A Structure Theorem for Graphs with No Cycle with a Unique Chord and Its Consequences

Printer-friendly version
Working paper
Author/s: 
Nicolas Trotignon and Kristina Vuskovic
Issue number: 
2008.21
Publisher: 
Centre d’Economie de la Sorbonne
Year: 
2008
We give a structural description of the class C of graphs that do not contain a cycle with a unique chord as an induced subgraph. Our main theorem states that any connected graph in C is a either in some simple basic class or has a decomposition. Basic classes are cliques, bipartite graphs with one side containing only nodes of degree two and induced subgraph of the famous Heawood or Petersen graph. Decompositions are node cutsets consisting of one or two nodes and edge cutsets called 1-joins. Our decomposition theorem actually gives a complete struc- ture theorem for C, i.e. every graph in C can be built from basic graphs that can be explicitly constructed, and gluing them together by pre- scribed composition operations; and all graphs built this way are in C. This has several consequences: an O(nm)-time algorithm to decide whether a graph is in C, an O(n + m)-time algorithm that finds a max- imum clique of any graph in C and an O(nm)-time coloring algorithm for graphs in C. We prove that every graph in C is either 3-colorable or has a coloring with ω colors where ω is the size of a largest clique. The problem of finding a maximum stable set for a graph in C is known to be NP-hard.
Developed by Paolo Gittoi