k-balanced games and capacities
Working paper
Issue number:
2008.79
Publisher:
Maison des Sciences Économiques
Year:
2008
In this paper we present a generalization of the concept of balanced game for finite games. Balanced games are those having a nonempty core, and this core is usually considered as the solution of the game. Based on the concept of k-additivity, we define the so-called k-balanced games and the corresponding generalization of core, the k-additive core, whose elements are not directly imputations but k-additive games. We show that any game is k-balanced for a suitable choice of k, so that the corresponding k-additive core is not empty. For the games in the k- additive core, we propose a sharing procedure to get an imputation and a representative value for the expectations of the players based on the pessimistic criterion. Moreover, we look for necessary and sufficient conditions for a game to be k-balanced. For the general case, it is shown.