Games induced by the partitioning of a graph
Article
Annals of Operations Research
Issue number:
1
Publisher:
Springer-Verlag
Year:
2012
Journal pages:
229-249
The paper aims at generalizing the notion of restricted game on a communication graph, introduced by Myerson. We consider communication graphs with weighted edges, and we define arbitrary ways of partitioning any subset of a graph, which we call correspondences. A particularly useful way to partition a graph is obtained by computing the strength of the graph. The strength of a graph is a measure introduced in graph theory to evaluate the resistance of networks under attacks, and it provides a natural partition of the graph (called the Gusfield correspondence) into resistant components. We perform a general study of the inheritance of superadditivity and convexity for the restricted game associated with a given correspondence. Our main result is to give for cycle-free graphs necessary and sufficient conditions for the inheritance of convexity of the restricted game associated with the Gusfield correspondence.