37When there exists only one coordination set, the targeting problem becomes trivial.
38The conditions in Corollary 1 are sufficient, not necessary, and are, therefore, stronger than what we

need.
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θ are equally likely (i.e., high values of θ are as common as low values of θ) from the

planner’s perspective, while when σ′(θ) is decreasing, there are decreasing returns of the

intrinsic value of state θ. As a result, when maximizing adoption, the planner wants to

target the highest coordination set because these agents have the highest cutoff levels

and thus the most elastic cutoffs due to decreasing returns. On the other hand, when

maximizing welfare, the benevolent planner may want to target the lowest coordination

set because it has the highest number of agents and, if v is large enough, it generates the

largest network effects.

As an illustration, consider σ(θ) in (15) of Example 2, i.e., σ(θ) = −3(1 − θ)/θ and

uniform H(·). Then, for all v > −3, the welfare-maximizing planner targets the lowest co-

ordination set39 while the adoption-maximizing planner targets the highest coordination

set.40 For example, for the large core-periphery network (d) in Figure 3, the adoption-

maximizing planner targets any of 1p, . . . , 4p, as these periphery agents’ cutoff elasticities

are greatest and therefore respond most to the subsidy. The welfare-maximizing planner,

on the other hand, targets any member of the core, 1c, . . . , 6c, where externalities are

most prominent.

In this section, two main messages emerge. First, to maximize aggregate adoption or

welfare, one needs to target coordination sets and not individuals, even though the initial

aim is to subsidize an individual intrinsic value. Second, these two objectives, aggregate

adoption and aggregate welfare, need not lead to the same key coordination set. In

particular, the adoption-maximizing planner’s optimal target strongly depends on the

elasticity of the value of the technology. The welfare-maximizing planner, on the other

hand, incorporates expected externalities borne both within the targeted coordination

set and across to adjacent coordination sets. As such, the key coordination sets that

these two planners identify can be vastly different and, as shown above, depend on the

particular shapes of σ and H.

39Indeed, in the proof of Corollary 1, we derive a sufficient condition for the welfare-maximizing
planner to target the lowest coordination set, i.e., ∂

∂θ∗

m
limν→0 mw∗

i < 0. It is given by: v >

maxm=1,...,m̄∗

{
2(σ′(θ∗

m))2

σ′′(θ∗

m) − σ(θ∗m)
}

. This condition reduces to v > −3 when σ(θm) = −3(1− θm)/θm.
40When H(·) is uniform, for the adoption-maximizing planner to target the highest coordination set,

it suffices to show that σ′′(θ) < 0, which is clearly true when σ(θ) = −3(1− θ)/θ.
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9 Extensions, Variations and Applications

9.1 Extensions and variations

The following extensions of the model are offered. The first two extensions establish that

the unique equilibrium selection is broadly robust to the properties of the noise technology

of the perturbed game. The subsequent extensions and variation of the model, addressing

weighted links, welfare spillovers, and miss-coordination costs (respectively), address the

potential for additional/alternative externalities, either non-strategic (in the former) or

strategic (in the latter).

Unbounded noise

The above model takes agents’ noise supports to be contained within the bounded interval

[−ν, ν].41 The positive and normative implications of the model maintain in the noiseless

limit under unbounded noise. Consider, for example, the perturbed game where θ is

observed with Gaussian noise by all agents: each i observes signal si = θ+ ǫi, where each

ǫi ∼ N(0, ν), ν > 0, and all signals independently drawn conditional on θ. Theorem 1

continues to describe the limit equilibrium ~π.42 Therefore, all limiting characterizations,

including those of sticky coordination, linkage, and local contagion, as well as the model’s

welfare properties are intrinsic to the equilibrium selected from the complete information

game G(0).

Noise-independent selection

The equilibrium selection in the noiseless limit is not sensitive to the commonality of the

noise distribution F . Online Appendix F extends the model setup to establish noise-

independent selection (see Frankel et al. (2003) [22], Section 6).

Weighted links

We can extend our results to allow for edge-weights eij > 0 for each (i, j) ∈ E. In this

extension, noise-independent selection is maintained (See Online Appendix F). All results

41This assumption conveniently yields equilibrium properties near the noiseless limit which are com-
mensurate with the properties of ~π. In particular, local contagion (Remark 1) and the reach of policy
interventions (Proposition 7) extend throughout but remain contained within coordination sets, provided
ν is sufficiently small.

42An analogous proof to Lemma 1 can be constructed. Beyond this, the theorem’s proof is identical.
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can be extended upon adjusting for edge-weights. Online Appendix E further discusses

this extension.

Spillovers

We can incorporate a spillover function wi(a−i|θ) to augment both ui(a−i|θ) and the

payoffs to not adopting (now equal to wi(a−i|θ) instead of zero). Under this extension,

the equilibrium selected in the limit along with all of the positive results remain. The

measure mw∗
i will adjust accordingly to incorporate welfare spillovers, positively and

negatively so when wi(a−i|θ) is positive and negative, respectively.

Miscoordination costs

As an application of the model under heterogeneous values, we can set vi = v − φdi to

give:

ui(a−i|θ) = v + σ(θ)− φ
∑

j∈Ni

(1− aj). (18)

Such a setup may be construed as homogeneous values under miscoordination costs.

In this setting, an inverted analogue of the equilibrium described in Section 6 (under

homogenous values) obtains, with more connected coordination sets taking higher cutoffs.

In equilibrium, agents’ links to coordination sets taking lower cutoffs carry zero weight,

as these miscoordination costs are avoided with probability one. Links to others within

one’s coordination set are penalized according to limit likelihoods placed on the neighbors

not adopting. And, links to coordination sets taking higher cutoffs are penalized with

weights one, with these costs being borne with probability one. Noteworthy, despite this

inversion, global coordination on a common cutoff persists within the network families of

Proposition 3. Online Appendix G addresses this setup in more detail.

9.2 Applications

Here we map either the basic model or its extensions to the three applications offered in

the introduction: Platform adoption, crime, and immigration policy.

Platform and Cryptocurrency Adoption

The adoption of platforms, from new currencies and Blockchain technologies, to online

marketplaces and social media platforms, offer natural applications of our model, provided
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the value to users is increasing in the adoption by neighbors.43 Take, for example, the

adoption by firms to deal in a given cryptocurrency (e.g. Bitcoin).44 The efficacy of

the currency as a medium of exchange is increasing in its adoption by firms that take

counterparty positions in business dealings (e.g. suppliers). Each firm i’s idiosyncratic

value to using the currency can be captured by vi + σ(θ) (i.e. heterogeneous values),

where θ captures the future stability or inflation of the currency. In addition to this

value, i realizes a gain due to neighboring counterparty firms’ adoption φ
∑

j∈Ni
aj.

We can then use our model to derive some interesting results. For example, we can

evaluate under which conditions large coordination sets emerge in equilibrium, which, in

the context of Bitcoin, would mean that some sectors of the economy are more likely

to adopt the currency than others. Also, one can derive policy implications. Bitcoin

advocates can identify key coordination sets to subsidize in order to maximize aggregate

adoption. If a benevolent planner considers the adoption of the currency to be beneficial

to the economy, she can then decide which coordination sets to subsidize in order to

maximize aggregate welfare.

Crime

It is well established that delinquency is, to some extent, a group phenomenon, and the

source of crime and delinquency is often found in intimate social networks of individuals

(see e.g. Sutherland (1947) [51], Warr (2002) [54], Bayer et al. (2009) [8], Dustmann

and Piil Damm (2014) [19]). Indeed, delinquents often have friends who have themselves

committed several offenses, and social ties among delinquents are seen as a means whereby

individuals exert an influence over one another to commit crimes. There are few network

models of crime (see e.g. Ballester et al. (2010) [6]) and, to the best of our knowledge,

no models that combines both explicit network structure and imperfect information on

the probability of being caught in a crime. Let us show how our model captures these

different aspects.

Consider a population of potential criminals. Allow ai = 1 to designate agent i’s choice

to participate in crime. The state of the world θ is unknown and inversely proportional to

the presence of police or security, so higher θ means less police.45 Following Becker (1968)

43For products such as software, mobile phones, video game consoles, etc., there are strong peer-
effects, which are technological in nature: in order to interact, consumers need to adopt technologies
compatible with those of their peers. Network effects are particularly pronounced in product categories
with competing technological standards (see e.g., Van den Bulte and Stremersch (2004) [53]).

44We thank Ben Golub for suggesting this application.
45As in our model, the higher is θ, the more likely someone will adopt, here, commit crime.
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[1], we assume that delinquents trade off the costs and benefits of delinquent activities

when making their criminal decision. The expected delinquency gains to criminal i are

given by:

ui(a−i|θ) =

[

1− pi

(

θ,
∑

j∈Ni

aj

)]

B

︸ ︷︷ ︸

expected benefits

− pi

(

θ,
∑

j∈Ni

aj

)

κ

︸ ︷︷ ︸

expected costs

(19)

where pi(θ,
∑

j∈Ni
aj) is the probability of being caught, B is the benefit of committing

crime (i.e. proceeds from crime), and κ > 0 is the cost of being caught (fine or the cost

of being in prison). Quite naturally, pi(θ,
∑

j∈Ni
aj) is decreasing in θ, as more police in-

creases the probability of being caught, and decreasing in
∑

j∈Ni
aj, as more connections

to criminals increases the technology of committing crime (delinquents improve illegal

practice while interacting with their direct delinquent mates) and thus reduces the prob-

ability of being caught (see e.g. Sutherland (1947) [51] and Warr (2002) [54]). The utility

of not committing crime is normalized to zero.

For simplicity, assume now that pi(θ,
∑

j∈Ni
aj) = 1−ρ(θ)−τ

∑

j∈Ni
aj, where ρ

′(θ) > 0

and ρ(θ) < 1− τdmax (which guarantees that 0 < pi(θ,
∑

j∈Ni
aj) < 1), where dmax is the

maximum degree in the network. Then,

ui(a−i|θ) =

(

ρ(θ) + τ
∑

j∈Ni

aj

)

B −

(

1− ρ(θ)− τ
∑

j∈Ni

aj

)

κ

= −κ
︸︷︷︸

v

+ ρ(θ)(B + κ)
︸ ︷︷ ︸

σ(θ)

+ τ(B + κ)
︸ ︷︷ ︸

φ

∑

j∈Ni

aj.

We are in the framework of our model where the incentive to partake in crime is increasing

in the criminal activity of direct criminal friends, and decreasing on the presence of police

or security.

Compared to the “standard” network crime model with perfect information (Ballester

et al. (2010) [6]), the implications are quite different. First, in the latter, each individual

commits crime according to her (Bonacich) centrality in the network. Here, viewed

through the lens of the results of Section 6, this is not the case. What matters for

criminal decision is the coordination set each individual belongs to. This means that our

model can explain why some neighborhoods exhibit high crime rates while others do not,

even though all individuals are ex ante identical (modulus their network position). Thus,

our model offers a different explanation than the one provided in the crime literature (e.g.

Glaeser et al. (1996) [26]). Here, the fact that the probability of being caught is unknown,
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and individuals affect each other’s decision to commit crime, lead to coordination (and

miscoordination) problems, which result in the endogenous formation of coordination

sets, i.e. different pockets of crime.

Second, the policy implications in terms of crime reduction are very different. In

the standard literature on criminal networks, the planner wants to target key players

(Zenou (2016) [56]), i.e. individuals with high intercentrality so that, once removed from

the network, they reduce aggregate crime the most. Here, the planner want to target

key coordination sets, i.e. the parts of the network where crime participation is most

influential. This implies that our model is more in favor of place-based rather than

individual-based policies as mechanisms to reduce crime.

Immigration Policy

In 2015, more than a million migrants and refugees crossed into Europe. Most of these

migrants, who came from the Middle East and Africa, were illegal. Some European

countries such as Germany and Sweden were positively inclined towards these migrants

whereas other countries, such as Poland and Hungary, were taking strong stance against

any possibility of regularizing them.

We can use our framework to model these different immigration policies by allowing

ai = 0 to designate the government of country i’s choice to take an anti-immigration

(i.e. “isolationist”) stance.46 The relative value of taking an inclusive policy (ai = 1),

in the form of political support from electorates, is captured by σ(θ). θ may measure

a perceived global need for pro-immigration policies, driven by perceptions of foreign

conflict or severity of a refugee crisis. We model the inflow of immigrants into country i

by fi+
∑

j∈Ni
τij(1−aj), with τij > 0 capturing the overflow of migrants into neighboring

country i when j ∈ Ni takes an anti-immigration stance.47 The marginal cost to migrant

flow is given by κ > 0. This gives conditional payoff function:

ui(a−i|θ) = σ(θ)− κ

(

fi +
∑

j∈Ni

τij(1− aj)

)

= −κfi
︸ ︷︷ ︸

vi

+σ(θ)− κ
︸︷︷︸

φ

∑

j∈Ni

τij(1− aj).

46See Mangin and Zenou (2016) [38] for a first model using global games to study illegal migration.
47To interpret, assume density τij of migrants can respond to differences across immigration policies in

i and j by homing between these neighboring countries. A natural assumption is for τij to be proportional
to fi + fj .
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This gives a model of miscoordination costs with weighted edges (see Section 9.1). Here,

countries in regions with many bordering neighbors are predicted to take anti-immigration

stances in more states than countries that are geographically isolated. To avoid the differ-

ent stances on immigration issues mentioned above, our model suggests that the European

Union should have a common immigration policy so that all countries belonging to the

union could coordinate on a common cut-off strategy. Such a common immigration policy

avoids miscoordination costs from excessive migrant flows to pro-immigration countries.

10 Conclusion

This paper studies a coordination model in networks within a global game environment.

Agents simultaneously choose to adopt or not. The value of adoption to each agent

depends on her idiosyncratic value of adoption, on the quality of the technology, and the

number of agents connected to this agent that have adopted the technology. The quality

of the technology is not known to agents. Each agent receives a private signal informing

her of the technology’s quality, and takes a decision. For a range of intermediate signal

realizations, the optimal strategy depends on the expectation of other agent’s adoption

choices. We provide a detailed characterization of the limiting equilibrium in this setting,

as information noise diminishes. At the limit, equilibrium strategies are cutoff strategies:

each agent adopts if the signal received is above a certain cutoff.

The main contribution of this paper is to provide an algorithm that computes the

limiting cutoffs, and to characterize the properties of the cutoffs as a function of the

network structure. This characterization allows a partition of the agents into coordination

sets, i.e., set of path-connected agents with the same cutoffs. We provide nice properties

of these coordination sets. In particular, we show that there is a single coordination

set (all players use the same strategies, so they perfectly coordinate) if and only if the

network is “balanced”, i.e., the average degree of each subnetwork is smaller than the

average degree of the full network. Networks that are very symmetric, such as the circle or

the complete network, satisfy this property. Surprisingly, very asymmetric networks such

as stars also satisfy this property. Importantly, the set of coordination sets is shown to be

instrumental to the comparative statics and welfare properties of the model. Contrary to

the literature on games on networks, we show that, in order to maximize either aggregate

adoption or welfare, the planner needs to target coordination sets and not individuals.

It is left for future work to study the effects of signaling (Angeletos at. al (2006)

[4]) or signal jamming (Edmond (2013) [20]) on equilibrium properties such as limit
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uniqueness and coordination partitioning. Dahleh et al. (2016) [15] study information

exchange through a social network, under a symmetric global game; the implications

of information transmission under a general network game remains an open question.

Equilibrium characterizations under more extensive departures from idiosyncratic noise,

such as the introduction of a public signal, also remains for future research.48
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[6] Ballester, Coralio, Antoni Calvó-Armengol and Yves Zenou. Delinquent Networks.

Journal of the European Economic Association, 8:34–61, 2010.

[7] Basteck, Christian, Daniëls Tijmen and Frank Heinemann. Characterising equilib-

rium selection in global games with strategic complementarities. Journal of Economic

Theory, 148(6):2620–2637, 2013.

[8] Bayer, Patrick, Hjalmarsson, Randy and David Pozen. Building Criminal Capital

Behind Bars: Peer Effects in Juvenile Corrections. Quarterly Journal of Economics,

124:105–147, 2009.
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A Appendix

In all proofs we use “agents” and “nodes” synonymously.

Proof of Lemma 1. We prove the Lemma assuming Fi = F for each i. However, the result

holds for heterogeneous noise distributions by noise-independent selection (see Online

Appendix Section F). We first show that for ν > 0 and any pair i, j with cutoffs ci, cj:

E[πj(sj)|si = ci] + E[πi(si)|sj = cj] = 1.

In particular, when ci = cj = c∗:

E[πj(sj)|si = c∗] =
1

2
= E[πi(si)|sj = c∗].

Given si = ci, the conditional distribution of θ is ci − νǫi, so:

Pr(ci − νǫi ≤ θ) = 1− F

(
ci − θ

ν

)

.

Moreover, conditional on θ the distribution of sj is θ + νǫj, so:

E[πj(sj)|θ] = Pr(θ + νǫj ≥ cj) = 1− F

(
cj − θ

ν

)

.

Using the law of iterated expectations:

E[πj(sj)|si = ci] =

∫

θ

{

1− F

(
cj − θ

ν

)}

d

[

1− F

(
ci − θ

ν

)]

.

Similarly:

E[πi(si)|sj = cj] =

∫

θ

{

1− F

(
ci − θ

ν

)}

d

[

1− F

(
cj − θ

ν

)]

Taking a sum and using the product rule:

E[πj(sj)|si = ci] + E[πi(si)|sj = cj] =

{[

1− F

(
ci − θ

ν

)][

1− F

(
cj − θ

ν

)]}θ=+∞

θ=−∞

= (1− 0)(1− 0)− (1− 1)(1− 1) = 1.
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The limiting result (A) follows, since (3) holds for any cutoff and any ν, it continues to

hold in the limit as ν goes to zero.

To show (4), recall that:

E[πj(sj)|si = ci] =

∫

Θ

{

1− F

(
cj − θ

ν

)}

d

[

1− F

(
ci − θ

ν

)]

We change variable by letting z = (θ − ci)/ν, then:

E[πj(sj)|si = ci] = −

∫

Θ

{

1− F

(
cj − ci
ν

− z

)}

dF (−z).

When limν→0 ci < limν→0 cj, for each fixed z:

{

1− F

(
cj − ci
ν

− z

)}

→ 0, as ν → 0.

So by Dominant Convergence Theorem:

lim
ν→0

E[πj(sj)|si = ci] =

∫

θ

0dF (z) = 0.

Similarly we can show: limν→0 E[πi(si)|sj = cj] = 1.

Proof of Theorem 1. Let us start with the following definition:

Definition 2. Let K be a closed convex set in R
n. For each x ∈ R

n, the orthogonal

projection (or, projection)49 of x on the set K is the unique point y ∈ K such that:

||x− y|| ≤ ||x− z||, ∀z ∈ K.

We denote ProjK [x] := y = argminz∈K ||x− z||.

We can now state the following lemma.

Lemma 2. The unique vector q∗, the projection of 0 onto the Φ(W), is uniquely char-

acterized by the following two conditions:

(C1) q∗ ∈ Φ(W), i.e. there exists w∗ such that q∗i = vi + φ
∑

j∈Ni
w∗

ij, ∀i,

49See Chapter 1 of Nagurney (1992 [46]) for characterization and properties of this projection operator.
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(C2) for any edge (i, j) ∈ E and for any zij ∈ [0, 1],

(q∗i − q∗j )(zij − w∗
ij) ≥ 0.

Moreover, we can replace (C2) by the equivalent form:

(C2’) (i, j) ∈ E, (q∗i − q∗j ) > 0 =⇒ w∗
ij = 0, w∗

ji = 1.

Proof. We first show necessity. Clearly (C1) is just the feasibility condition, hence nec-

essary. For (C2), for any w′ ∈ W , by optimality of q∗, the following must be true:

η(t) := ||Φ((1− t)w∗ + tw′)||2 ≥ ||Φ(w∗)||2 = ||q∗||2 = η(0)

for any t ∈ [0, 1].

Since Φ(·) is an affine mapping, ∂
∂t
Φ((1 − t)w∗ + tw′) = Φ(w′) − Φ(w∗). Taking the

derivative of η(t) at t = 0, we obtain:

0 ≤ η′(0) = 2〈q∗,Φ(w′)− Φ(w∗)〉. (A1)

Now for any z′ij ∈ [0, 1], we construct a special w′ by only modifying the weights w∗
ij

and w∗
ji = 1 − w∗

ij on the edge between i and j in w∗ to w′
ij = zij and w′

ji = 1 − zij.

Clearly, w′ is still in W . Inequality (A1) becomes:

φ(q∗i (zij − w∗
ij) + q∗j (zji − w∗

ji)) ≥ 0.

However, zji − w∗
ji = (1 − zij) − (1 − w∗

ij) = −(zij − w∗
ij). So the above inequality is

equivalent to:

(q∗i − q∗j )(zij − w∗
ij) ≥ 0.

Let us show sufficiency. For any w′ ∈ W , simple calculation shows that:

〈q∗,Φ(w′)− Φ(w∗)〉 = φ
∑

(q∗i − q∗j )(w
′
ij − w∗

ij) ≥ 0,

as each term in the summation is nonnegative. Therefore, η′(0) ≥ 0, moreover η(·) is

clearly convex in t ∈ [0, 1].50 Therefore,

η(1)− η(0) ≥ (1− 0)η′(0) ≥ 0,

50As Φ is affine and ||x||2 is a convex function of x
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that is:

||Φ(w′)||2 ≥ ||Φ(w∗)||2 = ||q∗||2

since w′ is arbitrary, and indeed q∗ is the projection of 0 onto Φ(W).

Now we need to verify that for any edge ij with (i, j) ∈ E, (C2) is equivalent to (C2’):

{
(q∗i − q∗j )(zij − w∗

ij) ≥ 0, ∀zij ∈ [0, 1]
}
⇔
{
(i, j) ∈ E, (q∗i − q∗j ) > 0 ⇒ w∗

ij = 0, w∗
ji = 1

}
.

If so, then q∗i > q∗j =⇒ w∗
ij = 0 and w∗

ji = 1; q∗i < q∗j =⇒ w∗
ij = 1 and w∗

ji = 0.

From (C2) to (C2’): Suppose q∗i > q∗j , and let zij = 0. We have (q∗i −q
∗
j )(0−w

∗
ij) ≥ 0,

and by w∗
ij ≥ 0 it must be the case that w∗

ij = 0. Similarly, assuming q∗i < q∗j and picking

zij = 1 shows that w∗
ij = 1.

From (C2’) to (C2): If q∗i > q∗j and w∗
ij = 0, then for any ∀zij ∈ [0, 1], (q∗i − q∗j )(zij −

w∗
ij) = (q∗i − q∗j )(zij) ≥ 0. Similarly, if q∗i < q∗j and w∗

ij = 1, then for any ∀zij ∈ [0, 1],

(q∗i − q∗j )(zij − w∗
ij) = −(q∗i − q∗j )(1− zij) ≥ 0.

Let us now prove the theorem. First, we write down a few necessary conditions for

the limiting equilibrium. The cutoffs in the limit must satisfy the indifference conditions:

vi + σ(θ∗i ) + φ
∑

j∈Ni

w∗
ij = 0, ∀i,

where

w∗
ij = lim

ν→0
E[πj(sj)|si = ci].

Clearly, w∗
ij + w∗

ji = 1 by Lemma 1. Let q∗i = −σ(θ∗i ), i ∈ N . Then θ∗i < θ∗j if and only

if q∗i > q∗j . Then q∗i = vi + φ
∑

j∈Ni
w∗

ij, ∀i. Moreover, for any connected agent i and j,

suppose θ∗i < θ∗j , then q
∗
i > q∗j , and w

∗
ij = 0 and w∗

ji = 1 by Lemma 1.

As a result, q∗ satisfies the two conditions stated in Lemma 2, therefore q∗ must be

the projection of 0 onto Φ(W), which proves the theorem.

Observe that the vector q∗ is a projection of the origin onto the compact, convex

space Φ(W), which is the image of W under the mapping Φ:

q∗ = ProjΦ(W)[0],

for 0 the vector of zeros in R
n. Denoting T :=

∑

i∈N Φi(w), and 1 the unit vector in
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R
n,51 observe also that, since the set Φ(W) lies on the hyperplane H = {x ∈ Rn,

∑

i xi =
∑

i vi + φe(N) = T}, which includes the diagonal vector T
n
1, it does not matter which

vector one chooses in the projection provided it is a scaling of 1 (i.e. it lies on the

diagonal). In particular, q∗ is equivalent to the projection of T
n
1 onto the convex set

Φ(W), with q∗ = T
n
1 when T

n
1 ∈ Φ(W).52

Proof of Proposition 1. To show expression (8), take weighting matrix w∗. Given q∗i =

q∗j = q∗m for each i, j ∈ C∗
m by definition, it must be that:

|C∗
m|q

∗
m =

∑

i∈C∗
m

(

vi + φ
∑

j∈Ni

w∗
ij

)

=
∑

i∈C∗
m



vi + φ




∑

j∈Ni\C∗
m

w∗
ij +

∑

j∈C∗
m

w∗
ij









= v(C∗
m) + φ(e(C∗

m, ¯
C∗

m) + e(C∗
m)),

the final equality following from Lemma 1. Expression (8) follows.

Proof of Proposition 4. Take v and φ and corresponding q∗ from Theorem 1. For each

v′ 6= v it must be that q′i
∗ = q∗i + (v − v′)1, as Φ′(W) under v′ is:

Φ′(W) = {q+ (v − v′)1 : q ∈ Φ(W)}.

Thus, q∗i = q∗j if and only if q′i
∗ = q′j

∗: C∗ is independent of v. This also shows that q∗ is

affine in v with
∂q∗i
∂v

= 1.

Setting v = 0, again take φ and corresponding q∗ from Theorem 1. For each positive

φ′ 6= φ it must be that q′i
∗ = φ′

φ
q∗i , as Φ

′(W) under φ′ is:

Φ′(W) = {
φ′

φ
q : q ∈ Φ(W)}.

Again, q∗i = q∗j if and only if q′i
∗ = q′j

∗: C∗ is independent of φ. Again, this shows that q∗

is affine in φ. q∗ = v1+ φq∗
0 then follows.

51Clearly, for any w ∈ W,
∑

i∈N Φi(w) =
∑

i∈N vi + φe(N).
52The mapping Φ(·) may not be injective. As the dimension of W is e(N), the image always lies on

the hyperplane H, so the dimension of the image is at most n− 1.

46



Proof of Proposition 2. By Theorem 1, existence of a single coordination set is equivalent

to:
T

n
1 ∈ Φ(W),

where T =
∑

i vi + φe(N). This can be re-formulated as a feasibility condition to the

following linear programming problem:

vi + φ
∑

j∈Ni

wij =
T

n
, ∀i ∈ N,

wij ≥ 0, wij + wji = 1, ∀(i, j) ∈ E.

given vi = v, ∀i, and T =
∑
vi+φe(N) = nv+φe(N). So the above system is equivalent

to:

∑

j∈Ni

wij =
e(N)

|N |
, ∀i ∈ N, (A2)

wij ≥ 0, wij + wji = 1, ∀(i, j) ∈ E.

To show the necessity, suppose there exists a solution w∗ to system (A2). Then:

|S|
e(N)

|N |
=
∑

i∈S

(
∑

j∈Ni

w∗
ij) ≥

∑

i,j∈S:(i,j)∈E

w∗
ij = e(S) · (1) = e(S)

where the first inequality is trivial, and the second inequality follows from the fact that

for each edge with two end nodes i, j both in S, w∗
ij + w∗

ji = 1, there are exactly e(S)

such links in the summation.

To show sufficiency, we first re-formulate the above condition as a feasibility condition

to a network flow problem, and apply Gale’s Demand Theorem (see Gale (1957 [23])).

From the original network G = (N,E), we construct a specific bipartite network G̃ =

(V,A), where the set of nodes is the union V = V1 ∪ V2 where V1 = E and V2 = N .

The arcs (flow) in G̃ are only from V1 to V2. In particular, f ∈ E = V1 is connected to

i ∈ N = V2 in the bipartite graph G̃ = (V,A), if and only if i is one of the end-points of

this edge f in the original network G. Clearly |V1| = e(N), and |V2| = |N |.

Each vertex i ∈ V2 is a demand vertex, demanding di =
e(N)
|N |

units of a homogeneous

goods. Each vertex in j ∈ V1 is a supply vertex, supplying sj = 1 unit of the same

good. Supply can be shipped to demand nodes only along the arcs A in the constructed
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bipartite network G̃. Gale’s Demand Theorem states that there is a feasible way to match

demand and supply if and only if for all S ⊂ V2:

∑

i∈S

di ≤
∑

j∈N(S)

sj,

where N(S) is the set of neighbors of vertices in S in G̃. Substituting the values of sj, di

yields the following equivalent condition

|S|
e(N)

|N |
≤ |N(S)|, ∀ ∅ ⊂ S ⊂ V2.

Clearly the above condition holds when S is either empty or the whole set N . For any

other case of S, from the construction of G̃, the set N(S) is only the edges in E such

that at least one endpoint belongs to S. Therefore:

|N(S)| = e(N)− e(Sc)

where Sc = N\S is the complement set of S. Recall that:

|N | = |S|+ |Sc|, e(N) = |N(S)|+ e(Sc),

It is easy to see that:

|S|
e(N)

|N |
≤ |N(S)| ⇐⇒

e(N)

|N |
≤

|N(S)|

|S|
⇐⇒

e(N)

|N |
≤
e(N)− e(Sc)

|N | − |Sc|
⇐⇒

e(Sc)

|Sc|
≤
e(N)

|N |
.

So the feasibility condition is equivalent to the following:

e(Sc)

|Sc|
≤
e(N)

|N |
, ∀ ∅ 6= Sc ⊂ N.

Since S is an arbitrary subset of N , and Sc is also arbitrary, the sufficiency direction is

proved. This establishes Proposition 2.

Proof of Proposition 3. For any regular network with degree d, for any non empty subset

S, 2 e(S)
|S|

=
∑

i∈S di(S)

|S|
≤

∑
i∈S d

|S|
= d = 2 e(N)

|N |
, so regular graph is always balanced, in

particular, q∗i = q∗j = v + dφ/2 for each i, j ∈ N and C∗ = {N} by Theorem 1.

For trees, there are no cycles, so e(N) = N − 1, while for each subset S the resulting

subnetwork GS is still cycle-free. Therefore, the number of edges within S is at most
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|S| − 1, so e(S) ≤ |S| − 1, and thus:

e(S)

|S|
≤

|S| − 1

|S|
≤
e(N)

|N |
=

|N | − 1

|N |
.

For regular bipartite networks with two disjoint groups B1, B2 with size n1, n2, we

set w∗
ij = n1

n1+n2

if i ∈ N1, j ∈ N2, and w∗
ij = n2

n1+n2

if i ∈ N2, j ∈ N1. Clearly this w∗

is a feasible solution to (A2), with diw
∗
ij = e(N)

n1+n2

∈ (0, 1) for each i ∈ N . Therefore by

Lemma 2, q∗i = q∗j for all i, j ∈ N .

If G is a network with a unique cycle, then e(N) = N . For each subset S, the resulting

subnetwork GS contains at most one cycle, so the number of edges within S is at most

|S|, so that e(S) ≤ |S|, and thus:

e(S)

|S|
≤

|S|

|S|
= 1 =

e(N)

|N |

When G contains at most four nodes, all networks with three or fewer nodes contain at

most one cycle. The only network structures over four nodes that contain more than one

cycle are the circle with a link connecting one non-adjacent pair i and j (two networks)

and the complete network. For the former, we can show these networks to have one

coordination set with weights: w∗
ij = w∗

ji = 1/2, w∗
ki = w∗

kj = 5/8 and w∗
ij = w∗

ik = 3/8

for each k 6= i, j. Each weight is within (0, 1) and thus by Lemma 2, q∗i = q∗j = q∗k for

each k 6= i, j. The complete network with 4 nodes and 6 edges is regular, and clearly has

a symmetric equilibrium (i.e. one coordination set). Note, when N = 5, there exists a

network such that two coordination sets emerges. For example, a core with 4 nodes plus

one periphery node having one link to one of the core nodes.

Proof of Proposition 6. To show (13), denote q̂∗j and
ˇ
q∗j the limit equilibrium cutoffs of

j ∈ N when vi = v̂∗i and vi =
ˇ
v∗i , respectively. q̂∗i >

ˇ
q∗i with q̂∗j ≥

ˇ
q∗j for j 6= i

given uniqueness of θ∗ and strategic complementarities. For any
ˇ
w∗ of Theorem 1 under

vi = v̂∗i , we can find some ŵ∗ under vi =
ˇ
v∗i with ŵ∗

ij ≤
ˇ
w∗

ij for each j 6= i. Moreover,

by construction ŵ∗
ij = 0 and

ˇ
w∗

ij = 1 for each j ∈ C∗
m. At each vi, q

∗
i must satisfy
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q∗i = vi + φ
∑

j∈Ni
w∗

ij. Evaluating vi at v̂i and ˇ
vi, and taking differences gives:

v̂i −
ˇ
vi = (q̂∗i −

ˇ
q∗i ) + φ

∑

j∈Ni

(
ˇ
w∗

ij − ŵ∗
ij)

= (q̂∗i −
ˇ
q∗i ) + φ



di(C
∗
m) +

∑

j∈Ni\C∗
m

(
ˇ
w∗

ij − ŵ∗
ij)





≥ φdi(C
∗
m),

giving inequality (13).

To show equality (14), first by Proposition 1, we can write:

q∗m =
vi + v(C∗

m\{i}) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m))

|C∗
m|

. (A3)

At v1 = v̂∗i by Proposition D4 and w∗
ij = 0 for each j ∈ C∗

m\{i}, we have q̂∗m = q̂∗i =

v̂∗i + φdi(
¯
C∗

m), which by equating with (A3) at vi = v̂∗i gives:

v̂∗i =
v(C∗

m\{i}) + φ(−|C∗
m|di(¯

C∗
m) + e(C∗

m, ¯
C∗

m) + e(C∗
m))

|C∗
m| − 1

. (A4)

At v1 =
ˇ
v∗i , w

∗
ij = 1 for each j ∈ C∗

m\{i}, giving
ˇ
q∗m =

ˇ
q∗i =

ˇ
v∗i + φ(di(

¯
C∗

m) + di(C
∗
m)),

which by equating with (A3) at vi =
ˇ
v∗i gives:

ˇ
v∗i =

v(C∗
m\{i}) + φ(−|C∗

m|(di(¯
C∗

m) + di(C
∗
m)) + e(C∗

m, ¯
C∗

m) + e(C∗
m))

|C∗
m| − 1

. (A5)

Differencing (A4) and (A5) yields equality (14).

Proof of Proposition 5.

Lipschitz continuity. Note that q∗ is the projection of 0 onto the space Φ(W):

q∗(v) = ProjΦ(W )[0].

Since Φ depends on v in a linear way, we let K = Φ(W) when v = 0. Then for any v:

Φ(W) = v +K.
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We can rewrite the projection problem as follows:

q∗(v) = arg min
z∈v+K

||z||2 = v + argmin
y∈K

||(−v)− y||2 = v +ProjK[−v]

The projection mapping is nonexpansive (see chapter 1 of Nagurney 1992 [46]), i.e:

||ProjK[x]−ProjK[y]|| ≤ ||x− y||, ∀x,y ∈ Rn.

So for any v and v′, we have

||q∗(v)− q∗(v′)|| = ||(v +ProjK[−v])− (v′ +ProjK[−v′])||

≤ ||v − v′||+ ||ProjK[−v])−ProjK[−v′]|| ≤ 2||v − v′||.

Hence, q∗(v) is Lipschitz continuous in v.

Comparative Statics. By Lipschitz continuity, q∗(v) is differentiable for almost all v.

By Proposition 1, each q∗i = q∗m for each i ∈ C∗
m is given by:

q∗m =

∑

i∈C∗
m
vi + φ(e(

¯
C∗

m, C
∗
m) + e(C∗

m))

|C∗
m|

.

Note that the terms e(
¯
C∗

m, C
∗
m) and e(C

∗
m) are constant holding C∗ constant. For generic

v, C∗ is locally constant, hence e(
¯
C∗

m, C
∗
m) and e(C∗

m) do not depend on v locally. The

derivative results follows directly.

Monotonicity. ∂q∗/∂v is nonnegative, so q∗ is monotone in v.

Proof of Remark 1. Near the limit (ν > 0), for k /∈ m(i)∗ with θ∗m(i) 6= θ∗m(k), then

s∗k /∈ (c∗i − ν, c∗i + ν) for ν > 0 sufficiently small (i.e. for ν ≪ |θ∗m(i) − θ∗m(k)|/2), and

thus for all i′ ∈ C∗
m(i), ai′ either equals one or zero (depending on m′ < m or m′ > m,

respectively) with probability one conditioning on sk = s∗k. Because this is true for

arbitrary k, it is also true for all members of any m′ 6= m(i) (including m(j)) for ν > 0

sufficiently small (i.e. for ν ≪ minm′ 6=m(i) |θ
∗
m(i) − θ∗m′ |/2). Given no atoms of F , this

must hold in a neighborhood of s∗i , which implies ∂s∗j/∂s
∗
i = 0 for all j /∈ m(i). If instead

k /∈ m(i)∗ but θ∗m(i) = θ∗m(k), by ∂s
∗
j/∂vi = 0 for each j /∈ m(i)∗ when θ∗m(i) 6= θ∗m(j) and by
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C∗
m(k), C

∗
m(j) disjoint by assumption, ∂s∗j/∂s

∗
i = 0 again follows. ∂s∗j/∂s

∗
i = 0 then implies

∂s∗j/∂vi = 0.

Proof of Proposition 7. To compute the adoption probabilities for each player j ∈ C∗
m,

the common cutoff θ∗m drops by exactly 1
σ′(θ∗m)|C∗

m|
, and the density of the state θ near θ∗m

is just H ′(θ∗m). Moreover there are |C∗
m| players in the coordination set containing player

i, and thus expression (16) follows.

To compute ex ante welfare, we first note that:

ωj := lim
ν→0

Esj [Uj(πj(π−j)|sj] =

∫ +∞

θ∗j

(vj + σ(θ) + φ
∑

k∈Nj

χ({θ > θ∗j})))dH(θ), (A6)

for indicator function χ. If j ∈ C̄∗
m or if θ∗j = θ∗i with j /∈ C∗

m, then the impact of vi on

ωj is zero. This leaves j in C∗
m or

¯
C∗

m. We can write:

ωj =

∫ ∞

θ∗j

(vj + σ(θ))dH(θ) + φ
∑

k∈Nj

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ).

Recall that as vi increases, only θ
∗
j for those j ∈ C∗

m change. If j ∈
¯
C∗

m, the cutoff θj is

not affected by vi. Moreover θ∗j ≤ θ∗i , implying:

∂ωj

∂vi
=

∂

∂vi



φ
∑

k∈Nj

∫ +∞

max(θ∗j ,θ
∗

k
)

dH(θ)





= φ
H ′(θ∗m)

σ′(θ∗m)|C
∗
m|

|Nk ∩ C
∗
m| = φ

H ′(θ∗m)

σ′(θ∗m)|C
∗
m|
e({k}, C∗

m).

If instead j ∈ C∗
m (j = i potentially), by Proposition 5 i and j have the same cutoff θ∗m

in some neighborhood of vi: θ
∗
j = θ∗m. Thus we have:

∂ωj

∂vi
= χ({j = i})(1−H(θ∗m)) + dH(θ∗m)(vj + σ(θ∗m))

1

σ′(θ∗m)|C
∗
m|

+
∂

∂vi



φ
∑

k∈Nj

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ)



 ,
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by applying Leibniz integral rule to (A6), and substituting 1
σ′(θ∗m)|C∗

m|
= −

∂θ∗j
∂vi

. Note that:

∑

k∈Nj

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ) =
∑

k∈Nj∩
¯
C∗

m

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ) +
∑

k∈Nj∩C∗
m

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ)

+
∑

k∈Nj∩C̄∗
m

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ)

=
∑

k∈Nj∩
¯
C∗

m

∫ ∞

θ∗m

dH(θ) +
∑

k∈Nj∩C∗
m

∫ ∞

θ∗m

dH(θ)

+
∑

k∈Nj∩C̄∗
m

∫ ∞

θ∗
k

dH(θ).

Note that if k ∈ Nj ∩
¯
C∗

m, max(θ∗j , θ
∗
k) = θ∗j = θ∗m; similarly for other terms. Therefore:

∂

∂vi



φ
∑

k∈Nj

∫ ∞

max(θ∗j ,θ
∗

k
)

dH(θ)



 = φ
H ′(θ∗m)

σ′(θ∗m)|C
∗
m|
e({j}, C∗

m ∪
¯
C∗

m),

noting that ∂θ∗k/∂vi = 0 when k ∈ Nj ∩ C̄∗
m. Together with the equilibrium condition

(recall that j ∈ C∗
m by assumption):

vj + σ(θ∗j ) + φ
∑

k∈Nj

wjk = 0,=⇒ vj + σ(θ∗j ) = vj + σ(θ∗m) = −φ
∑

k∈Nj

wjk.

We may now simplify:

∂ωj

∂vi
= χ(k = i)(1−H(θ∗m))− (φ

∑

k∈Nj

wjk)
H ′(θ∗m)

σ′(θ∗m)|C
∗
m|

+ φ
H ′(θ∗m)

σ′(θ∗m)|C
∗
m|
e({j}, C∗

m ∪
¯
C∗

m).

Summing over all the agents in both sets, we can obtain an aggregate effect of:

∑

j ωj

∂vi
= (1−H(θ∗m)) + φ

(
Z

|C∗
m|

)
H ′(θ∗m)

σ′(θ∗m)

= (1−H(θ∗m)) + φ

(
e(
¯
C∗

m, C
∗
m) + e(C∗

m)

|C∗
m|

)
H ′(θ∗m)

σ′(θ∗m)
.
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It suffices to compute:

Z :=
∑

j∈
¯
C∗

m

e({j}, C∗
m) +

∑

j∈C∗
m

(

e({j}, C∗
m ∪

¯
C∗

m)−
∑

k∈Nj

wjk

)

= e(
¯
C∗

m, C
∗
m) + (e(

¯
C∗

m, C
∗
m) + 2e(C∗

m))− (e(
¯
C∗

m, C
∗
m) + e(C∗

m))

= e(
¯
C∗

m, C
∗
m) + e(C∗

m).

To show the second equality (second line), the sum
∑

j∈C∗
m

∑

k∈Nj
wjk can be written:

∑

j∈C∗
m

∑

k∈Nj

wjk =
∑

j∈C∗
m

∑

k∈Nj∩
¯
C∗

m

wjk +
∑

j∈C∗
m

∑

k∈Nj∩C∗
m

wjk +
∑

j∈C∗
m

∑

k∈Nj∩C̄∗
m

wjk.

Given j ∈ C∗
m, wjk = 1 when k ∈ Nj ∩

¯
C∗

m, and wjk = 0 when k ∈ Nj ∩ C̄∗
m, we

have: (i)
∑

j∈C∗
m

∑

k∈Nj∩
¯
C∗

m
wjk = e(

¯
C∗

m, C
∗
m), (ii)

∑

j∈C∗
m

∑

k∈Nj∩C̄∗
m
wjk = 0, and (iii)

∑

j∈C∗
m

∑

k∈Nj∩C∗
m
wjk = e(C∗

m), as the limit probabilities on each edge in C∗
m sum to one

by Lemma 1. It then follows that
∑

j∈C∗
m

∑

k∈Nj
wjk = e(

¯
C∗

m, C
∗
m) + e(C∗

m).

Proof of Corollary 1. First, under uniformH(·) and σ′(θ) decreasing, limν→0mai is clearly

increasing in θ∗m (see (16)) and, thus, an adoption-maximizing planner will always target

the highest coordination set.

Next, let us focus on a welfare-maximizing planner. We derive the exact cutoff v̄ such

that, under homogenous intrinsic values, uniform H(·) and σ′(θ) decreasing and v > v̄,

limν→0mwi is decreasing in θ∗m (so that a welfare-maximizing planner will always target

the lowest coordination set). The condition for limν→0mwi decreasing becomes (see (17)):

∂

∂θ

(

1− θ −
σ(θ)

σ′(θ)
−

v

σ′(θ)

)

< 0

⇔ −1−
(σ′(θ))2 − σ′′(θ)σ(θ)

σ′(θ))2
+

v

σ′(θ))2
σ′′(θ) < 0

⇔ σ′′(θ) [v + σ(θ)] < 2(σ′(θ))2.

With σ′′(θ) < 0, a sufficient condition for limν→0mwi decreasing for all θ
∗
m is v ≥ v̄ where:

v̄ = max
m=1,...,m̄∗

{
2(σ′(θ∗m))

2

σ′′(θ∗m)
− σ(θ∗m)

}

.
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B Appendix: Existence and uniqueness of limit equi-

librium

Let us formulate expected payoffs when all neighbors use cutoff strategies. Given π−i

and conditional on signal realization si, i’s expected payoff from adopting can be written:

Ui(π−i|si) := Eθ

[
Es−i

[ui(a−i|θ) |π−i, θ ]
∣
∣ si
]

= Eθ

[

vi + σ(θ) + φ
∑

j∈Ni

r(θ, cj ; ν)

∣
∣
∣
∣
∣
si

]

, (B1)

where the conditional likelihood that j ∈ Ni adopts is given by:

r(θ, cj; ν) :=

∫ 1

−1

πj(θ + νǫj)f(ǫj)dǫj =







0 if θ ≤ cj − ν

F
(

θ−cj
ν

)

if θ ∈ (cj − ν, cj + ν]

1 if θ > cj + ν

. (B2)

Expression (B1) can then be written:1

Ui(π−i|si) = vi +

∫ 1

−1

(

σ(si − νǫi) + φ
∑

j∈Ni

r(si − νǫi, cj; ν)

)

f(ǫi)dǫi. (B3)

Lemma B1. A Bayesian Nash Equilibrium π
∗ of G(ν) in cutoff strategies exists.

1This form uses the assumption of dispersed priors; see footnote 17. The analogous condition with
weighting on prior H converges on (B3) as ν → 0.
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Proof. We first show that each agent best responds in G(ν) to a profile of cutoff strategies

via a unique cutoff strategy. With σ(θ) strictly increasing and r(θ, sj ; ν) weakly increasing

in θ, it is immediate that the integrand in (B3) is strictly increasing in si. There must

then be a unique signal realization c∗i ∈ (θ − ν, θ + ν) that solves:

Ui(π−i|c
∗
i ) = 0, (B4)

with adoption optimal for i if and only if si ≥ c∗i . By continuity of all payoffs in others’

cutoffs, we can applying Brouwer’s fixed point theorem giving the result.

We have shown that there is a unique signal c∗i ∈ (θ−ν, θ+ν) that solves: Ui(π−i|c
∗
i ) = 0,

with adoption optimal for i if and only if si ≥ c∗i . Furthermore, there is a unique limit

equilibrium in cutoff-strategies. The next result is straightforward to obtain using Lemma

B1 and Theorem 1 in Frankel et al. (2003) [22].

Proposition B1. There exists an essentially unique strategy profile ~π, which is in cut-

off strategies, such that any π(·; ν) surviving iterative elimination of strictly dominated

strategies in G(·; ν) satisfies limν→0 π(ν) = ~π.

The unique limit equilibrium ~π of G(0) is characterized by θ∗i := limν→0 c
∗
i , with each

i choosing to [not] adopt when θ[<] > θ∗i . With Proposition B1, we are free to study

cutoff-strategy equilibria of G(ν), which must converge on ~π. Ui(π−i|c
∗
i ) = 0 for each

i ∈ N define the system of conditions pinning down such equilibria.

C Appendix: Alternative Characterizations

C.1 Projection mapping and characterization: The case of a

dyad network

The following example illustrates the unique projection q∗ for the dyad network.

Example C1. For dyad with agents 1 and 2, W = {w, 1−w : w ∈ [0, 1]}, where w12 = w

and w21 = 1 − w, and Φ(W) = {v1 + φw, v2 + φ(1 − w) : w ∈ [0, 1]}. Figure 6 depicts

three cases: (a) v1 − v2 < −φ, (b) φ ≥ v1 − v2 ≥ −φ, and (c) v1 − v2 > φ.

When the value gap |v1 − v2| > φ in cases (a) and (c), the projection q∗ obtains a

corner of Φ(W). Precisely, q∗1 < q∗2 and w = 1 in case (a), and q∗1 > q∗2 and w = 0 in

case (c). In case (b), Φ(W) intersects the diagonal, and thus q∗1 = q∗2, with w ∈ (0, 1)

when φ > v1 − v2 > −φ.
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(a) v1 − v2 < −φ.

q∗2

q∗1

(v1, v2)
b

Φ(W)

T
2

T
2

b

q∗

(b) φ ≥ v1 − v2 ≥ −φ.

q∗2

q∗1

(v1, v2)
b

Φ(W)

T
2

T
2

b

q∗

(c) v1 − v2 > φ.

q∗2

q∗1

(v1, v2)
b

Φ(W)

T
2

T
2

b

q∗

Figure 6: The vector q∗ (green arrow) as the projection of the diagonal (gray arrow) onto
Φ(W) (blue line segment) for the dyad network.

Example C1 shows that q∗1 = q∗2, and thus θ∗1 = θ∗2, for a range of value gaps |v1−v2| ≤

φ. Provided a sufficient extent of symmetry holds in the limit game G(0), the two agents

will take a common cutoff, adopting exactly when the other adopts. Also illustrated with

the dyad example, when value gap |v1 − v2| > φ agent i, taking higher limit cutoff places

limiting likelihood w∗
ij = 1 on j 6= i adopting when i observes θ = θ∗i > θ∗j . Conversely, j

places limiting likelihood w∗
ji = 0 on i adopting when j observes θ = θ∗j .

C.2 Algorithmic characterization

Here, we provide an algorithmic approach for calculating limiting coordination sets C∗.

The construction of the algorithm is motivated by Proposition D4. With each iteration,

an additional limit cutoff is picked-off, starting with θ∗1.

Algorithm 1 (Combinatorial derivation of coordination sets). For disjoint agents sets

S,A ⊆ N , S 6= ∅, define the function:

ψ(S|A) :=
v(S) + φ(e(S,A) + e(S))

|S|
.

Define A0 := ∅. Step k = 1, . . . of the algorithm is defined as follows:

Step k. For A ⊂ N , define Λ(A) := argmax∅6=S⊆N\A ψ(S|A). Solve:

Bk =
⋃

S∈Λ(Ak−1)

S.
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Partition Bk into disjoint, connected subsets {B1
k, . . . , B

p(k)
k }: E

Bs
k
∪Bs′

k
= EBs

k
∪ E

Bs′

k
,

1 ≤ s < s′ ≤ p(k). Set Ak = Bk ∪ Ak−1.

Continue until Ak = N . Then {{B1
1 , . . . , B

p(1)
1 }, {B1

2 , . . . , B
p(2)
2 }, . . .} gives C∗.

To illustrate Algorithm 1, we can apply it to the Large core-periphery network of

Example 1. Recall that C∗
1 = {1c, . . . , 6c}, C∗

2 = {r}, C∗
3 = {1q, 2q}, with each periphery

agent jp, j = 1, . . . , 4, giving singleton coordination sets C∗
4 , . . . , C

∗
7 . This yields Bk = C∗

k

for k = 1, 2, 3, and B4 = ∪m=4,...,7C
∗
m. Applying the algorithm to network 2 of Banerjee

et al. (2013), illustrated in Subsection 6.2, step two will find B2 = C∗
2 ∪ C∗

3 (red and

blue agents), with each subsequent step k > 2 finding coordination set k + 1, and the

algorithm terminates after step five.

The following establishes the relationship between Algorithm 1 and Theorem 1.

Proposition C1 (Duality). For each step k of Algorithm 1, Bk is itself a solution to

max∅6=S⊆N\Ak−1
ψ(S|Ak−1), with maxi∈N\Ak−1

q∗i = ψ(Bk|Ak−1).

Proof. We prove the first statement by induction on step k. Take k = 1. By Theorem 1,

the q∗i = vi + φ
∑

j∈Ni
w∗

ij. So, given any nonempty subset S ⊆ N :

∑

i∈S

q∗i =
∑

i∈S

(vi + φ
∑

j∈Ni

w∗
ij) =

∑

i∈S

vi + φ
∑

i∈S

∑

j∈Ni

w∗
ij

= v(S) + φ
∑

i∈S

∑

j∈Ni∩S

w∗
ij

︸ ︷︷ ︸

=e(S)

+φ
∑

i∈S

∑

j∈Ni∩Sc

w∗
ij

︸ ︷︷ ︸

≥0

≥ v(S) + φe(S)

Here,
∑

i∈S

∑

j∈Ni∩S
w∗

ij = e(S) as the sum of weights for each link is exactly one, and

there are exactly e(S) such links. As a result:

ψ(S|∅) :=
v(S) + φe(S)

|S|
≤

∑

i∈S q
∗
i

|S|
≤ max

i∈N
q∗i . (C1)

This shows that maxi∈N q
∗
i is indeed a upper bound for ψ(·|∅). Next we show that this

upper bound is obtained. Define:

S∗ = {i ∈ N : q∗i = max
j∈N

q∗j}

Then S∗ is nonempty. Moreover, for each i ∈ S and each j ∈ Ni ∩ (N\S), we have
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q∗j < q∗i = maxk∈N q
∗
k, as a result, w∗

ij = 0. So,
∑

i∈S

∑

j∈Ni∩(N\S)w
∗
ij = 0. Hence:

ψ(S∗|∅) :=
v(S∗) + φe(S∗)

|S∗|
=

∑

i∈S∗ q∗i
|S∗|

= max
i∈N

q∗i .

By construction, we also know that S∗ is the largest maximizer of ψ(·|∅) (otherwise the

last inequality in (C1) will be strict). In fact, S∗ is the union of the coordination sets

in C∗ such that the cutoff is greatest. We can then partition S∗ into disjoint, connected

subsets to obtain the limit coordination sets.

As a summary, in the first step of the algorithm, the first cutoff value

θ∗1 = σ−1(−maxt∈N q
∗
t ) is found and the corresponding coordination sets are also found.

The case for each step k > 1 is similar; the result follows by induction. Finally, the

algorithm must terminate in finite steps, as the set Ak is strictly growing in each step.

To show the second statement of the proposition, the following lemma shows that

indeed the largest solution of ψ(·|A) is well-defined.

Lemma C1. Fixing subset A of N , define function ψ(·|A) from S ∈ 2N\A\{∅} to R as

follows:

ψ(S|A) :=
v(S) + φ(e(S,A) + e(S))

|S|
.

Then if both S ′ and S ′′ are maximizer of ψ(·|A), then S ′ ∪ S ′′ is also a maximizer. If

S ′ ∩ S ′′ is not empty, then S ′ ∩ S ′′ is also a maximizer of ψ(·|A).

Proof. Let β = max∅6=S⊆N\A ψ(S|A). If both S
′ and S ′′ are maximizer of ψ(·|A), then:

v(S ′) + v(S ′′) = v(S ′ ∩ S ′′) + v(S ′ ∪ S ′′),

e(S ′, A) + e(S ′′, A) = e(S ′ ∩ S ′′, A) + e(S ′ ∪ S ′′, A),

e(S ′) + e(S ′′) ≤ e(S ′ ∩ S ′′) + e(S ′ ∪ S ′′).

The first two results direct follow from the definition of v(·), and e(·, A) (recall that

S ′ and S ′′ are disjointed from A by assumption). The last inequality follows from the

observation that:

e(S ′ ∩ S ′′) + e(S ′ ∪ S ′′)− e(S ′)− e(S ′′) = e(S ′\S ′′, S ′′\S ′) ≥ 0.
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Assume that S ′ ∩ S ′′ is not empty, then we have the following inequalities:

ψ(S ′ ∩ S ′′|A)|S ′ ∩ S ′′|+ ψ(S ′ ∪ S ′′|A)|S ′ ∪ S ′′|

≤ β|S ′ ∩ S ′′|+ β|S ′ ∪ S ′′|

= β|S ′|+ β|S ′′|

= ψ(S ′|A)|S ′|+ ψ(S ′′|A)|S ′′|

= v(S ′) + φ(e(S ′, A) + e(S ′)) + v(S ′′) + φ(e(S ′′, A) + e(S ′′))

≤ v(S ′ ∩ S ′′) + φ(e(S ′ ∩ S ′′, A) + e(S ′ ∩ S ′′))

+v(S ′ ∪ S ′′) + φ(e(S ′ ∪ S ′′, A) + e(S ′ ∪ S ′′))

= ψ(S ′ ∩ S ′′|A)|S ′ ∩ S ′′|+ ψ(S ′ ∪ S ′′|A)|S ′ ∪ S ′′|,

As a result, all the inequalities are equalities. In particular, ψ(S ′∪S ′′|A) = ψ(S ′∩S ′′|A) =

β, i.e., S ′ ∩ S ′′ and S ′ ∪ S ′′ are both maximizers of ψ(·|A).

When S ′ ∩ S ′′ = ∅, similarly we can show:

ψ(S ′ ∪ S ′′|A)|S ′ ∪ S ′′|

≤ β|S ′ ∩ S ′′|
︸ ︷︷ ︸

=0

+β|S ′ ∪ S ′′|

= β|S ′|+ β|S ′′|

= ψ(S ′|A)|S ′|+ ψ(S ′′|A)|S ′′|

= v(S ′) + φ(e(S ′, A) + e(S ′)) + v(S ′′) + φ(e(S ′′, A) + e(S ′′))

≤ v(S ′ ∩ S ′′) + φ(e(S ′ ∩ S ′′, A) + e(S ′ ∩ S ′′))
︸ ︷︷ ︸

=0

+v(S ′ ∪ S ′′) + φ(e(S ′ ∪ S ′′, A) + e(S ′ ∪ S ′′))

= ψ(S ′ ∪ S ′′|A)|S ′ ∪ S ′′|,

which implies that ψ(S ′ ∪ S ′′|A) is also a maximizer of ψ(·|A).

The second statement of the proposition now follows from Lemma C1.

The proposition shows that each step of Algorithm 1 effectively searches for the max-

imal set of agents, among all agents left over from prior steps, which yields the great-

est collective-average in intrinsic values plus limiting expected network effects. Weights

placed on agents taking strictly lower cutoffs (found in earlier steps of the algorithm) are
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set to one, while the sum of expected weights placed on other members aggregate to the

number of links between members (inline with Lemma 1 and Proposition D4).

Theorem 1 and Algorithm 1 can now be viewed as dual problems. The former calcu-

lates q∗ yielding the partition C∗ as a bi-product, while the latter constructs C∗ yielding

q∗ as a bi-product. Interestingly, Theorem 1 gives the weights w∗
ij explicitly in the pro-

jection step. Alternatively, in the Algorithm 1, these weights are set either to 0 or 1 for

agents in different coordination sets by construction, while they are implicitly implied by

Gale’s Demand Theorem for agents residing within the same coordination set.

D Appendix: Additional Results

D.1 Bounding limit cutoffs and the largest coordination set

Proposition D4 provides an exact calculation of each θ∗m as a function of average degrees

across all members of C∗
m. The following result provides bounds on limit cutoffs using only

the minimal degree within a given agent set. Denote qr∗d := v+φd/2 and θr∗d := σ−1(−qr∗d )

for any regular network of degree d.

Proposition D1 (bounding limit cutoffs).

1. For each agent set S ⊆ N , maxi∈S θ
∗
i ≤ θr∗d , setting d = mini∈S di(S).

2. For each coordination set C∗
m ∈ C∗, θ∗m ≥ θr∗2d, setting d = mini∈C∗

m
di(

¯
C∗

m ∪ C∗
m).

Proof. For part 1., c∗i ≤ c∗j for all i ∈ S and j in regular network G of degree d follows

from supermodularity of G(ν), uniqueness of c∗ for ν small, and di ≥ d for each i ∈ S.

By continuity, maxi∈S θ
∗
i ≤ θr∗d .

For part 2., take coordination set C∗
m and

¯
i ∈ argmini∈C∗

m
di(

¯
C∗

m ∪ C∗
m). ¯

i’s expected

network effect in G(ν) is no greater than d = d
¯
i(
¯
C∗

m∪C∗
m), which equals expected network

effect to each k in a regular network of degree 2d. Thus, s∗
¯
i ≥ s∗k for all ν > 0 small. By

continuity, θ∗
¯
i ≥ θr∗2d.

To illustrate Proposition D1, we return to Example 1 under v = 0, φ = 1 to yield

qr∗d = d/2. As observed in Figure 1, and consistent with part 1 of the proposition, the

star and triad-core-periphery networks exhibit a common q∗1 positioned weakly above

those of the dyad and triad, qr∗1 = 0.5 and qr∗2 = 1, respectively. Likewise, the cores of

the quad and large core-periphery networks exhibit q∗1 positioned weakly above qr∗3 = 1.5
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and qr∗5 = 2.5, respectively. For part 2, the peripheral agents of the star and triad-core-

periphery networks carry one link within their coordination sets. All members of these

networks exhibit q∗1 at or below qr∗2 .

The following applies Propositions D4 and D1 to tree and regular-bipartite networks.

Remark 2 (Bounding limit cutoffs: trees and regular-bipartite networks).

1. For any tree network, θr∗1 ≥ θ∗1 = σ−1(−(v + φ |N |−1
|N |

)) ≥ θr∗2 .

2. For any regular-bipartite network, θr∗min{d1,d2}
≥ θ∗1 = σ−1(−(v+φ e(N)

n1+n2

)) ≥ θr∗2min{d1,d2}
.

We see that the limit cutoffs of the dyad and triad bound any tree’s limit cutoff from

above and below. The common limit cutoff of any regular-bipartite network can also be

bounded, both above and below, now by the degree of the network’s less-connected side.

The results of Section 6 take non-singleton coordination sets as cases of interest. The

next result shows that under homogeneous intrinsic values, C∗ must always exhibit such

coordination. Moreover, C∗
1 must contain at least four members if |N | ≥ 4.

Proposition D2. For homogeneous valuations and any G, there exists at least one co-

ordination set with size at least 4.

Proof. Assume |N | ≥ 4. If C∗
1 has at most three members, then e(C∗

1) ≤ 1, with equality

when C∗
1 gives the complete triad, in which case q∗1 = v + φ from Proposition 1. Because

G is connected, there must be as least one j ∈ ∪i∈C∗

1
Ni. By Proposition 1, q∗j ≥ v + φ,

implying that j either coordinates with C∗
1 or q∗j > q∗1, either case giving a contradiction.

D.2 Linkage

Here we consider a comparative static with respect to the network structure G. Con-

sider network G+ij , defined as the supergraph of G which includes the additional link ij,

and C∗
+ij the limit partition under G+ij. While adding links can affect the limit parti-

tion, Proposition D4 can be employed to verify when the limiting coordination is left

unchanged: for C∗
+ij = C∗. For these cases, Proposition D3 establishes a disparity in the

effects of included links on equilibrium cutoffs. While additional links unambiguously

encourage adoption amongst agents taking higher cutoffs, the equilibrium adoption of

the agent taking a lower cutoff may not be influenced by the additional link. For the

following, and in the sequel, we focus on changes to q∗, again noting the one-to-one cor-

respondence with θ
∗ via (6). Let q∗m,+ij correspond to coordination set C∗

m under network

G+ij.
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Proposition D3 (linkage: limit cutoffs). Take i, j with m(i) ≥ m(j), ij /∈ E, such that

C∗
+ij = C∗. If:

1. θ∗m(i) > θ∗m(j), then:

q∗m(i),+ij − q∗m(i) = φ
1

|C∗
m(i)|

, and q∗m(j),+ij − q∗m(j) = 0;

2. m(i) = m(j) =: m, then:

q∗m,+ij − q∗m = φ
1

|C∗
m(i)|

.

Proof. Given C∗
+ij = C∗, C∗

m is unchanged upon inclusion of link (i, j). Moreover, if

θ∗m(i) > θ∗m(j), then this ordering must maintain upon inclusion of (i, j), else contradicting

C∗
+ij = C∗. We may directly apply Proposition 1:

q∗m(i) =
v(C∗

m) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m))

|C∗
m|

,

q∗m(i),+ij =
v(C∗

m) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m) + 1)

|C∗
m|

,

q∗m(j),+ij = q∗m(j) if θ∗m(i) > θ∗m(j),

the second equality holding whether j /∈ m(i) with θ∗m(i) > θ∗m(j)(for 1.) or j ∈ m(i) (for

2.). Differencing q∗m(j),+ij and q
∗
m(j) gives the result.

The inclusion of links between members of distinct coordination sets will expand adoption

outcomes within the coordination set taking higher cutoff, but carry zero influence on

adoption within the coordination set taking lower cutoff. While the inclusion of links

between members of the same coordination set directly influences the two members’

incentives to adopt, the expansion in adoption outcomes within the coordination set is

comparable to that resulting from a single link to an agent taking a lower cutoff.

Example D1. Consider network structures of the form depicted in Figure 7, under ho-

mogenous values vi = v for each i ∈ N . Agents 1 through 5 and 7 through 10 form cliques,

with agent 6 bridging the two cliques with varying connectivity to each clique. We denote

ℓ1 the number of links that 6 has with agents in {1, . . . , 5}, and ℓ2 the number of links

that 6 has with agents in {7, . . . , 10}. Table 1 summarizes the equilibrium coordination

sets, and provides q̂∗ from Theorem 1 for various values of (ℓ1, ℓ2).
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Figure 7: Coordination and bridging.

(ℓ1, ℓ2) C∗ q̂∗

(0, 0) (2, 1.5, 0)

(0, 1) {{1, . . . , 5}, {7, . . . , 10}, {6}} (2, 1.5, 1)

(1, 0) (2, 1.5, 1)

(1, 1) (2, 1.6)

(0, 2) {{1, . . . , 5}, {6, . . . , 10}} (2, 1.6)

(1, 2) (2, 1.8)

(2, 0)
{{1, . . . , 6}, {7, . . . , 10}}

(2, 1.5)

(2, 1) (2, 1.75)

(2, 2) {N} (2)

Table 1: Coordination sets C∗ and q̂∗ for agent 6 linkage.

As agent 6 forms two links with each of the two cliques, all of the agents coordinate

together on a common cutoff in the noiseless limit. While the total number of links that 6

carries with each clique lies strictly below that of the members of each respective clique, 6

functions as a coordination bridge, synchronizing adoption strategies through the economy.

When the number of links to either clique drops below two, 6 either coordinates with one

of the two cliques, or coordinates with neither when holding only one link. We see that

forming one link with either clique increases q̂∗6 by exactly 1 = 1/|{6}|, while having no

impact on cutoffs of the clique, as predicted by Proposition D3 part 1.2 When agent 6

holds one link with clique {7, . . . , 10} and adds an additional link to the clique, we see an

2Likewise, if agent 6 holds two links with clique {1, . . . , 5} and adds a link to clique {7, . . . , 10}, we
see an increase in q̂∗i , i = 7, . . . , 10 of 0.25 = 1/|{7, . . . , 10}|, specifically from 1.5 to 1.75, as predicted by
Proposition D3, part 1.
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increase in q̂∗i , i = 6, . . . , 10, of 0.2 = 1/|{6, . . . , 10}|, that is from 1.6 to 1.8, as predicted

by Proposition D3 part 2.

D.3 Characterizations with Heterogeneous Intrinsic Valuations

The next proposition extends Proposition 2 to heterogeneous valuations. It result pro-

vides a partial characterization of when a set of agents C∗
m coordinate together: it takes

as given the coordination by all others agents N\C∗
m on higher or lower cutoffs. Denote

¯
C∗

m as above and C̄∗
m := ∪m′<mC

∗
m′ . Again, v(S) :=

∑

i∈S vi for S ⊆ N .

Proposition D4 (Common coordination). Conditional on
¯
C∗

m adopting and C̄∗
m not

adopting with probability one, connected agent-set C∗
m = N\(

¯
C∗

m∪C̄∗
m) coordinate together

if and only if for every nonempty S ⊂ C∗
m:

v(S) + φ(e(S,
¯
C∗

m) + e(S))

|S|
≤
v(C∗

m) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m))

|C∗
m|

. (D1)

Proof. We can extend the proof of Proposition 2, as follows. To show condition (D1), the

proof is analogous provided we modify the values of demand dj and supply si, accounting

for vi, links between C∗
m and

¯
C∗

m and constraining to subgraph GC∗
m
. For this, define

Ṽ1 = EC∗
m
and Ṽ2 = C∗

m. Define:

s̃j = φ, ∀j ∈ Ṽ1, and d̃i =
v(C∗

m) + φ(e(C∗
m, ¯
C∗

m) + e(C∗
m))

|C∗
m|

− (vi + φdi(
¯
C∗

m)), ∀i ∈ Ṽ2,

It is straight forward to check that:

∑

j∈Ṽ1

s̃j = φe(C∗
m) =

∑

i∈Ṽ2

d̃i.

The result just follows from Gale’s Demand Theorem.

The condition (D1) must hold for all subsets of C∗
m. That is, a violation by some

S ⊂ C∗
m implies that S carries a strictly greater incentive for adoption than all others in

C∗
m when they take a higher limit cutoff. Note that setting

¯
C∗

m = C̄∗
m = ∅, Proposition

D4 reduces to Proposition 2.

By setting
¯
C∗

m = C̄∗
m = ∅ in Proposition D4, we can establish the analogue to Propo-

sition 2 under heterogeneous values.
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Corollary D1. Under heterogeneous valuations, a single coordination set exists (i.e.

C∗ = {C1}) if and only if for every nonempty S ⊂ N ,

v(S) + φe(S)

|S|
≤
v(N) + φe(N)

|N |
. (D2)

When this condition is satisfied, the common cutoff is θ∗1 = σ−1(−v(N)+φe(N)
|N |

). Condition

(D2), holding for all ∅ 6= S ⊂ N , gives the extension of network balance to heterogeneous

valuations. Moreover, we see that Algorithm 1 terminates in one step if and only if there

exists a unique coordination set. That is, when N is the maximizer of ψ(·|∅):

ψ(S|∅) ≤ ψ(N |∅), ∀ ∅ 6= S ⊂ N.

In other words,
v(S) + φe(S)

|S|
≤
v(N) + φe(N)

|N |
, ∀ ∅ 6= S ⊂ N,

which is exactly the condition identified in equation (D2).

We next give the proof of Remark 1.

Proof of Remark 1. Near the limit (ν > 0), for k /∈ m(i)∗ with θ∗m(i) 6= θ∗m(k), then

s∗k /∈ (s∗i − ν, s∗i + ν) for ν > 0 sufficiently small (i.e. for ν ≪ |θ∗m(i) − θ∗m(k)|/2), and

thus for all i′ ∈ C∗
m(i), ai′ either equals one or zero (depending on m′ < m or m′ > m,

respectively) with probability one conditioning on sk = s∗k. Because this is true for

arbitrary k, it is also true for all members of any m′ 6= m(i) (including m(j)) for ν > 0

sufficiently small (i.e. for ν ≪ minm′ 6=m(i) |θ
∗
m(i) − θ∗m′ |/2). Given no atoms of F , this

must hold in a neighborhood of s∗i , which implies ∂s∗j/∂s
∗
i = 0 for all j /∈ m(i). If instead

k /∈ m(i)∗ but θ∗m(i) = θ∗m(k), by ∂s
∗
j/∂vi = 0 for each j /∈ m(i)∗ when θ∗m(i) 6= θ∗m(j) and by

C∗
m(k), C

∗
m(j) disjoint by assumption, ∂s∗j/∂s

∗
i = 0 again follows. ∂s∗j/∂s

∗
i = 0 then implies

∂s∗j/∂vi = 0.

We close this section exploring optimal targeting in Example 2. Assume H is uniform

with support [0, 1]: H ′(θ) = 1. By Corollary 1, the adoption maximizing key coordination

set is m̄∗. With payoff function (15) it is straight forward to calculate:

lim
ν→0

mw∗
i = 1 + 2θ∗m(i) − (θ∗m(i))

2

(

3 +
v(C∗

m(i))

|C∗
m(i)|

)

.
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As v1p approaches v̂∗1p(1) = 2, limν→0mw
∗
i converges on 0.67, for each i ∈ C∗

1 =

N ; per the above, the welfare-maximizing planner is indifferent over which agent to

target. At v̂∗1p(1) = 2, however, the limit partition discontinuously shifts to become

{{1p}, {c, 2p, 3p}}, limν→0mw
∗
1p drops to 0.4, and limν→0mw

∗
i , i = c, 2p, 3p rises to

0.76. Moreover, one can verify limν→0mw
∗
1p < limν→0mw

∗
i (for i = c, 2p, 3p) for all

2 < v1p < 9.3 To interpret, the welfare-maximizing planner optimally subsidizes the re-

maining coordination set C∗
2 = {c, 2p, 3p} to move the four agents closer together.4 Doing

so capitalizes on contagion within C∗
2 and externalities from C∗

2 to 1p. Not until θ∗1p is

sufficiently below θ∗2 will the gain from 1p’s (individual) marginal adoption outweigh the

additional externalities captured through targeting C∗
2 .

Notice that as v1p rises above 2, the welfare-maximizing key coordination set becomes

C∗
2 . We see that the benevolent planner effectively penalizes 1p for holding large v1p > vi,

i = c, 2p, 3p, and opts to target the coordination set with the second lowest cutoff.

E Weighted links

First, we write i’s ex-post payoff as follows:

ui(a−i|θ) = vi + σ(θ) + φ
∑

j∈Ni

eijaj. (E1)

Theorem 1 remains unchanged.5 We extend the following definitions to allow for weighted

links. First, now define i’s weighted degree di(S)
∑

j∈Ni∩S
eij. The definitions of e(·, ·) and

e(·) then go through:

e(S, S ′) =
∑

i∈S

di(S
′),

e(S) =
1

2

∑

i∈S

di(S).

Propositions 1 solving for equilibrium q∗m and Proposition 10 characterizing global co-

ordination remain unchanged.6 Proposition 3 is reserved for unweighted graphs, as the

following three-agent counterexample can easily be constructed. If eij ≫ ejk with eik = 0,

3For this, it is easy to verify θ∗1p = 3/(3 + v1p) when v1p > 2 and θ∗1p < θ∗i , i = c, 2p, 3p.
4In this case, w∗

cj = 1 and w∗
jc = 0 when v1p > 2, and so the planner will want to target either

2p or 3p to ensure the three agents continue to coordinate together. However, this is a construct of
v̂∗c ((1−1p, 2)) = 1, a case that does not hold generically.

5The proof of Theorem 1 requires only modest adjustments; we leave this for the reader.
6Again, these require modest adjustments to proofs.
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then agents i and j will coordinate together, and agent k will take a strictly higher cutoff.

Corollary 4, establishing that C∗ is independent of φ, will continue to hold. And when

intrinsic values are heterogeneous, the comparative statics results Propositions 5 and 6

also go through, provided we apply our updated definition of di(·) for Proposition 6.

Importantly, noise independent selection (Section F) continues to hold when links are

weighted and symmetric. The relevant potential function becomes:

P (a|θ) :=
∑

i∈N

(vi + σ(θ))ai +
1

2
φ

∑

i,j∈N ;i 6=j

eijaiaj, where a ∈ {0, 1}N , (E2)

and the results of Frankel et al. (2003 [22]), Oyama and Takahashi (2017 [48]) and

Basteck et al. (2013 [7]) carry through.

F Noise-independent selection

Here we consider the robustness of equilibrium selection to heterogeneous noise structures.

Consider the following extension.7

Information Structure. In the perturbed game, each i realizes signal si = θ + νǫi,

ν > 0, where ǫi is distributed via density function fi and cumulative function Fi with

support within [−1, 1]. Signals are independently drawn across agents conditional on θ.

As shown in Theorem 1, the limiting cutoff θ∗i are fully determined by the parameters

v, φ, σ(·), and G, in particular, the cutoffs are independent of the noise distribution F . In

this appendix, we provide an alternative proof of the noise-independent selection result

from a potential game approach.

In the simple case with two-player and binary action coordination game (dyad case

in our paper), as shown in Carlsson and van Damme (1993) [13], the risk-dominant

equilibrium is selected by global game and it is independent of noise distribution. Frankel

et al. (2003) [22] generalize this result to n-player supermodular games which yield a

potential, which applies to our setting under arbitrary network structures. Recall that in

our coordination game, each player has a binary action ai ∈ {0, 1}. Define the following

function:

P (a|θ) :=
∑

i∈N

(vi + σ(θ))ai +
1

2
φ

∑

i,j∈N ;i 6=j

aiaj, where a ∈ {0, 1}N . (F1)

7Frankel et al. (2003) [22] Section 6 addresses such an enrichment.
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It is straightforward to check that P (a|θ) is a potential function of game G(0) at θ

(Monderer and Shapley 1998 [39]), by the following

P (a′i, a−i|θ)− P (ai, a−i|θ) = (a′i − ai)

(

vi + σ(θ) + φ
∑

j∈Ni

aj

)

= ui(a
′
i, a−i|θ)− ui(ai, a−i|θ).

Moreover, the potential P is supermodular in (ai, a−i) for fixed θ, and strictly super-

modular in (ai, θ) for fixed a−i. As a result, by Frankel et al. (2003 [22]), Oyama and

Takahashi (2017 [48]) and Basteck et al. (2013 [7]), the game G(0) has an exact potential,

therefore the maximizer of the potential is selected by the global game, and this selection

is independent of noise distribution F .8

The connection between the potential game approach and our approach in Theorem

1 can be understood from the following relationship:9 for generic v,

θ∗i = inf{θ ∈ Θ|∃a−i such that (1, a−i) ∈ argmax
a

P (a|θ)}.

While the potential approach requires solving the maximization of P for each θ, which

makes it challenging for comparative statics due to discreteness of a, our approach has the

advantage that more precise information about the equilibrium cutoff points θ∗i is obtained

using Theorem 1 and the projection algorithm. Moreover, the information coordination

set, i.e., who coordinates with whom, is also directly decoded using the cutoff values,

which enables us to conduct comparative statics with respect to network structure and

valuations in a much simpler manner.

G Miscoordination costs

When a single coordination set obtains the common cutoff is θ∗1 = σ−1(−v + φ e(N)
|N |

), by

Proposition D4. Moreover, one can apply Proposition D4 to reconstruct Proposition 2

as the equivalent condition for a single coordination set. To show this, set N1 = ∅ with

8Moreover, Ui (2001 [52]) shows that the selected equilibrium is robust in the sense of Kajii and Morris
(1997 [36]). See Morris and Ui (2005 [43]), Oyama and Takahashi (2017 [48]) for further discussions.

9Note that for generic v, the potential P has a unique maximizer.
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vi = v − di in Proposition D4 to obtain:

|S|v −
∑

i∈S di + e(S)

|S|
≤

|N |v −
∑

i∈N di + e(N)

|N |
, ∀∅ 6= S ⊂ N,

which, given −
∑

i∈S di + e(S) = −e(S, Sc)− e(S), is equivalent to:

e(S, Sc) + e(S)

|S|
≥
e(N)

|N |
, ∀∅ 6= S ⊂ N.

Because E = e(S) ∪ e(Sc) ∪ e(S, Sc), for this inequality to hold it must be that:

e(Sc)

|Sc|
≤
e(N)

|N |
, ∀∅ 6= Sc ⊂ N.

As this is true for all nonempty Sc ⊂ N , we are free to drop the complement superscripts.

With Proposition 2 in hand, Proposition 3 obtains.

H Matlab code for Example 2

1 f unc t i on [Q,W] = GLOBALNET LIMIT(E,V, phi )

2

3 %This program so l v e s f o r unique qˆ∗ in the l im i t (Theorem 1) .

4

5 %inputs :

6 %E (nxn adjacency matrix ) ,

7 %V (nx1 vec to r o f va lue s v i )

8 %phi ( network s c a l e f a c t o r )

9

10 %outputs :

11 %Q ( c u t o f f s ) ,

12 %W ( l im i t we ight ing matrix )

13

14 n = length (E) ;% number o f agents

15 T = sum(V) ;

16 e = .5∗ sum(sum(E) ) ;

17 fun = @(x ) gap (x ,E,V, phi ) ;
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18

19 X0 = ones (n) ∗ . 5 ;% i n i t i a l po int

20 %opt ions = opt imopt ions ( ’ fminunc ’ , ’ MaxFunctionEvaluations

’ , 200000 , ’ StepTolerance ’ , 1 e−11 , ’ Optimal i tyTolerance ’ , 1 e−11 , ’

FunctionTolerance ’ , 1 e−11) ;

21 X = fmincon ( fun ,X0 , [ ] , [ ] , [ ] , [ ] , z e r o s (n) , ones (n) , [ ] ) ;

22 W = t r i u (X, 1 )+( t r i u ( ones (n)−X, 1 ) ) ’ ;

23 W = E.∗W;

24 Q = V+phi∗diag (E∗W’ ) ;

25

26 end

27

28

29 %%%%%%%%%%%%%%%%%

30 % sub−f un c t i on s %

31 %%%%%%%%%%%%%%%%%

32

33 f unc t i on value = gap (X,E,V, phi )

34

35 n = length (E) ;

36 W = t r i u (X, 1 )+( t r i u ( ones (n)−X, 1 ) ) ’ ; %ensure s w i j+w j i=1 f o r

each i , j .

37 T = sum(V) ;

38 L = T/n∗ones (n , 1 ) − (V+phi∗diag (E∗W’ ) ) ;

39 value = L’∗L ; %Eucl idean norm

40

41 end
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